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Abstract In this paper, we study the complex dynam-
ics of a spatial nonlinear predator-prey system under
harvesting. A modified Leslie–Gower model with
Holling type IV functional response and nonlinear har-
vesting of prey is considered. We perform a detailed sta-
bility and Hopf bifurcation analysis of the spatial model
system and determine the direction of Hopf bifurca-
tion and stability of the bifurcating periodic solutions.
Numerical simulations were performed to figure out
how Turing patterns evolve under nonlinear harvesting.
Simulation study leads to a few interesting sequences of
pattern formation, which may be relevant in real world
situations.

Keywords Turing instability · Pattern formation ·
Hopf bifurcation · Harvesting · Holling type IV
functional response

1 Introduction

Alan Turing’s idea that diffusion can destabilize an oth-
erwise stable system of reactants has been explored in
several context; an explanation of spatial patterns on
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animal skin is an example. Molecular analysis of hair
follicle formation provides evidence to support biolog-
ical pattern formation through diffusion-driven insta-
bility [19]. Diffusion-driven instability can lead to spa-
tial concentration patterns of fixed characteristic length
from an arbitrary initial configuration [30]. Spatial pat-
terns in early embryo development, which emerges
from single cell to skeletal patterns such as hair, teeth,
feather and coat markings have been explained on the
basis of the mechanism of pattern formation suggested
by Turing [4]. Three-dimensional Turing patterns have
been observed in aqueous nano-droplets much smaller
than the scale of the stationary patterns [3]. Spatial pat-
tern of ecological interactions are considered to be an
important factors how real world ecological communi-
ties are shaped. Inhomogeneous distribution of nutri-
ents and processes; e.g., migration, etc. can have impor-
tant impact on the dynamics of biological populations.
Alonso and collaborators have explored the possibility
of Turing spatial patterns generated by mutual inter-
ference [1]. Perfecto and Vandermeer [21] have shown
self-organized spatial patterns in Coffee Agro-forestry
system. Authors examined the consequences of the sta-
bility of spatial patterns for the stability of predator-
prey systems, for a key Coccinelid beetle preying on
the scale insects and a phorid fly parasitoid parasitiz-
ing on the ant. Diffusion-driven spatial patterns have
been observed in patterns of insect outbreak [13]. Spa-
tial pattern formations have also been observed in pat-
terning of spruce budworm [18], in an insect host-
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parasitoid system [20] and in North Sea plankton [25].
Guan et al. [9] investigated the spatiotemporal dynam-
ics of a modified Leslie–Gower predator-prey model
incorporating a prey refuse. They studied the Tur-
ing bifurcation which determines the Turing space in
spatial domain and numerically illustrated five cate-
gories of Turing bifurcation close to the onset of Tur-
ing bifurcation. Camara and Aziz-Alaoui [5] studied
how diffusion affects the stability of positive equilib-
rium of a Leslie–Gower type predator-prey model and
derived the conditions for Hopf and Turing bifurca-
tion in spatial domain. Li et al. [17] studied the Hopf
bifurcation and Turing instability in a spatial Holling–
Tanner model with Neumann type boundary condition.
Authors also identify the parameter ranges of stability
and instability of spatially homogeneous equilibrium
solutions and bifurcating periodic orbits. Recently,
Wang [28] studied the pattern formation in a spatial
epidemic model with nonlinear incidence rate and pre-
sented Hopf and Turing bifurcation. Zhang et al. [32]
investigated the spatiotemporal dynamics of a reaction-
diffusion system with hyperbolic mortality rate and
find the Turing space in which Turing instability
occurs.

The study of population dynamics with harvest-
ing is a vital topic of mathematical bioeconomics and
is related to the optimal management of renewable
resources. The management of renewable resources is
based on the concept of maximal sustainable yield,
which suggests exploiting the surplus production on the
basis of biological growth model. Clark [7] reviewed
the effect of harvesting on fisheries management using
ecological and economic models. There are mainly
three types of harvesting reported in the literature: (i)
constant rate of harvesting h(x) = h, where a fixed
number of individuals are harvested per unit time, (ii)
proportionate harvesting h(x) = q Ex , that is, the catch
is proportional to the stock and effort [8], where q is
called the catchability coefficient, E is effort used for
harvesting (number of boats, fishing nets etc) and q E
is the fishing mortality, and (iii) nonlinear harvesting
h(x) = q Ex/(m1 E + m2x) (Holling type II), where
m1, m2 are suitable positive constants. m1 is propor-
tional to the ratio of the stock-level to the harvesting
rate (catch-rate) at high levels of effort and m2 is pro-
portional to the ratio of the effort-level to the harvest-
ing rate at higher stock-levels. Lan and Zhu [16] studied
the phase portraits, Hopf bifurcation and limit cycles of
Leslie–Gower (LG) model with constant harvesting in

prey. Gupta and Chandra [10] studied the modified LG
model with nonlinear prey harvesting and observed that
the nonlinear harvesting in prey significantly modifies
the dynamics of the model system with proportionate
harvesting in prey. Recently, Huang et al. [14] studied
the effect of constant yield predator harvesting on the
dynamics of a Leslie–Gower type model. It has been
shown that the model has a Bogdanov–Takens singular-
ity of codimension 3 or a weak focus of multiplicity two
for some parameter values. As the parameters varies,
the model exhibit saddle-node bifurcation, repelling
and attracting Bogdanov–Takens bifurcations, super-
critical, subcritical and degenerate Hopf bifurcation.
Saleh [24] discussed the dynamical properties of a
modified Leslie–Gower model with quadratic preda-
tor harvesting. Rao [23] investigated the spatiotempo-
ral complexity of a ratio-dependent spatially extended
food chain model. Baek [2] investigated the pattern
formations of a ratio-dependent predator-prey system
with linear harvesting rate. Sun et al. [26] studied the
spatiotemporal complexity in a Holling–Tanner model
and investigated how directed movement (migration)
and random movement (diffusion) affect predator-prey
dynamics. Rai et al. [22] investigated the effects of
random and directed animal movements of a 1D spa-
tial nonlinear coupled reaction-diffusion system with a
Holling type IV functional response.

