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Abstract An approach is presented to investigate
the nonlinear vibration of stiffened plates. A stiffened
plate is divided into one plate and some stiffeners,
with the plate considered to be geometrically nonlin-
ear, and the stiffeners taken as geometrically nonlinear
Euler beams. Lagrange equation and modal superpo-
sition method are used to derive the dynamic equi-
librium equations of the stiffened plate according to
the energy of the system. Besides, the effect caused
by boundary movement is transformed into equiva-
lent excitations. The primary parametric resonance—
primary resonance of the stiffened plate is studied by
using homotopy analysis method. Numerical examples
for stiffened plates with different thicknesses of the
plates are presented to discuss the amplitude—frequency
and amplitude—excitation relationship of the primary
parametric resonance—primary resonance. In addition,
the analysis on how the damping coefficients and the
transverse excitations influence amplitude—frequency
curves is also carried out. Some nonlinear vibration
characteristics of stiffened plates are obtained, which
are useful for engineering design.
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1 Introduction

Structures consisting of thin plate stiffened by a set
of stiffeners are widely used in engineering, such as
bridges, aircrafts and ships. Since these structures are
subjected to dynamic loads, it is necessary to study the
dynamic property of stiffened plates, which can provide
references for engineering design.

Nowadays, a lot of methods have been proposed
to study the vibration of stiffened plates, including
grillage model [1], Rayleigh-Ritz method [2], finite
element method [3], finite difference method [4,5],
differential quadrature method [6], meshless method
[7] and other methods [8—10]. However, the present
study focuses on the linear vibration of stiffened
plates. Researches on the nonlinear vibration of stiff-
ened plates are scarce so far. If the amplitude of a
plate is much less than its thickness, the linear the-
ory is feasible, if not, the nonlinear theory is essen-
tial. The exact solution of nonlinear vibration is diffi-
cult to obtain, so the approximate analysis technique is
adopted by most researchers. The common methods
include Ritz method, Galerkin method, perturbation
method, successive approximation method, finite dif-
ference method, Runge—Kutta integration method[11—
17]. Recently, some researchers propose and develop
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homotopy analysis method [18,19], which is suitable
to investigate not only weakly nonlinear problems but
also strongly nonlinear problems.

In the recent literature, most investigations on the
vibration of stiffened plates do not take the damping
into account, which cannot reflect the real dynamic
characteristics of stiffened plates. Only a few works
combine both geometrical nonlinearity and damping:
Amabili made an experimental and numerical study of
plates with viscous damping and subjected to harmonic
excitation [20,21]. This author studied also numeri-
cally circular cylindrical panels with viscous damp-
ing [22]. An amplitude equation, based on an approxi-
mated harmonic balance method and Galerkin’s pro-
cedure, was proposed by Daya et al. [23] to study
sandwich beams and plates with central viscoelastic
layers. Touze and Amabili built reduced-order mod-
els for damped geometrically nonlinear systems [24].
They considered a modal viscous damping. Ribeiro
and Petyt [25] used the hierarchical finite element
method in an in-depth investigation of the nonlin-
ear response of clamped rectangular plates. Boume-
diene et al. investigated nonlinear forced vibration of
damped plates by an asymptotic numerical method
[26].

In the practical engineering, the excitation usually
transfers to the plate through the support. For exam-
ple, if a structure is subjected to the seismic excita-
tion, the displacement of the support is time-varying.
This paper deals with the large amplitude vibration of
stiffened plates with moving boundary conditions. The
effect caused by boundary movement is transformed
into equivalent excitations. Besides, the damping of
the plate is taken into account as viscoelastic damping.
Even if this structural damping is relatively simple, it
represents a large part of engineering applications. The
strain and kinetic energy of both the plate and stift-
eners are established, and then Lagrange’s equation
is used to derive the governing equation of motion.
Numerical examples for stiffened plates with differ-
ent thicknesses of the plates are presented to discuss
the steady response of the amplitude—frequency rela-
tionship of the primary parametric resonance—primary
resonance. In addition, the analysis on how the damp-
ing coefficients and the transverse excitations influence
the dynamic characteristics of stiffened plates is carried
out. Some nonlinear vibration characteristics of stiff-
ened plates are obtained, which are useful for engineer-
ing design.
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Fig. 1 Structure of a stiffened plate
2 Derivation of the governing equation

