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Abstract The paper deals with the parameter identi-
fication of nonlinear dynamic systems with both actu-
ator and sensor nonlinearities using three-block cas-
cade models with nonlinear static, linear dynamic and
nonlinear dynamic blocks. Multiple application of a
decomposition technique provides special expressions
for the corresponding nonlinear model description that
are linear in parameters. A least-squares-based iterative
technique allows estimation of all the model parame-
ters based on measured input/output data. Illustrative
examples of nonlinear systems identification with two-
segment polynomial input block and backlash output
block characteristics are included.
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1 Introduction

Cascade models are a popular type of block-oriented
models in system identification. These models are used
in mathematical modeling of nonlinear dynamic sys-
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tems not only for their relative simplicity but also
for their ability to approximate closely more general
nonlinear systems, which are not necessarily of this
form.

The simplest types of cascade nonlinear models con-
sist of two blocks. The so-called Hammerstein model
consists of a static nonlinear block followed by a linear
dynamic block, and the so-called Wiener model con-
sists of a linear dynamic block followed by a static non-
linear block. Generally, the Wiener model is supposed
to represent sensor nonlinearities, while the Hammer-
stein model is supposed to represent actuator nonlin-
earities. These models appear in many engineering
applications, and therefore, the identification of nonlin-
ear dynamic systems using Hammerstein and Wiener
models has been an active research area for many years.
Some recent works dealing with the Hammerstein mod-
els can be found in [1–14], while the Wiener models
are used e.g., in [15–24].

If the systems to be identified contain nonlineari-
ties with memory such as backlash or hysteresis [25],
the choice of Hammerstein or Wiener models is not
appropriate, because the nonlinear static blocks can-
not characterize these dynamic nonlinearities. There-
fore, a special case of two-block models consisting of
the cascade of linear dynamic and nonlinear dynamic
blocks has to be used for modeling and identification
of nonlinear dynamic systems with backlash or hys-
teresis. In analogy with the Wiener model, the cascade
model structure consisting of a linear dynamic block
followed by a nonlinear dynamic block (Fig. 1) was
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Fig. 1 Two-block cascade system

Fig. 2 Three-block cascade system

often used for the identification of nonlinear dynamic
systems with output dynamic nonlinearities [26–29].

However, in some cases of more complex nonlin-
ear dynamic systems with both input and output non-
linearities, the two-block cascade model may be not
precise enough and it is appropriate to choose a three-
block cascade model with combination of nonlinear
static, linear dynamic, and nonlinear dynamic blocks
(Fig. 2). It means, compared with the well-known struc-
ture of Hammerstein–Wiener model, that the output
block contains dynamic nonlinearities, e.g., backlash
or hysteresis. Actually, this form of three-block cas-
cade model can be considered as a cascade of Ham-
merstein model and a dynamic nonlinearity block and
significantly extends the applicability for more pre-
cise modeling and identification of real systems with
both actuator and sensor nonlinearities. While more
approaches to the identification of nonlinear dynamic
systems using the structurally similar Hammerstein–
Wiener model have been presented [30–34], up to now
no results were published on the three-block cascade
models with both static and dynamic nonlinearities.

In this paper, the three-block cascade model is used
to the parameter identification of nonlinear dynamic
systems with a complicated input nonlinearity and a
backlash output nonlinearity (Fig. 3). The previous
results on the decomposition of compound operators
[35] are effectively applied to simplify the mathemat-
ical description of this complex system. The result-
ing model equation is without cross-multiplication of
parameters; nevertheless, it contains more internal vari-
ables, which are generally unmeasurable. Application
of a least-squares-based iterative algorithm enables
estimation of all the model parameters on the basis
of measured input/output data. Illustrative examples of
three-block cascade systems identification with two-
segment polynomial and backlash characteristics are
included.

Fig. 3 Three-block cascade system with output backlash

Fig. 4 Two-segment nonlinearity

2 Three-block cascade model with output backlash

Let the three-block cascade model be given by the cas-
cade connection of a nonlinear static block followed by
a linear dynamic block, which is followed by a nonlin-
ear dynamic block according to Fig. 3. Nonlinear static
characteristics can be approximated by polynomials of
appropriate degree. In some cases, the required accu-
racy of approximation and the type of nonlinearity can
lead to polynomials with rather high degrees, e.g., if the
characteristics are strongly/extremely asymmetric. The
offset between the accuracy of approximation and the
lowest possible degrees of approximating polynomials
can be solved by considering two-segment polynomial
approximations [36].