The ever growing demand of food and other nat-
ural resources leads to an exploitation of several bio-
logical resources which badly affect the ecosystem.
Also there is a global concern to protect the nat-
ural resources/ecosystem at large. For facing these
two opposite situations, we are looking for an opti-
mal management policy which is necessary for a sci-
entific management of commercial exploitation of the
biological resources. The main motive of the optimal
management of renewable resources (like forestry, fish-
ery and wildlife) is to determine how much one can
harvest without altering critically the harvested popu-
lation and conserving it for the benefits of humanity
and future generations. For instant, let us think about
an outbreak of algal bloom caused by plankton popu-
lation. In this case, harvesting the populations of phy-
toplankton or zooplankton is one of simple ways to
control the algal bloom. Truly speaking, the manage-
ment of renewable resource is complicated and con-
structing an accurate mathematical model is even more
complicated. To gain insight in the scientific manage-
ment of renewable resources, bioeconomic modeling
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is widely used. In our work, we have tried to address
this issue with the help of a designed model system
and determine how the nonlinear harvesting affects the
dynamics which is more efficient and economic than
the constant and proportionate harvesting. Such har-
vesting activity has an effect on both prey and predator
species. Leslie–Gower spatial model under nonlinear
harvesting on prey species with Holling type IV func-
tional response has not been studied so far. In this paper,
we have designed a two-dimensional modified Leslie–
Gower predator-prey diffusive model system with non-
linear harvesting in prey population. The Leslie–Gower
model leads to asymptotic solutions tending to sta-
ble equilibrium, which is independent of initial con-
ditions and depends on the intrinsic factors governing
the biology of the system. The interaction between prey
and predator is modeled with Holling type IV func-
tional response. Andrews investigated a function of
the form f (x) = mx

x2
i +x+a

and called it Holling type

IV functional response or Monod–Haldane function,
which is similar to the Monod (i.e., the Michaelis–
Menten) function for low concentration but includes
the inhibitory effect at high concentrations. This func-
tional response was first introduced by Haldane [11]
for enzymology. The parameter m and a can be inter-
preted as the maximum per capita predation rate and the
half-saturation constant in the absence of any inhibitory
effect. The parameter i is a measure of the predator’s
immunity from the prey. As the value of the para-
meter i decrease’s, the predator’s foraging efficiency
decreases. In the limit of large i , it reduces to a type
II functional response. This immunity of the predator
exists in the circumstances when group defense is oper-
ational [27]. We have also studied the existence of Hopf
bifurcation and Turing instability in this spatial model
with nonlinear harvesting.

2 The mathematical model

The modified Leslie–Gower type model described by
the autonomous two-dimensional system of differential
equations with Holling type IV functional response is
given by

dx

dT
=
(

r
(

1 − x

K

)
− my

x2

i + x + a

)
x,

dy

dT
= s

(
1 − ny

x

)
y, (1)

subjected to positive initial conditions x(0) > 0, y(0)

> 0. Here x ≡ x(T ) and y ≡ y(T ) are the prey and
predator population densities, respectively.

Model system (1) is defined on the set:

Ω = {(x, y) ∈ R2|x ≥ 0, y ≥ 0}, (2)

with all the parameters r, K , m, i, s, a and n being posi-
tive. Further, the parameters have the following biolog-
ical meanings:

(i) r and s are intrinsic growth rates or biotic potential
of the prey and predators, respectively.

(ii) K is the carrying capacity of the environment for
prey.

(iii) m is the maximum per capita predation rate.
(iv) i is a direct measure of, the predator’s immunity

from, or tolerance of the prey.
(v) a is the half-saturation constant in the absence of

any inhibitory effect.
(vi) n is number of prey required to support one preda-

tor at equilibrium.

Here, the interaction between prey and predator is
expressed by the Holling type IV functional response
that is f (x) = mx

x2
i +x+a

[27]. Now, we introduce the

nonlinear harvesting H(x) = q Ex
(m1 E+m2x)

in model sys-
tem (1). Therefore, the modified system of differential
equations are

dx

dT
=
(

r
(

1− x

K

)
− my

x2

i +x+a
− q E

(m1 E +m2x)

)
x,

dy

dT
= s

(
1 − ny

x

)
y, (3)

subjected to positive initial condition x(0) = x0 > 0
and y(0) = y0 > 0. The parameter r, K , m, i, s, a and
n have the same biological meaning as in model (1), q
is the catchability coefficient, E is the effort applied to
harvest individuals and m1, m2 are suitable constants.
All parameters are assumed to be positive. The system
(3) is defined on the set Ω .

We introduce the following substitutions and nota-
tions to bring the system of equations into non-
dimensional form

x = K u, t = rT, h = q E

rm2 K
, c = m1 E

m2 K
, y = r Kv

m
,

α = i

K
, γ = a

K
, δ = s

r
, β = nr

m
.
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Constants m1 and m2 are chosen in such a way that(m1
m2

)
E < x , where x is the prey biomass at a given

instant of time.
The model system in dimensionless form can be

written as

du

dt
= u(1 − u) − uv

u2

α
+ u + γ

− hu

c + u
,

dv

dt
= δv

(
1 − β

v

u

)
. (4)

Now we present the result which states that the
model system (4) is well behaved as one intuits from
the biological/ecological problem.

Lemma 1 The solutions of system (4) are positive and
eventually bounded, i.e., there exists T ≥ 0 such that
u(t) < M1, v(t) < M2 for t ≥ T .

Proof The phase portrait of (4) is shown in Fig. 1. The
nullclines of the systems are: C1 : v = (1 − u −

h
c+u )( u2

α
+ u + γ ), on which du

dt
= 0; and C2 : v = u

β
,

on which dv

dt
= 0. The first quadrant is divided into

four parts D1, D2, D3 and D4 by C1 and C2. The inter-
section of C1 and C2 is the positive equilibrium point
(u∗, v∗). Set L1 = {(u, v) : u = M1, 0 ≤ v ≤ M2}
and L2 = {(u, v) : 0 ≤ u ≤ M1, v = M2}. Denote D
as the rectangular region whose boundary consists of
L1, L2, u-axis and v-axis. Clearly D is an invariant set
and attracts any trajectory starting in the first quadrant.
Hence, the solutions are eventually bounded.

Next, we prove the positivity of the solutions by
showing that trajectories starting from first quadrant
cannot reach the v-axis. To this end, we only need to
prove that trajectories cannot arrive the v-axis in D2.

Fig. 1 Phase portrait of model system (4) in u − v plane with
h = 0.01, c = 1, α = 3, β = 0.9

From a given point (u0, v0) ∈ D2, denote T1 as
the time of the trajectory running from (u0, v0) to C1

and T2(N ) as the time of the trajectory running from
(u0, v0) to the line u = u0/N , N ∈ N and N ≥ 2. We
estimate the time T1 and T2.

T1 ≤
∫ 1

v0

1

δv
(

1 − β v
u

)dv ≤
∫ v0

1

1

δv
(
β v

u0
− 1

)dv

= 1

δ
ln
(β − u0

v0

β − u0

)
.