In order to simplify the problem, material nonlinearity
is not considered in this paper, and the material of the
stiffened plate is isotropic. Consider a stiffened plate in
Fig. 1, which is composed of x stiffeners, y stiffeners
and one plate. The generally used orthotropic theory is
that both x stiffeners and y stiffeners are smeared over
the plate. However, this theory has three disadvantages:
first, the dynamical differential equation is difficult to
formulate because of the non-uniform mass in per unit
area; second, the neutral surfaces may not coincide in
the orthogonally stiffened directions; third, this theory
is inaccurate for the computation of the local effect.
This paper deals with the stiffeners and the plate sepa-
rately, formulates the energy equations respectively and
then substitutes the energy equations into Lagrange’s
equation. In Ref. [27], the authors studied the nonlinear
dynamic response of a stiffened plate with four edges
clamped under primary resonance excitation. Thus, the
detailed derivation of the governing equation is not
given in this paper, which can refer to Ref. [27].

In Fig. 1, u and v denote the displacements of the
middle surface of the plate along the x direction and
the y direction, respectively, and w denotes the deflec-
tion of the plate. According to Ref. [27], the nonlinear
dynamic differential equations can be written in dimen-

sionless form as
1 1 1
1 2 4
Wi pgij + 5 Vijdpgij + 5 Wi Wandpgijmn = 5 Cra
(Ta)
1

1
Zu?d?u* + v-*<d3* + —wrw* dS*

1
i%ijpq ij%pqij T 5 WijYmnCpgijmn = EQI"I
(1b)
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e0) (-
* *
dc2 (quij + gpqij)
* % * ok gdux * ok 350k
+ wijcpqij + Mijwmndiqumn + l)ijwmndiqumn
* ok * 6% * % _
+ 2w Wy, Wiy pgijmnki + Wij€pqij = Equ

(Ic)
The expression of each tensor is given in Appendix 1.
By solving Eqgs. (1a) and (1b), the in-plane general-
ized coordinates u;.kj and v?‘j can be obtained as follows:
* * * r
[ull .o ul] .. ’L)MN]

= [k17" {d} 2)

* * *k
MMN Ull vij

where [k] is the coefficient matrix in Egs. (1a) and (1b);
{d} is the constant matrix in Egs. (1a) and (1b).
Substitute u;k] and v;."j in Eq. (1¢) and obtain the non-
linear differential equation with respect to wl*] Then,
it can be solved according to mathematical methods.

3 Solution procedure
3.1 Displacements of the stiffened plate

Consider x = 0 boundary is clamped, and the other
three boundaries are simply supported and immovable.
The boundary displacements of the stiffened plate are
expressed in Fig. 2. Suppose the transverse and rota-
tional displacements are 81 (¢) sin % and &, (t) on the
boundary x = a, respectively. Hence, the boundary
conditions should be: u = v = w = dw/dx = 0 at
x=0u=v=0w=24 (t)sin% and dw/dx =

Fig. 2 Boundary displacements of the stiffened plate

SHWatx =a;u =v =w = ?w/dy> = 0 at
y =0,b.

The transverse displacement w (x, y, t) of the plate
is composed of two parts: one is w, (x, y, t) which
is caused by the boundary movement, the other is
ws (x, y, t) which is caused by the own motion of the
plate. Suppose w; (x, y, t) meets the same boundary
conditions as w (x, y, t). Then, the boundary condi-
tions of wy (x, y,t) are: u = v = wy = Jwg/dx =0
atx =0,a;u = v =w; = 82ws/8y2 =0aty =0,b.