Let us assume the output of nonlinear static block
v(t) according to Fig. 4 significantly depends on the
sign of input u(t) and can be written as

v(t) =
{

α(u(t)) if u(t) ≥ 0
β(u(t)) if u(t) < 0

(1)

Introducing the following switching function

h(s) =
{

0 if s ≥ 0
1 if s < 0

(2)

the relation between the inputs and outputs of assumed
nonlinearity can be written as follows:

v(t) = α(u(t)) + (β(u(t)) − α(u(t)))h(u(t)). (3)

Let the nonlinear maps f (.) and g(.) be approximated
by polynomials

α(u(t)) =
n∑

k=1

αkuk(t) (4)
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Fig. 5 Backlash

β(u(t)) =
n∑

k=1

βkuk(t) (5)

Then, the nonlinear static block can be described by
the following equation

v(t) =
n∑

k=1

αkuk(t) +
n∑

k=1

γkuk(t)h(u(t)) (6)

where

γk = βk − αk . (7)

The linear dynamic block LD can be described by
the difference equation

x(t) =
r∑

i=1

aiv(t − i) −
p∑

j=1

b j x(t − j) (8)

where v(t) and x(t) are the inputs and outputs of LD,
respectively. It is assumed that r and p are known.

Let the nonlinear dynamic block ND be a backlash
with inputs x(t) and outputs y(t) shown in Fig. 5. The
backlash is a dynamic nonlinearity and can be described
by the following first-order nonlinear difference equa-
tion [37]

y(t) = mL(x(t) + cL) f1(t) + m R(x(t) − cR) f2(t)

+ y(t − 1)(1 − f1(t))(1 − f2(t)) (9)

where f1(t) and f2(t) are auxiliary internal variables
defined as:

f1(t) = h(mL x(t) + mLcL − y(t − 1)) (10)

f2(t) = h(y(t − 1) − m R x(t) + m RcR) (11)

and h(.) is the above-defined switching function.
The mathematical description of this cascade system

resulting from direct substitutions of the corresponding
variables from (6) into (8) and then into (9) is

y(t) = mL

(
r∑

i=1

ai

(
n∑

k=1

αkuk(t − i)

+
n∑

k=1

γkuk(t − i)h(u(t − i))

)

−
p∑

j=1

b j x(t − j) + cL

⎞
⎠ f1(t)

+ m R

(
r∑

i=1

ai

(
n∑

k=1

αkuk(t − i)

+
n∑

k=1

γkuk(t − i)h(u(t − i))

)

−
p∑

j=1

b j x(t − j) − cR

⎞
⎠ f2(t)

+ y(t − 1)(1 − f1(t))(1 − f2(t)) (12)

The input–output Eq. (12) is strongly nonlinear both
in the variables and in the parameters, hence not very
suitable for the parameter estimation. To find a sim-
pler form of this description, the so-called key-term
separation principle will be applied [35]. Because of
the cascade connection of three blocks, the parameter-
ization of model (12) is not unique; many combina-
tions of parameters can be found. Therefore, in at least
two blocks, one parameter has to be fixed. Choosing
mL = 1, we rewrite (9) as follows:

y(t) = x(t) f1(t) + cL f1(t) + m R x(t) f2(t)

− m RcR f2(t)+y(t−1)(1− f1(t))(1− f2(t))

(13)

and we half-substitute (8) into (13), i.e., only for x(t)
in the first term

y(t) =
r∑

i=1

aiv(t − i) f1(t) −
p∑

j=1

b j x(t − j) f1(t)

+ cL f1(t) + m R x(t) f2(t) − c f2(t)

+ y(t − 1)(1 − f1(t))(1 − f2(t)) (14)

where

c = cRm R . (15)

Then, we can choose a1 = 1, and half-substitute (6)
into (14), i.e., only for the term with variable v(t − 1).
This will lead to the three-block cascade model output
equation

y(t) =
n∑

k=1

αkuk(t − 1) f1(t)

+
n∑

k=1

γkuk(t − 1)h(u(t − 1)) f1(t)
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+
r∑

i=2

aiv(t − i) f1(t) −
p∑

j=1

b j x(t − j) f1(t)

+ cL f1(t) + m R x(t) f2(t) − c f2(t)

+ y(t − 1)(1 − f1(t))(1 − f2(t)) (16)

This equation is linear in all the cascade model block
parameters, but nonlinear in some variables. The model
inputs u(t) and outputs y(t) are available, while the
internal variables v(t), x(t), f1(t) and f2(t) are not.