Hence T1 is finite. Now,

T2(N ) =
∫ u0/N

u0

1

u(1 − u) − uv
((u2/α)+u+γ )

− hu
(c+u)

du

≥
∫ u0/N

u0

1

u(u + h + v − 1)
du

= 1

h + v − 1
ln

(
u0 + N (h + v0 − 1)

h + u0 + v0 − 1

)
.

Since

limN→+∞
1

h+v − 1
ln

(
u0+N (h + v0 − 1)

h + u0 + v0 − 1

)
= +∞

there exists an N0 ∈ N such that

1

h + v − 1
ln
(u0 + N0(h + v0 − 1)

h + u0 + v0 − 1

)

>
1

δ
ln
(β − u0

v0

β − u0

)
,

hence, T2(N0) > T1. This shows that the time of the
trajectory running to the v-axis is far longer than that to
C1, that is the trajectory runs into D3 before it reaches
the v-axis. From the properties of the vector field shown
in Fig. 1, the trajectories cannot reach the v-axis in D3,
therefore any trajectories starting in the first quadrant
cannot reach the v-axis.

From the above discussion, we know that there is
no homoclinic or heteroclinic orbit in the domain D.
Hence, it is proved.

Now we consider the populations in the spatial
domain and the dispersal of species is assumed to be
random, so that the Fick’s law holds, and it leads to
the following diffusion model in non-dimensionalized
form as

∂u

∂t
= d1Δu + u(1 − u) − uv

u2

α
+ u + γ

− hu

c + u
,

∂v

∂t
= d2Δv + δv

(
1 − β

v

u

)
. (5)
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with the initial condition

u(0, x, y) = u0(x, y) > 0,

v(0, x, y) = v0(x, y) > 0 (6)

and the boundary condition

∂νu = ∂νv = 0, (7)

where u and v denote the population densities of prey
and predator population at time t and in space (x, y),
respectively; the positive constants d1 and d2 repre-
sents the diffusion rates of prey and predator species,
respectively; The parameter α is a measure of the preda-
tor’s immunity from, or tolerance of, the prey. γ is the
half-saturation constant in the absence of any inhibitory
effect; β is conversion coefficient from prey into preda-
tor; δ denotes the growth rate of predator species; h and
c are positive constants. 	


3 Analysis of the spatial model system

In order to deal with the stability and bifurcation analy-
sis of the spatiotemporal system (5), we linearize the
dynamical system (5) around the spatially homoge-
neous fixed point E∗(u∗, v∗) for small space and time
fluctuations. To accomplish this purpose, we assume
that

u(x, t) ≈ u∗eλt eik.x,

v(x, t) ≈ v∗eλt eik.x, (8)

where x = (x, y) and k.k = k2, k and λ are the
wave number vector and frequency, respectively. Then
we can obtain the corresponding characteristic equa-
tion |Jk − λI | = 0, where Jk = J − k2 D and
D = diag(d1, d2) is the diffusion matrix and Jacobian
matrix J is given by

J =

⎛
⎜⎜⎝

∂ F

∂u

∂ F

∂v

∂G

∂u

∂G

∂v

⎞
⎟⎟⎠ , (9)

where F = u(1−u)− uv
u2
α

+u+γ
− hu

c+u and G = δv
(
1−

β v
u

)
. From an elementary calculation, we obtain

J =
(

Fu Fv

δ/β −δ

)

where Fu = 1 − 2u∗ − ch
(c+u∗)2 + (α(−αγ+u∗2)v∗)

(u∗2+α(γ+u∗))2 , and

Fv = − αu∗
(u∗2+α(γ+u∗)) .

The characteristic equation of Jk is

λ2 − tr(Jk)λ + det(Jk) = 0, k = 0, 1, 2, . . . (10)

where

tr(Jk) = Fu − δ − k2(d1 + d2),

det(Jk) = k4d1d2+k2(δd1−Fud2) − δ

(
Fu + Fv

β

)
.

(11)

Then the solutions of the characteristic Eq. (10) yield
the dispersion relation as

λ±
k = 1

2
(tr(Jk) ±

√
(tr(Jk))2 − 4det(Jk)). (12)

By analyzing the distribution of roots of (10), we
obtain the following results.

Theorem 1 Suppose that E∗(u∗, v∗) is locally asymp-
totically stable equilibrium for model system (4) and
δ > Fu. Then E∗(u∗, v∗) is locally asymptotically sta-
ble equilibrium solution of system (5) if and only if one
of following is satisfied

(i) d1 ≥ Fu,

(ii) d1 ≥ d2 Fu
δ

,

(iii) d1 < min
{

Fu, d2 Fu
δ

}
and δ >

βd2k2(Fu−d1k2)

βd1k2−(βFu+Fv)
,

for all k ≥ 1 satisfying k <

√
Fu
d1

.

Proof First, it is clear that tr(Jk+1) < tr(Jk) for k ≥
0 from the definition of tr(Jk), and tr(J0) < 0. So
tr(Jk) < 0, for all k ≥ 0. Hence, the signs of the real
parts of roots of (10) are determined by the signs of
det(Jk), respectively. We regard det(Jk) as a quadratic
function about k2 denoted by det(k2), that is, det(k2) =
k4d1d2 + k2(δd1 − Fud2) − δ(Fu + Fv

β
), k ∈ N. The

symmetry axis of the graph of (k2, det(k2)) is l(δ) =
(d2 Fu − d1δ)/2d1d2.

Assumption (i) implies that d1k2 − Fu ≥ 0 for all
k ≥ 1, that means det(Jk) = k4d1d2+k2(δd1−Fud2)−
δ
(

Fu + Fv

β

)
> 0 for all k ≥ 0.

Assumption (ii) implies that l(δ) < 0, then we
can conclude that det(Jk) > 0 for all k ≥ 0 since
det(J ) > 0.

123



2256 R. K. Upadhyay et al.

Clearly, (iii) implies that det(Jk) > 0 for all k ≥ 0.
So all the roots of (10) will have negative real parts
under any one of assumptions (i), (ii) and (iii). 	


4 Stability of steady state and existence of Hopf
Bifurcation

From the biological point of view, the properties of
positive constant steady-state solution are important
and interesting. Therefore, in the following, we shall
focus on the stability of E∗(u∗, v∗) and the existence
of Hopf bifurcation. We first translate the equilibrium
E∗(u∗, v∗) of system (5) to the origin using the trans-
formation û = u − u∗ and v̂ = v − v∗. Then system
(5) in a neighborhood of the origin can be written as

∂ û

∂t
= d1Δû(t, x) + (û + u∗)(1 − û − u∗)

− (û + u∗)(v̂ + v∗)
(û+u∗)2

α
+ (û + u∗) + γ

− h(û + u∗)
c + û + u∗ ,

∂v̂

∂t
= d2Δv̂(t, x) + δ(v̂ + v∗)

(
1 − β(v̂ + v∗)

(û + u∗)

)
.