The single-mode assumption neglects all of the coor-
dinates except a single “resonant” coordinate, thus
reduces the multi-degree-of-freedom system to a single
one. The single-mode approach has been used widely.
This is due to the great simplification it introduces in the
theory on the one hand, and on the other hand because
the error of nonlinear effect, it introduces remains very
small for weakly nonlinear vibration [28]. According
to the single-mode assumption, the own displacements
can take the following forms:

‘ . 2mx . wmy
us (x,y,1) = uy (t) sin — sin I (3a)
a
[ . mwmx . 2my
Vs (x, y,1) = vy () sin — sin T (3b)
a
t . 2w x T . Ty
ws (x,y,1) = wi (1) | sin - 3 +1 sm7

(30

Since there are only the transverse and rotational
displacements on the boundary x = a, the in-plane
displacements caused by boundary movement are 0.
Then, the transverse displacement w;, (x, y, t) can be
obtained through the method of structure mechanics:

3x2 2x3

wy (¥, y,1) = ( > —3) 81 (1) sin =
a a b
x2 X . Ty
+\——+ 5 )8 @)sin— (€]
a a b

Based on the above analysis, the total displacements
of the plate are given by

; . 2mx | omy
u(x,y, t) =uyp @) SIHTSIHT (5a)
[ . omx . 2my
v (x,y,t) = v (¢) sin — sin —— (5b)
a b
( 0 o s 2nx 0w 1] Ty
wx,y,t)=w sin{f — — — sin —
Y 11 a2 b

3x2 2x3 51(1) si Ty
—_—— — sin ——
a? a3 ) b
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+( x—2+x—3)5 Osin 22 (5¢) b [D, [3 s (43)a
— 2 sin C __7 |2 Dk 7}[8*_78
a a? b Qu ==\ mn [2hw” +30 1272 2}
(10)

3.2 The consideration of damping

Take the damping of the plate into consideration in a
viscoelastic type [29], and a non-conservative viscous
damping force may be derived from a potential func-
tion. The potential function for viscoelastic forces is
called the Rayleigh dissipation function, which is given
by

1 a b
R= -a/ / (iﬂ Fo? u')2)dxdy 6)
2 Jo Jo
where ¢ has a different value for each term of the mode
expansion.

According to Egs. (5a)—(5¢), Eq. (6) can be written
as

I [, ., v 1,2
R = jabéy [Z (@) + 1 (v11)
3,2 13, a* .,
- 824+ —3$
3 )"+ 300+ o
1.,. @*+3)a., . lla,,
+§w1161 — T]‘[zwllaz — m&éz (7)

where ¢ is the damping constants, which can be eval-
uated from experiments.

The generalized force Q ; with respect to viscoelas-
tic damping can be expressed as:

Q;= O ®)
where ¢ is the derivative of the generalized coordinate
with respect to time of the jth degree of freedom.
Upon neglecting the in-plane damping force, which
is an acceptable assumption in most engineering appli-
cation of thin plates [29]. Taking the transverse damp-
ing force into account and according to Eq. (8), the
generalized forces with respect to w7, is expressed as:

1. |3, 1, (**+3)a,
On = —Eabcll |:§w11 + 551 - W(Sz

€))

Replacing wi,, §; and ¢ with the dimensionless quan-
tities w,, 67 and 7 in Eq. (9), respectively, one obtains
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where 8} = 81 /h.

3.3 Homotopy analysis method
3.3.1 Differential equation of transverse vibration

According to Egs. (1a)—(1c), (5a)—(5b) and (10), one
can obtain the nonlinear dynamic differential equations
as follows:

ajuty + vl + o3 (u}i‘l)2 + oy (ST)Z + 583

+asw(; 87 + a7wi 82 + agdjdr =0 (11a)
2 2
Buuty + Baviy + B3 (w)” + Ba (67)" + Bs83
+}36w>1k15>1k + ﬂ7wT182 + .685732 =0 (11b)

i) + 1287 + 32 + vawi) + 587 + v662
+ yruiiwiy + ysui 8t + youi sz
+ yioviiwiy + yiiv 87
+yaviior + s (wi)’ +na (wiy)? 8
+y1s (1) 62 + yiew; (87)° + w876
+ y18w}1 83 + 19 (ST)s + 20 (ST)2 8 + 12187183 + y0b3

(JT2+3)LI.

b D
o 52} (11c)

3 1 .
=—— | =& | Zhit, + =hF —
2a\ ph M [2 Wi+ 5 he
The expressions of o1 —ag, B1 — Bs, Y1 — y22 are given
in Appendix 2.
To analyze the problem in detail, assume the moving
boundary displacements as follows:

81 (t) = &) cos () (12a)
85 (1) = 85 cos (1) (12b)

where 8; and &, are the amplitude of the transverse
and rotational displacements, respectively; €2 is the fre-
quency of the excitations.