(13)

Using the Taylor series expansion at (u, v) = (0, 0),
system (13) can be expressed as

∂ û

∂t
= d1Δû(t, x) + (1 − 2u∗ − a1)û + a2v̂

+ f (û, v̂, θ),

∂v̂

∂t
= d2Δv̂(t, x) + b1û + (δ − b2)v̂ + g(û, v̂, θ),

(14)

where

f (û, v̂, θ) = (a3 − 1)û2 + a4ûv̂ + a5v̂
2 + a6û3

+ a7û2v̂ + · · · ,

g(û, v̂, θ) = b3û2 + b4ûv̂ + b5v̂
2 + b6û3 + · · · ,

and

a1 = ch

(c + u∗)2 + (αγ − u∗2
)θ,

a2 = − αu∗

u∗2 + αu∗ + αγ
,

a3 = ch

(c + u∗)3 + (α2γ + 3αγ u∗ − u∗3)θ

(u∗2 + α(γ + u∗2))
,

a4 = (−αγ + u∗2)θ

v∗ ,

a5 = 0, a6 = −ch

(c + u∗)4

+ (−α3γ + α2γ (γ − 4u∗) − 6αγ u∗2 + u∗4)θ

(u∗2 + α(γ + u∗2))2
,

a7 = (α2γ + 3αγ u∗ − u∗3)θ

v∗(u∗2 + α(γ + u∗2))
,

b1 = δ

β
, b2 = 2δ, b3 = −βδv∗2

u∗3 ,

b4 = 2βδv∗

u∗2 , b5 = −βδ

u∗ ,

b6 = βδv2∗
u4∗

, θ = αv∗

(u∗2 + α(γ + u∗2))2
.

In the following, we use θ as the bifurcation parame-
ter. The variance of θ plays an important role in deter-
mining the stability of positive constant steady-state
solution and for the existence of Hopf bifurcation.

Now, we introduce new variables U1(t), U2(t) and
U (t) by

U1(t) = û(t, .), U2(t) = v̂(t, .),

U (t) = (U1(t), U2(t))
T .

Then model system (14) can be transformed into an
abstract differential equation

˙U (t) = L(U ) + G(U ) (15)

where,

L =
(

(1 − 2u∗ − a1) + d1Δ a2

b1 δ − b2 + d2Δ

)

and

G(U ) = ( f, g)T

Let

K =
(

(1 − 2u∗ − a1) a2

b1 δ − b2

)
, D =

(
d1 0
0 d2

)

then L = K + D

(
Δ 0
0 Δ

)
and

detK = δ

(
2u∗−1+ ch

(c+u∗)2 + u∗α
(β(u∗2+α(γ +u∗)))

+ α2γ v∗

(u∗2+a(γ +u∗))2
− αu∗2v∗

(u∗2+α(γ +u∗))2

)
>0,

if u∗ > 1/2 and αγ ≥ u∗2.
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Now, linearizing system (15) at the origin (0,0), one
can obtain that

U̇ (t) = L(U ). (16)

The characteristic equation of system (16) is

λy − D

(
Δ 0
0 Δ

)
y − K (y) = 0, (17)

where y ∈ dom
(

D
(

Δ 0
0 Δ

))
\{0}.

It is well known that the stability of trivial solution of
(15) depends on the locations of roots of (17), when all
roots of (17) have negative real parts, the trivial solution
of (15) is stable; otherwise, it is unstable.

Clearly, the eigenvalue problem

−Δφ = λφ, x ∈ Ω, ∂φν = 0, x ∈ ∂Ω,

has eigenvalues 0 = λ0 < λ1 < · · · < λk < · · · , and
the corresponding eigenfunctions are

γk = φk(x), k ∈ N0 = {0, 1, 2, . . .}.
Let β1

k =
(

γk

0

)
, β2

k =
(0

γk

)
. Then Bk =

{(β1
k , β2

k )}∞k=0 construct a basis of the phase space of

system (15) and y ∈ dom
(

D
(

Δ 0
0 Δ

))
\{0} can be

decomposed as

y =
∞∑

k=0

(〈
y, β1

k

〉
β1

k +
〈
y, β2

k

〉
β2

k

)
,

=
∞∑

k=0

(β1
k , β2

k )

( 〈
y, β1

k

〉
〈
y, β1

k

〉
)

. (18)

Thus, the characteristic Eq. (17) is equivalent to

det

[(
λ + d1λk 0
0 λ + d2λk

)

−
(

(1 − 2u∗ − a1) a2

b1 δ − b2

)]

= 0, for some k ∈ N0

that is,

λ2((d1 + d2)λk + b2 − δ − 1 + 2u∗ + a1)λ

+(d1d2λ
2
k − (1 − 2u∗ − a1)d2λk − (δ − b2)d1λk

+(1 − 2u∗ − a1)(δ − b2) − b1a2) = 0. (19)

Let Jk := K − λk D, then

trJk = trK − (d1 + d2)λk = −(d1 + d2)λk + θ∗ − θ

and

detJk = d1d2λ
2
k − [d1(δ − b2)

+ d2(1 − 2u∗ − a1)]λk + detK ,

where

θ∗ = 1 − δ − 2u∗− ch

(c + u∗)2 + αv∗

(u∗2 + α(γ + u∗))2

− α(αγ − u∗2)v∗

(u∗2 + α(γ + u∗))2
.

Thus, the characteristic Eq. (19) can be denoted sim-
ply as

λ2 − λtrJk + detJk = 0. (20)

According to (20) and detK > 0, it is easy to know
that under the condition that u∗ ≥ 1/2 and αγ ≥ 1 +
u∗2, if θ > θ∗ − (d1 + d2)λk for every k ∈ N0, then
the positive constant steady-state solution E∗(u∗, v∗)
is stable; if there exists certain k ∈ N0 such that θ <

θ∗−(d1+d2)λk , then the positive constant steady-state
solution E∗(u∗, v∗) is unstable.

Suppose that iω is a pure imaginary root of (20).
Substituting iω into (20), we have

−ω2 − trJkωi + detJk = 0. (21)

Separating the real and imaginary parts of the above
equation, one can obtain

ω2 = detJk > 0, trJk = trK − (d1 + d2)λk = 0.

Let

θ j = θ∗ − (d1 + d2)λ j ( j ∈ N0). (22)

Then, the only value of θ at which the homogeneous
Hopf bifurcation occurs is θ = θ0. Near θ0, substituting
λ = p1 + q1i into (20) and separating the real and
imaginary parts, one can get that

p2
1 − q2

1 − p1trJk + detJk = 0, (23)

2p1q1 − q1trJk = 0. (24)

Differentiating two sides of (24) with respect to θ ,
we get

sgn
[dp1

dθ

]
θ=θ0

= −1

2
�= 0. (25)
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Therefore, the transversality condition holds. Accord-
ing to the Hopf bifurcation theorem for differential Eq.
[6], we have the following result.

Theorem 2 Suppose that u∗ ≥ 1/2 and αγ ≥ 1+u∗2.
Then

(i) If θ > θ0, then the positive constant steady-state
solution E∗(u∗, v∗)of system (5) is asymptotically
stable and unstable when θ < θ0;

(ii) System (5) can undergo a Hopf bifurcation at the
positive constant steady-state solution E∗(u∗, v∗)
when θ = θ j , j ∈ N0.

The model system (5) is integrated numerically
using Runge-Kutta Method. For parameter values α =
0.05, β = 0.02, c = 1, δ = 0.12, γ = .5, h =
0.01, d1 = 0.005, d2 = 0.0001, a limit cycles appears
in a small neighborhood of the equilibrium point (see
Fig. 2).
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Fig. 2 The figure shows that the limit cycle have created around
the equilibrium point

5 Stability of spatially homogeneous periodic
orbits

In Sect. 4, we have obtained the conditions under which
a family of periodic solutions bifurcate from the posi-
tive constant steady-state solution E∗(u∗, v∗)of system
(5) when the parameter θ crosses through the critical
value θ j . In this section, we study the direction of Hopf
bifurcations and stability of bifurcated periodic solu-
tions arising through Hopf bifurcations by applying the
center manifold theorem and normal form theory intro-
duced by Hassard et al. [12].

To determine the stability of bifurcated periodic
solutions, we need to know the restriction of the system
to its center manifold at θ0. Denote by L∗ the conjugate
operator
(

u
v

)
→ L∗

(
u
v

)
, (26)

with domain

{(u, v) ∈ H2(Ω) × H2(Ω)|∂uν =∂vν = 0, x ∈ ∂Ω},
where the H2(Ω) is the standard Sobolev space and

L∗ =
(

(1 − 2u∗ − a1) + d1Δ a2

b1 δ − b2 + d2Δ

)
.

(27)

In fact, we choose

q =
(

1
iω−(1−2u∗−a1)

a2

)
, q∗ = D∗

(
ω−(1−2u∗−a1)i

a2−i

)
,

D∗ = a2

2ω
.

For all α ∈ DL∗ , β ∈ DL , it is not difficult to verify
that
〈
L∗α, β

〉 = 〈α, Lβ〉 , Lq = iωq,

L∗q∗ = −iωq∗,
〈
q∗, q

〉 = 1,
〈
q∗, q̄

〉 = 0,

where 〈α, β〉 = ∫
Ω

ᾱT βdx denotes the inner product
in L2(Ω) × L2(Ω).

Following Hassard et al. [12], we decompose X =
XC ⊕ X S with XC := {zq + z̄q̄ : z ∈ C},

X S := {W ∈ X : 〈q∗, W 〉 = 0}. For any (x, y) ∈
X, there exists z ∈ C and W = (W1, W2) ∈ X S such
that

(u, v)T = zq + z̄q̄ + (W1, W2)
T , z =

〈
q∗, (u, v)T

〉
,
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then

u = z + z̄ + W1,

v = z
( iω

a2
− (1 − 2u∗ − a1)

a2

)

+z̄
(−iω

a2
− (1 − 2u∗ − a1)

a2

)
+ W2. (28)

System in (z, W ) coordinates becomes

dz

dt
= iωz +

〈
q∗, f̃

〉
,

dW

dt
= LW + [ f̃ −

〈
q∗, f̃

〉
q −

〈
q̄∗, f̃

〉
q̄], (29)

where f̃ = ( f, g)T , and f, g are defined by Eq. (14).
Then, the calculations show that

〈
q∗, f̃

〉
= D∗[ ω

a2
f − (1 − 2u∗ − a1)

a2
f i − gi

]
,

〈
q̄∗, f̃

〉
= D∗[ ω

a2
f + (1 − 2u∗ − a1)

a2
f i + gi

]
,

〈
q∗, f̃

〉
q

= D∗

⎛
⎜⎝

ω
a2

f − (1−2u∗−a1)
a2

f −gi

ω2

a2
2

f i + (1−2u∗−a1)
2

a2
2

f i + ω
a2

g+ (1−2u∗−a1)
a2

gi

⎞
⎟⎠,

〈
q∗, f̃

〉
q̄

= D∗
⎛
⎝

ω
a2

f + (1−2u∗−a1)
a2

f +gi

−ω2

a2
2

f i − (1−2u∗−a1)
2

a2
2

f i + ω
a2

g− (1−2u∗−a1)
a2

gi

⎞
⎠.

Notice that

H = H20

2
z2 + H11zz̄ + H02

2
z̄2 + O(|z|3),

W = W20

2
z2 + W11zz̄ + W02

2
z̄2 + O(|z|3).

On the center manifold, we have

(2iω − L)W20 = H20,

(−L)W1 = H11,

W02 = W̄20.

and
〈
q∗, f̃

〉
q +

〈
q̄∗, f̃

〉
q̄ = D∗

(
2ω
a2

f
2ω
a2

g

)
= ( f, g)T ,

H(z, z̄, W ) := f̃ −
〈
q∗, f̃

〉
q −

〈
q̄∗, f̃

〉
q̄ = (0, 0)T .

This implies that

W20 = W02 = W11 = 0.