Replacing the frequency 2 and time ¢ with dimen-
sionless quantities * and 7 in Egs. (12a) and (12b),
respectively, one obtains

81 (1) = ) cos (1) (13a)
8 (1) = 8 cos (Q*7) (13b)

where Q* = Qa?,/ %.
Substituting Eqgs. (13a) and (13b) into Eqgs. (11a)-
(11c), solving Eqgs. (11a) and (11b), and substituting
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the expressions of u}, and vj, in Eq. (11c), one can
obtain the nonlinear dynamic differential equation of
transverse vibration as follows:

Wi + P} + pawi) + p3cos (2Q%7) wi

+ pacos (2°7) (wh)’ + ps (wh)’
= g cos (1) + g2 sin (Q*7) + g3 cos (3277)
(14)

where the left terms including time-dependent coef-
ficients of the equation are the parametric excitation
terms, and the right terms of the equation are the
equivalent external excitation terms. The expressions
of p1 — ps, q1 — g3 are not given in Appendix 3.

3.3.2 The primary parametric resonance—primary
resonance

When the frequency of the parametric excitation is
close to twice the natural frequency of the derived sys-
tem, and the frequency of external excitation is close to
the natural frequency of the derived system, the primary
parametric resonance—primary resonance may happen.
In Eq. (14), wj, () is expressed by r (), and then,
the solution to primary parametric resonance—primary
resonance can be written as
+00
r(t) =Y aycos (kQ T + 0) (15)
k=1

where a is an unknown real number; 0 is the phase
angle.

Before solving Eq. (14) via homotopy analysis
method, a nonlinear operator is defined as

8%¢ (z, 3¢ (z.
N @)= 220Dy, 20D

+ p2¢ (T, p) + p3cos (22°7) ¢ (7, p)

+ pacos () [¢ (¢, )T’ + ps [0 (z, p)T

— g1 cos (Q*1) — g2 sin (Q*7) — g3 cos (3Q*7)
(16)

where ¢ (7, p) is an unknown real number; 6 is a phase
angle.

Liao [18] constructed a zeroth-order deformation
equation as

(I=p)L¢(z, p) —ro(0)] = phH (r) N [¢ (7, p)]

a7

where p € [0, 1] is an embedding parameter; L is a
auxiliary linear operator; ro (t) is an initial approxi-
mation of r (t); /i is a nonzero real number; H (1) is
an auxiliary real function.

According to Eq. (15), select auxiliary linear oper-
ator as

9% (1,
L{¢ (t.p)]= % +(@)’e@p  (8)

where o] is the first natural frequency of the derived
2
system, (w})” = pa.
The initial approximation rg (7) can be expressed as

ro (t) = ag cos (Q*t + 6) (19)

Expand ¢ (t, p) in the form of Taylor series as

+00
¢ (. p)=ro(x)+ > _ri (o) p (20)
k=1
where
1 9%¢ (z, p)
() = - (1)

If 7 and H (t) are appropriate, the series converges
when p = 1. Then, we obtain
+00
r (@ =@+ > (D) (22)
k=1
It is bound to be one solution to the primitive equation,
which is proved by Liao [18].