Therefore
dz

dt
= iωz + 1

2
g20z2 + g11zz̄ + 1

2
g02 z̄2

+ 1

2
g21z2 z̄ + O(|z|4),

where

g20 = 1

2

[
−2 + 2

( ch

(c + u∗)3 + α(α2γ + 3αγ u∗ − u∗3)v∗

(u∗2 + α(γ + u∗))3

)

−
2(−αγ + u∗2)(−1 + 2u∗ + (ch)

(c+u∗)2 + (α(αγ−u∗2)v∗)
(u∗2+α(γ+u∗))2 + iw)

(u∗(u∗2 + α(γ + u∗)))

⎤
⎥⎦ ,

g11 = 1

2

[
−2 + 2

( ch

(c + u∗)3 + α(α2γ + 3αγ u∗ − u∗3)v∗

(u∗2 + α(γ + u∗))3

)

−
(2(−αγ + u∗2)(−1 + 2u∗ + (ch)

(c+u∗)2 + (α(αγ−u∗2)v∗)
(u∗2+α(γ+u∗))2 )

(u∗(u∗2 + α(γ + u∗)))

⎤
⎥⎦ ,

g02 = 1

2

[
−2 + 2

( ch

(c + u∗)3 + α(α2γ + 3αγ u∗ − u∗3)v∗

(u∗2 + α(γ + u∗))3

)

−
(2(−αγ + u∗2)(−1 + 2u∗ + (ch)

(c+u∗)2 + (α(αγ−u∗2)v∗)
(u∗2+α(γ+u∗))2 − iw))

(u∗(u∗2 + α(γ + u∗)))

⎤
⎥⎦ ,

123



2260 R. K. Upadhyay et al.

g21 = 1

2

⎡
⎣6
(

− ch

(c + u∗)4 +
α(−α3γ + α2γ (γ − 4u∗) − 6αγ u∗2 + u∗4)v∗

)

(u∗2 + α(γ + u1))4)

−
(

2
(

a2γ + 3αγ u∗ − u∗3
) (

3
(
−1 + 2u∗ + ch

(c+u∗)2 + α(αγ−u∗2)v∗
(u∗2+α(γ+u∗))2

)
+ iw

))

u∗(u∗2 + α(γ + u∗))2)

⎤
⎥⎦ ,

According to Hassard et al. [12], we can obtain

C1(0) = i

2ω

(
g20g11 − 2 |g11|2 − |g02|2

3

)
+ g21

2
,

μ2 = − Re{C1(0)}
Re{λ′(θ)} ,

β2 = 2Re{C1(0)}.
Therefore, we have the following results:

Theorem 3 Suppose μ2 determines the directions of
Hopf bifurcation. If μ2 > 0(< 0), then the Hopf bifur-
cation is supercritical (subcritical); β2 determines the
stability of bifurcated periodic solutions. If β2 < 0(>

0), the bifurcated periodic solutions are stable (unsta-
ble).

6 Numerical simulations

In this section, we perform numerical simulations of
model (5) in one and two-dimensional space. To solve
differential equations by computer, one has to discretize
the problem in space and time. The continuous prob-
lem defined by the reaction-diffusion system in two-
dimensional space is solved in a discrete domain with
M × N lattice sites. The spacing between the lattice
points is defined by the lattice constant Δh. In the dis-
crete system the Laplacian describing diffusion is cal-
culated using finite differences, i.e., the derivatives are
approximated by differences over Δh. The time evo-
lution is also discrete, i.e., the time goes in steps of
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Fig. 3 Space series generated at different time level at (i)
t = 600 in a–c , (ii) t = 1,500 in d–f and for different values of
d1 = 0.009, 0.025, and 0.5 showing the effect of prey diffusivity

constant d1 on dynamics of the model system (5). Other parame-
ters were fixed at α = 0.2, h = 0.02, β = 0.15, c = 0.6, δ =
0.09, d2 = 5
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Fig. 4 Space series generated at different time level at (i)
t = 600 in a–c, (ii) t = 1,500 in d–f, and for different values
of d2 = 1, 15, and 30 showing the effect of predator diffusivity

constant d2 on dynamics of the model system (5). Other parame-
ters were fixed at α = 0.2, h = 0.02, β = 0.15, c = 0.6, δ =
0.09, d1 = 0.065

Δt . The time evolution can be solved using the Euler
method. In the present paper, we set Δh = 1,Δt = 0.1
and M = N = 200. All of our numerical simula-
tions employ the Neumann boundary conditions. It is
checked that a further decrease of the step values does
not lead to any significant modification of the results.
Then we use the standard five-point approximation for
the 2D Laplacian with the zero-flux boundary condi-
tions. The concentration at mesh point (xi , y j ) at the
moment (n+1)τ is denoted by (un+1

i, j , vn+1
i, j ) is given by

un+1
i, j = un

i, j + τd1Δhun
i, j + τ f (un

i, j , v
n
i, j ),

vn+1
i, j = vn

i, j + τd2Δhvn
i, j + τg(un

i, j , v
n
i, j ),

with the Laplacian defined by

Δhun
i, j = un

i+1, j + un
i−1, j + un

i, j+1 + un
i, j−1 − 4un

i, j

h2 .

6.1 The spatiotemporal dynamics in one-dimensional
case

In this subsection, the plots (space vs. population den-
sities) are obtained to study the spatial dynamics of the

model systems. In one-dimensional case, we assume
the domain of size 7000. From a realistic biological
point of view, we consider a non-monotonic form of
initial condition which determine the initial spatial dis-
tribution of the species in the real community as

u(x, 0) = u∗ + ε(x − x1)(x − x2),

v(x, 0) = v∗,

where E∗(u∗, v∗) is the non-trivial state for coexistence
of prey and predator and ε = 10−8, x1 = 1,200, x2 =
2,800 is the parameter affecting the system dynam-
ics. The dynamics of the prey and predator is observed
at the parameter values α = 0.2, h = 0.02, β =
0.15, c = 0.6, δ = 0.09, d2 = 5, and at time level
t = 600 and 1,500 for different diffusivity constant,
i.e., d1 = 0.009, 0.025 and 0.5 as shown in Fig. 3. Fig-
ure 3 shows the onset of chaotic phase for d1 = 0.009.
But when we increase the value of diffusivity constant
for prey population, the dynamics becomes cyclic. As
we increase the time level from t = 600 to t = 1,500, it
is observed that the jagged pattern representing chaotic
behavior of the system grows steadily with time. The
size of the domain occupied by the irregular chaotic pat-
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Fig. 5 Spatial distribution of population showing the effect of
harvesting (h) on the dynamics of the model systems (5) at (i)
h = 0.02 in a–c ,(ii) h = 0.05 in d–f , (iii) h = 0.09 in g–i and

for parameter values α = 0.2, h = 0.02, β = 0.15, c = 0.6, δ =
0.09, d1 = 0.055, d2 = 5 , and at time t = 200, 600, 1,000,
respectively

terns slowly grows with time in both directions displac-
ing the regular pattern (characterized by a stable limit
cycle in the phase plane of the system) with chaotic
dynamics. The chaotic dynamics is observed only for
d1 = 0.009 and d1 = 0.025. For d1 = 0.5 system
becomes stable in the long range.