Differentiate Eq. (17) m times with respect to p and
then setting p = 0, which is divided by k!, and then, we
obtain the corresponding kzh-order deformation equa-
tion as

L[rk (v) — xkrk—1 ()] = hH () Ry (v) (23)
where

1 *IN[p@ p)]

0, k=<1
Xk = [ 1 ko1 (25)

In order to follow the principle of expression of solu-
tion and coefficient ergodicity [18], the auxiliary real
function can be set as

H() =1 (26)

It can be found that Eq. (24) includes secular terms,
which can be expressed as

M

n=1
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where M} is a positive integer depending on k; & is a
real number which is not equal to zero.

In order to eliminate the secular terms, the coeffi-
cients of e*1?17 should be zero. Then, we obtain

g =0 (28)

In the following, the primary parametric resonance—
primary resonance of Eq. (14) is investigated by setting
k = 1. According to Eq. (27), we obtain

Ry (v) =79 + pi1Fo + paro + p3cos (252*1') ro

+ pacos (2%T) (r0)* + ps (r0)*

— g1 cos (1) —gasin (1) —g3 cos (3Q%7)  (29)
Substituting Eq. (19) in Eq. (29) yields

o 1 .
Ri(7) =97 I:_E (Q*)2a0619

1 S o .
+§iP1Q*aoelg + zpzaoele + Zmaoe_lg
1 1 .

+ P4 (ap)* + g (ap)* e

+ EPs (ag)® e — l¢]1 +igo
8 2

o |1 . 1 .
+e31§2 T [ZPWOeIQ + §P4 (a0)2 6219

1 . 1
+3ps (ap)’ ¥ — qu} +cn (30)

where cn is the complex conjugate part to the preceding
terms.

In Eq. (14), when the frequency of the parametric
excitation is close to twice the natural frequency of the
derived system, and the frequency of external excitation
is close to the natural frequency of the derived system,
the primary parametric resonance—primary resonance
may happen. In order to investigate the primary para-
metric resonance—primary resonance, it is necessary to
introduce a detuning parameter o, and suppose

QL' =wi+o 31)

Substituting Eq. (31) in Eq. (30), the solvability con-
dition demands to eliminate the permanent terms, and
then, we obtain

1 : 1 .
—3 (a)’f + a)zaoelg + Eipl (a)]k + 0) age’
1 . 1 .
+§ (wi‘)2 ape? + Zp3aoe_19
)2 €2i9

+_ a + —_ a
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3 . 1 .
+3ps (ap)’ ¥ — 541 +ig2 =0 (32)

Set the real and imaginary part to be zero, respec-
tively, and we obtain

_% (a)ik +g)2a00059 — %pl (w’f + a) ap sin 6
+% (w’f)zao cosf + %pgao cos 6

1 , 1 )
+ZP4 (ap)” + ng (ag)* cos 20

3 1
+3 s (@)’ c0s6 = 2g1 =0 (33a)
1 1
—= (of +o)2a0 sin® + P (o} +0) agcos O
1

2
N 1 .
+§ (0)1) apsinf — Zpgao sin 6

1 . 3 .
+7p4 (a)? sin 20 + 3P (ap)sin6 4+, =0
(33b)

Equations (33a) and (33b) are two transcendental
equations, and the expressions of ag and 6 cannot be
obtained according to these two equations. Therefore,
Newton—-Raphson method can be used to obtain the
non-trivial solutions ag and 6, and then, the amplitude—
frequency relationship can also be obtained.

4 Numerical results and discussion

The parameters of the stiffened plates are as follows:
a = 1mb = 06m E = 2.1 x 10 Pa, pu =
03,p = 7.85 x 103kg/m>,h = 0.004m, A, =
Ay = 2x107%m? I, = I, = 1 x 107¥m*.
Consider both the numbers of x stiffeners and the
y stiffeners are three, and the thickness of the plate
varies as 0.004, 0.005 and 0.006 m. Then, the influ-
ence of damping coefficient and transverse displace-
ment excitation are discussed: (1) Considering the
amplitude of the transverse displacement excitation
81 =0.05m, the amplitude of the rotational displace-
ment excitation 8, = 0.15 and the damping coefficient
é11 = 0.1kg/(sm?), 0.2kg/(sm?), 0.3kg/(sm?),
0.4kg/(sm?), 0.5kg/(s m?), respectively, analyze the
amplitude—frequency response ag — o of the primary
parametric resonance—primary resonance of the stiff-
ened plates; (2) Considering the damping coefficient
¢11 = 0.3kg/(sm?), the amplitude of the rotational
displacement excitation 8, = 0.15 and the amplitude of
the transverse displacement excitation 51 = 0.06,0.07,
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0.08, 0.09, 0.1 m, respectively, analyze the amplitude—
frequency response ap — o of the primary paramet-
ric resonance and primary resonance of the stiffened
plates. (3) Considering the amplitude of the rotational
displacement excitation 8, = 0.15 and the damp-
ing coefficient ¢1; = 0.1kg/(sm?), 0.2kg/(sm?),
0.3kg/(sm?), 0.4kg/(sm?), 0.5kg/(sm?), respec-
tively, analyze the amplitude—excitation ag— F response
of the stiffened plates corresponding to o = 1 (F is the
dimensionless amplitude of displacement excitation &1,
F=35/h).

4.1 The application of Newton—Raphson method

In this paper, the amplitude—frequency response and
amplitude—excitation response are obtained by using
Newton—Raphson method. The detailed calculation
procedure is introduced in this part.

Equations (33a) and (33b) are two coupled equations
with respect to ag and 6. Replace Egs. (33a) and (33b)
with the following expression:

fi(ap,0) =0 (34a)
f2(ap,0) =0 (34b)

Then, Egs. (34a) and (34b) can be written as matrix
form:

f(ao,0) =0 (35)

The Jacobian matrix corresponding to Eq. (35) is
defined as

o o
(a0, 0) = [ o 5}%} (36)
dap 00
In order to apply Newton—Raphson method to deter-
mine amplitude ag and phase angle 6, these two vari-
ables are also written as matrix form:

A = [a, 01" (37)

The iterative formula of Newton—Raphson method
is given by

A+ _ 40 _ [f/ (A(k))]_lf (A(k)) (38)

As we know, Newton—Raphson method converges
rapidly if the initial guess values are close to the solu-
tion, otherwise this method may not converge. Here,
we choose an initial guess value [ag, 00] = [1,1].
If Newton—Raphson method converges in 5 iterations

Start

Y
»

Input AV ¢

A

FoAf A, f=(A?)

A0=4" No

Yes

A(]):A(O)—f'(/lm))f(/l(o))

No
Yes

Output A" /;

h 4
End

Fig. 3 Calculation flow chart for the application of Newton—
Raphson method

(the error is less than error tolerance ¢), this conver-
gence value can be taken as the solution, otherwise
the initial guess value is modified as double or half
of the previous value, for example, [af), 0°] = [2,2]
or [af, 0°] = [1/2, 1/2]. If some initial guess value
makes Newton—Raphson method converge in 5 iter-
ations, the convergence value can be taken as the
solution, otherwise the initial guess value is modified
repeatedly until convergence.

The calculation flow chart for the application of
Newton—Raphson method is illustrated in Fig. 3:

4.2 The relationship between damping coefficient
and amplitude—frequency response

Figures 4, 5, 6, 7 and 8 show the amplitude—frequency
response of the primary parametric resonance—primary
resonance of stiffened plates with three different thick-
nesses of the plate when the amplitude of the transverse

@ Springer
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Fig.4 Amplitude —— Backbone curve —— h=0.0061m —e— h=0.005m —— h=0.004m
frequency response when 09l
damping coefficient is 0gl
0.1kg/(sm?) :
07r
06
8 05¢F
04r
03r
02r
01r
0 o L & i
-25 -20 -15 -10 -5 0 5 10 15 20 25
c
Fig.5 Amplitude— 0.0 -
frequency response when — Backbone curve —— h=0.006m —e— h=0.005m —=— h=0.004m
damping coefficient is sl
0.2kg/(sm?)
07r
06+
05¢F
8
0.4
031
0.2r
01F
0 ]
-25 25
Fig. 6 Amplitude— 0.5 _ _ _
frequency response when sl — Backbone curve —— h=0.006m —— h=0.005m —— h=0.004m
damping coefficient is '
O.Skg/(smz) 07+
06+
0.5k
8
0.4+
03F
02F
01F
0 il L * |
-20 -15 -10 20
displacement excitation 8; = 0.05m, the amplitude 4.3 The relationship between transverse displacement
of the rotational displacement excitation §; = 0.15 excitation and amplitude—frequency response