The dynamics of the model system in one-
dimensional case is also observed at the same time level
t = 600 and 1,500 for the same set of parameter values
but with fixed parameter d1 = 0.065 and for different
values of d2 = 1, 15 and 30 as shown in Fig. 4. In
Fig. 4, we observe the effect of diffusivity constant d2

on the dynamics of the model system (5). Changing
the value of parameter d2, and other parameter fixed as
above, we observe limit cycle in the first column and
onset of chaos in second and third columns of Fig. 4.
Wave of chaos phenomena is observed as we increase
the diffusivity constant d2 and time level.

The dynamics of the model system in one-
dimensional case is observed at the time level t =
200, 600 and 1,000, at the fixed value of diffusivity
constant d1 = 0.055, d2 = 5 and for different val-
ues of harvesting rate, h = 0.02, 0.05 and 0.09 as
shown in Fig. 5. In Fig. 5, we observe the effect of
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harvesting on dynamics of the model system. As we
increase the value of h , at same time level, the cyclic
and chaotic patterns becomes stable regular patterns. At
h = 0.05 for the time level t = 600 and t = 1,000, the
cyclic and chaotic patterns is observed in the region
500 ≤ x ≤ 5,000 and 0 ≤ x ≤ 3,000, respec-
tively. Now we increase the value of h to 0.09 and
find that the previously observed cyclic and chaotic
patterns settled at stable regular pattern in the regions
100 ≤ x ≤ 4,500. Thus, we can say that increased
value of harvesting is stabilizing the system.

7 Turing instability of coexistence equilibrium
point

Turing bifurcation is sometimes called Turing insta-
bility or diffusion-driven instability. It is well known
that Turing bifurcation breaks spatial symmetry, lead-
ing to the formation of patterns that are stationary in
time and oscillatory in space. Moreover, since this
instability occur only if the prey(u) diffuses more
slowly than predator(v)the condition d1 << d2 is
assumed.

Turing bifurcation occurs when the positive steady
state E∗(u∗, v∗) for the non-spatial system (4) is sta-
ble and it is unstable for the diffusive system (5). The
condition for steady state E∗(u∗, v∗) of system (5) to
be stable is discussed in previous Sect. 3.

Theorem 4 The equilibrium E∗(u∗, v∗) is an unstable
solution of spatial model (5) if

(i) d1 < min
{

Fu, d2 Fu
δ

}
and

(ii) δ <
βd2k2(Fu−d1k2)

βd1k2−(βFu+Fv)
, for some k ∈ N satisfying

k <

√
Fu
d1

.

Thus, the equilibrium E∗(u∗, v∗) is Turing unstable
if δ belongs to the interval:

Ik =
{
δ : Fu < δ <

βd2k2(Fu − d1k2)

βd1k2 − (βFu + Fv)

}
.

That is, if δ ∈ Ik , then E∗(u∗, v∗) is locally asymp-
totically stable with respect to the model dynamics of
system (4), and it is unstable with respect to spatial
model (5).

Proof Since tr(J0) < 0, tr(Jk) is always negative and
hence the two roots of the characteristic Eq. (10) cannot

Fig. 6 An illustration of the dispersion relation (Re(λk) vs. k).
Green, red and black lines are corresponding to the h = 0.12 ,
h = 0.19 and h = 0.25, respectively, and other parameter para-
meters were fixed at α = 0.2, γ = 1, δ = 0.09, c = 0.6, β =
0.15 and d1 = 0.025, d2 = 10 . (Color figure online)

be positive at the same time. Therefore, Turing instabil-
ity can happen only if det(Jk) < 0 because the station-
ary state is unstable to spatial perturbation for λk �= 0,
i.e.,

det(Jk) = H(k2) = (k2)2d1d2 + k2(δd1 − Fud2)

−δ(Fu + Fv

β
) < 0. (30)

When (i) and (ii) holds, det(Jk) < 0 , Eq. (10) has at
least one root with positive real part. Hence, E∗(u∗, v∗)
is an unstable equilibrium solution of model system (5).

However, the condition (30) is necessary, not a suf-
ficient condition. For H(k2) to be negative for some
non-vanishing k, the minimum of H(k2) must be neg-
ative. Actually, det(Jk) has the minimum value at some
value of k2

T.

k2
T = 1

2d1d2
[d2 Fu − d1δ], (31)

which is called the wave number. Therefore, the con-
dition H(k2

T) < 0 gives

(d2 Fu − d1δ)
2 > 4d1d2

(
−δFu − Fv

δ

β

)
. (32)

This implies that the diffusive instability to small
perturbation of the form (8) will take place.

In order to obtain the threshold of Turing bifurca-
tion, let the inequality in (32) be the equality. Then we
have the critical value of the bifurcation parameter h
for which Turing instability occurs as:

123



2264 R. K. Upadhyay et al.

Fig. 7 Snapshots of pattern formation for the time evolution of
the prey and predator at different instants with α = 0.2, γ =
1, δ = 0.09, c = 0.6, β = 0.15, d1 = 0.025, d2 = 10 and

taking h = 0.12, which are in Turing space at time level at (i)
t = 200 in a, b, (ii) t = 1,000 in c, d

h = hT. (33)

At the Turing threshold hT, the spatial symmetry of
the system is broken and the patterns are stationary in
time and oscillatory in space with the wavelength

λT = 2π

kT
. (34)

Only for a finite number of eigen modes k, the inter-
val Ik is non-trivial and it is empty if k2 ≥ Fu/d1. Now

for fixed d1, we can select a large enough d2 to guar-
antee that Ik is non-empty for k2 < Fu/d1. Following
Yi et al. [31], we find that when these conditions are
met and certain transversality conditions are satisfied,
a pitchfork bifurcation for the non-constant equilib-

rium solutions occurs at δ = δk = βd2k2(Fu−d1k2)

βd1k2−(βFu+Fv)
. For

decreasing δ, the constant equilibrium E∗(u∗, v∗) loses
stability to a non-constant equilibrium before Hopf
bifurcation at δ = δ0 < δk . The first such bifurcation
point is
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Fig. 8 Snapshots of pattern formation for the time evolution of
the prey and predator at different instants with α = 0.2, γ =
1, δ = 0.09, c = 0.6, β = 0.15, d1 = 0.025, d2 = 10 and

taking h = 0.19, which are in Turing space at time level at (i)
t = 200 in a, b (ii) t = 1,000 in c, d

δ∗ = maxk∈N = βd2k2(Fu − d1k2)

βd1k2 − (βFu + Fv)
.

When δ > δ∗, E∗(u∗, v∗) is locally asymptotically
stable for the spatial model system (5), and it is unstable
if δ ≤ δ∗. 	


7.1 The evolutionary process of Turing pattern
formation

In this section, we see that the small random per-
turbation of the stationary solution u∗ and v∗ leads

to the formation of a strongly irregular transient pat-
tern in the domain when the parameter values are
in the domain of Turing space (see Fig. 6). In Tur-
ing pattern formation, there are mainly three cate-
gories of patterns: holes, stripes and spots patterns.
Next, we show the evolutionary process of Turing
pattern formation. System parameters were fixed at
α = 0.2, γ = 1, δ = 0.09, c = 0.6, β = 0.15
and d1 = 0.025, d2 = 10. Different spatial patterns
emerge for different values of the harvesting rate of
prey.
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Fig. 9 Snapshots of pattern formation for the time evolution of
the prey and predator at different instants with α = 0.2, γ =
1, δ = 0.09, c = 0.6, β = 0.15, d1 = 0.025, d2 = 10 and

taking h = 0.25, which are in Turing space at time level at (i)
t = 200 in a, b (ii) t = 1,000 in c, d

In Fig. 7, when h = 0.12, starting with a homoge-
neous state E∗ = (0.128381, 0.85587), random per-
turbation leads to the formation of spots and stripes.

In Fig. 8, when h = 0.19, starting with a homoge-
neous state E∗ = (0.109208, 0.728056), random per-
turbation leads to formation of spots which give way
to strip in the long run.

In Fig. 9, when h = 0.25, starting with a homo-
geneous state E∗ = (0.0931094, 0.620729), random
perturbation leads to formation of different spatiotem-
poral patterns like strip, spot and strip-spot mixtures
with time. Thus we can summarize that the prey has a

tendency to take group defense against its harvesting
and greater the harvesting rate, the stronger the group
defense of the prey. We can also observe that the prey
population is decreasing accordingly as the harvesting
rate of the prey is increasing. Figures 7, 8, 9 display
evolution of equi-density contours when h is increased.

7.2 Species spread with varying d1 and fixed d2

In this case, we consider spatiotemporal dynamics of
model (5) with fixed parameter values α = 0.2, γ =
1, δ = 0.09, c = 0.6, β = 0.15, d2 = 5 and varying
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Fig. 10 Equidensity contours for varying d1 at t = 1,000 days (i) d1 = 0.009 in a, b (ii) d1 = 0.025 in c, d (iii) d1 = 0.055 in e, f.
Other parameters are fixed at α = 0.2, γ = 1, δ = 0.09, c = 0.6, β = 0.15, d2 = 5
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Fig. 11 Equidensity contours for varying d2 at t = 1,000 days (i) d2 = 5 in a, b (ii) d2 = 10 in c, d (iii) d2 = 15 in e, f. Other
parameters are fixed at α = 0.2, γ = 1, δ = 0.09, c = 0.6, β = 0.15, d1 = 0.045
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parameter d1. Parameter values are chosen from Turing
space. Turing patterns are shown in Fig. 10. Figure 10
display equi-density contours which select spatial pat-
terns with spots as d1 increases. Spot patterns for prey
and predator population are distributed over the whole
domain are discernible in Fig. 10 e, f. When d1 varies
from 0.009 to 0.055, a sequence strip → strip-spot mix-
ture → spots is observed. Biologically, we can say that
the prey and predator populations are flocking together
as d1 is increased.

7.3 Species spread with fixed d1 and varying d2

Next, we consider the spatiotemporal dynamics of
model (5) at fixed parameter values α = 0.2, γ =
1, δ = 0.09, c = 0.6, β = 0.15, d1 = 0.045.
Parameter d2 is varied. Turing patterns are shown in
Fig. 11. When d2 varies from 5 to 15, a sequence
of patterns spots→spot-stripe mixture→ strip patterns
emerges. From these figures, we observe that the prey
will ungroup or distribute over the whole domain with
increase of d2 , i.e., spread of prey population within
the given domain and same time will increase along
with increase of d2.

8 Discussions and conclusions

In this paper, we have investigated the complex dynam-
ics of a diffusive Leslie–Gower type model with
Holling type IV functional response and with nonlinear
harvesting (Holling type II). We have also investigated
the distribution of the roots of the characteristic equa-
tion of the linearized system of the spatial model at
the steady-state solution and discussed its stability. It
has been shown that the system under consideration can
undergo Hopf bifurcation under certain conditions, and
we further studied the stability of bifurcated periodic
solutions by applying the central manifold theorem and
normal form theory.

It has been shown from the bifurcation analysis that
the system has Turing and Hopf bifurcations. Further-
more, we also studied the conditions under which the
model undergoes diffusion-driven instability. Numeri-
cal simulations show that our model can exhibit differ-
ent patterns such as stripes, spots and strip-spot mix-
ture patterns. Further, stable Turing pattern form, which
implies that both prey and predator population persist

in space and it has ecological implication as spots pat-
terns are assumed as a predator defense function and
strips patterns are related to the social communication
and predator defense [15].

We have illustrated that this system has typical Tur-
ing patterns such as spotted, stripe-like, or spot-stripe
mixtures patterns which are similar to those obtained by
Wang et al. [29]. Moreover, we can infer from Figs. 7,
8, 9 that the presence of nonlinear harvesting rate h
dramatically changes the spatial patterns from spotted
patterns to the stripe patterns or coexistence of spot-
ted pattern and stripe pattern of the prey. Biologically,
we can conclude that if the prey is harvested, it has an
opportunity to be centralized or assembled. From this,
we could summarize that the prey has a tendency to take
group defense against its harvest, the stronger group
defense of the prey is observed at greater harvesting
rate similar to the result obtained by Baek [2]. In Figs. 8
and 9, contours for prey and predator appear similar.
Equi-density contours of the model system evolve with
time (cf. Figs. 7, 8, 9) and is different for different
value of h at t = 200. As h increases, spatial patterns
change and both prey and predator have similar pattern
at t = 200. At t = 1,000 , prey and predator redis-
tribute themselves. When h is further increased, prey
and predator equi-density contour acquire same spatial
patterns. Spatial patterns are selected in such a way that

condition
(

m1
m2

)
E < u always holds. If the ecological

system is harvested at a rate which does not honor this
condition, then there is a danger of system collapse.
Spatial patterns selected by the system (e. g., Fig. 11)
at t = 1,000 honor this condition. Therefore, if one can
monitor the population dynamics of prey and predator,
it has been observed that nonlinear harvesting control
method is more reasonable and realistic than linear and
constant harvesting control method.
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