and the damping coefficient ¢;; = 0.1kg/(sm?),
0.2kg/(sm?), 0.3kg/(sm?), 0.4kg/(sm?), 0.5kg/
(s m?), respectively.
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Figures 9, 10, 11, 12 and 13 show the amplitude—
frequency response of the primary parametric reson-
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Fig. 7 Amplitude— 03a
frequency response when
damping coefficient is
0.4kg/(sm?)

[ — Backbone curve —— h=0.006m —— h=0.005m —— h=0.004m
07

0ér
0s5r
0.4 r
03¢
nzr
01r

0
-15 -10 -5 0 5 10 15

Fig. 8 Amplitude—
frequency response when
damping coefficient is
0.5kg/(sm?)

10

Fig. 9 Amplitude—
frequency response when
the amplitude of the
transverse excitation is
0.06 m

-20 -15 -10 -5

o
Lh
—
o
—
Lh

20

ance—primary resonance of stiffened plates with three 4.4 The relationship between damping coefficient and
different thicknesses of the plate when the amplitude amplitude—excitation response

of the rotational displacement excitation §, = 0.15,

the damping coefficient ¢1; = 0.3kg/(sm?), and the Figures 14, 15, 16, 17 and 18 show the amplitude—
amplitude of the transverse displacement excitation excitation response of stiffened plates with three dif-
8§1=0.006, 0.007, 0.008, 0.009, 0.1 m, respectively. ferent thicknesses of the plate corresponding to o = 1
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Fig. 10 Amplitude—
frequency response when
the amplitude of the
transverse excitation is
0.07m

Fig. 11 Amplitude—
frequency response when
the amplitude of the
transverse excitation is
0.08m

Fig. 12 Amplitude—
frequency response when
the amplitude of the
transverse excitation is
0.09m
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Fig. 13 Amplitude- 12T Backbone curve —— h=0.006m —— h=0.005m —e— h=0,004m
frequency response when
the amplitude of the 1t
transverse excitation is
0.1m ogl
& 061
0.4 r
D2r
U 1 1
-30 40 a0
o
6 h=0.006m —=—h=0.005m ——— h=0.004m 6 1 ——h=0.006m —=— h=0.005m —— h=0.004m
e
P = 5+
- al
&3 7= B
27 A
1t
0 L L 1 L " ' s
0 2 4 6 8 10 12 14

6 8 10 12 14
F

Fig. 14 Amplitude—excitation response when damping coeffi-
cient is 0.1kg/(s m?)

6 [ ——h=0.006m —— h=0.005m —— h=0.004m

0 2 4 6 8 10 12 14
F

Fig. 15 Amplitude—excitation response when damping coeffi-
cient is 0.2kg/(s m?)

when the amplitude of the rotational displacement
excitation o = 0.15 and the damping coefficient
é11 = 0.1kg/(sm?), 0.2kg/(sm?), 0.3kg/(sm?),
0.4kg/(sm?), 0.5kg/(s m?), respectively.

F

Fig. 16 Amplitude—excitation response when damping coeffi-
cient is 0.3kg/ (s m?)

—<+—h=0.006m —— h=0.005m —— h=0.004m

0 2 4 6 8 10 12 14

Fig. 17 Amplitude—excitation response when damping coeffi-
cient is 0.4 kg/(s m?)

From Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13, it
can be observed that (1) all the resonant regions tend
to tilt to the right, and thus, the amplitude—frequency
response curves have a hardened spring characteristic.
(2) The flexural vibration amplitudes increase as the
excitation frequency approaches to the linear flexural
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5[ —=—h=0.006m —— h=0.005m —— h=0.004m

12 14

Fig. 18 Amplitude—excitation response when damping coeffi-
cient is 0.5kg/(s m?)

vibration frequency of the stiffened plates. (3) For each
pair of the resonant curves, the upper segment of the
right branch is unstable. As o increases from a negative
value, ag increases monotonously along the left branch
until the peak value, then jumps to the right branch
after the peak value. Similarly, as o decreases from
a relatively large positive value, ag increases monoto-
nously along the right branch, then jumps to the left
branch. (4) The amplitude of ap decreases with the
increase in the damping coefficient, while it increases
with the increase in the amplitude of the transverse exci-
tation. Both the amplitude of ap and resonant regions
decrease with the increase in the thickness of plate. This
is because the flexural rigidity of the stiffened plate also
increases with the increase in the thickness of plate.
Furthermore, the thickness of plate has greater effect
on the amplitude of ag than both the damping coeffi-
cient and the amplitude of the transverse excitation.

From Figs. 14, 15, 16, 17 and 18, it can be observed
that (1) as F increases from zero, ag increases rapidly
along the lower solid line, and the solution loses its
stability at point A. After point A, the curve exhibits
the jumping phenomena, and then, ag increases slowly
along the upper solid line. As F decreases from a rela-
tively large value, ag decreases slowly along the upper
solid line, and the solution loses its stability at point
B. After point B, the curve exhibits the jumping phe-
nomena, and then, ag decreases rapidly along the lower
solid line. Points A and B are called the bifurcation
points, while the dashed line between points A and
B is the unstable solution. Combining both increase
and decrease process of F', the multi-value behavior of
the curves can also be exhibited. (2) As & increases,
ap increases within a relatively small values of F and
decreases when F' is larger than that value.
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5 Conclusions

In this work, the nonlinear vibration of stiffened plates
with moving boundary conditions has been investigated
based on Lagrange equation and the energy princi-
ple. The primary parametric resonance—primary res-
onance of stiffened plates with different thicknesses of
the plates is dealt with through numerical examples.
Several conclusions can be drawn as follows:

(1) Almost all perturbation methods are based on such
an assumption that a small parameter must exist in
an equation. Since homotopy analysis method does
not need a small parameter, it has wider application
range, which includes not only weakly nonlinear
problems but also strongly nonlinear problems.

(2) Based on Newton—Raphson method, an initial
guess value is chosen for trial calculation. If it con-
verges in five iterations (the error is less than error
tolerance ¢), this convergence value can be taken
as the solution, otherwise the initial guess value is
modified as double or half of the previous value.
This approach can make Newton—Raphson method
converge rapidly.

(3) The amplitude—frequency curve has a hardened
spring characteristic; the amplitude decreases with
the increase in the damping coefficient, while it
increases with the increase in the amplitude of the
transverse excitation.

(4) The flexural rigidity of the stiffened plate increases
with the increase in the thickness of the plate; thus,
both the amplitudes and resonant regions decrease
with the increase in the thickness of the plate.

(5) Stiffened plates are thin-walled structures. Since
the geometrical nonlinearity works, both amplitu-
de—frequency and amplitude—excitation curves exh-
ibit jumping phenomena and multi-value behavior,
which are related to geometrical parameters, damp-
ing coefficient of stiffened plates, excitation and
so on. The geometrical nonlinearity has a signifi-
cant impact on the dynamic behavior of stiffened
plates; thus, it is necessary to take the geometrical
nonlinearity into consideration when investigating
the mechanical behavior of this type of structures.

(6) Under the moving boundary conditions, the dyna-
mic system of stiffened plates may exist pri-
mary parametric resonance and primary resonance,
which can trigger strong vibration, and the struc-
tures may be damaged easily. Hence, the stiffened
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plates should be kept away from the region of pri- dux _ En* a b ud ij dwd g dwd, dxdy
mary parametric resonance and primary resonance pamn = 2q (1 — pu2) Jo 9x ox  ox
before performing structural design
MEh4 / /b u; awpq Wi
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Appendix 2

The expressions of o) — ag, f1 — Bs, Y1 — ¥22 in Eq.
(11) are given as follows:
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