3 Parameter estimation

The three-block cascade model equation can be written
in the following concise form

yc(t) = y(t) − y(t − 1)(1 − f1(t))(1 − f2(t)) = ϕT (t) θ

(17)

where

ϕ(t) = [u(t − 1) f1(t), . . ., un(t − 1) f1(t),

u(t − 1)h(u(t − 1)) f1(t), . . . ,

un(t − 1)h(u(t − 1)) f1(t), v(t − 2) f1(t), . . .,

v(t − r) f1(t),−x(t − 1) f1(t), . . .,

− x(t − p) f1(t), f1(t), x(t) f2(t), − f2(t)]T

(18)

is the vector of data and

θ = [α1, . . ., αn, γ1, . . ., γn, a2, . . ., ar , b1, . . .,

bp, cL , m R, c]T (19)

is the vector of parameters and yc(t) is the so-called
corrected output.

Considering N observations of input u(t) and output
y(t) and assuming that u(t) = 0 and y(t) = 0 for t
≤ 0, we can define the stacked corrected output vector
Yc(N ), the stacked information matrix �(N ) as

Yc(N ) = [yc(1), yc(2), . . . , yc(N )]T (20)

�(N ) = [ϕ(1), ϕ(2), . . . , ϕ(N )]T (21)

and from (17), we have

Yc(N ) = �(N )θ (22)

Minimizing the least-squares criterion function

J (θ) = ‖Yc(N ) − �(N )θ‖2 (23)

with respect to θ and assuming that the informa-
tion matrix �(N ) is persistently exciting, that is,

�T (N )�(N ) is an invertible matrix, we can obtain the
least-squares estimate of the parameter vector as

θ̂ = [�T (N )�(N )]−1�T (N )Yc(N ) (24)

However, the information matrix �(N ) and the cor-
rected output vector Yc(N ) contain unknown inter-
nal variables, therefore an iterative algorithm must be
applied for estimation of model parameters.

The technique presented in [36–38], which is based
on the use of the preceding estimates of model para-
meters for the estimation of internal variables and vice-
versa, can be easily extended to this three-block model.
We replace the internal variables in (20) and (21) by
their estimates defined as

sv(t) =
n∑

k=1

sαkuk(t) +
n∑

k=1

sγkuk(t)h(u(t)) (25)

s x(t) = sv(t − 1) +
r∑

i=2

sai
sv(t − i)

−
p∑

j=1

sb j
s x(t − j) (26)

s f1(t) = h
(s x(t) + scL − y(t − 1)

)
(27)

s f2(t) = h
(
y(t − 1) − sm R

s x(t) + sm R
scR

)
(28)

s yc(t) = y(t) − y(t − 1)
(
1 − s f1(t)

) (
1 − s f2(t)

)
(29)

using the s-th estimates of corresponding parameters
and variables and rewrite (25) as follows
s+1θ̂ = [s�T (N )s�(N )]−1s�T (N )sYc(N ) (30)

where the information matrix �(N ) and the corrected
output vector Yc(N ) are replaced by their estimates.

Then, the iterative algorithm consists of the follow-
ing steps:

(a) The s-th estimates of internal variables, i.e., sv(t),
s x(t), s f1(t), s f2(t) and the corrected output yc(t)
are computed using (25)–(29);

(b) The s-th estimates of information matrix s �(N )

and the corrected output vector sYc(N ) are gener-
ated using the estimates computed in the step (a);

(c) The (s + 1)-st estimates of the three-block model
parameters are computed using (30);

(d) If the mean square error is less than a predeter-
mined value, the procedure ends, else it continues
by repeating steps (a)–(c).

In the first iteration, only the parameters of nonlinear
static block and the linear dynamic block are estimated
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where 1v(t−i) is approximated by u(t−i) and 1x(t− j)
is approximated by y(t − j). The initial values of the
parameter estimates can be chosen zero for all the para-
meters in the nonlinear static and the linear dynamic
blocks. Nonzero initial values have to be chosen only
for the backlash parameters, i.e., m R, cL and cR , which
are required for the first estimation of internal variables
f1(t) and f2(t). Sufficiently small values can be cho-
sen for 1cL and 1cR (i.e., 0.01–0.001). As the left slope
of backlash is mL = 1, it is advantageous to choose
the same value for the initial value of the right slope of
backlash 1m R .

4 Examples

The following examples of simulated three-block cas-
cade systems with two-segment polynomial input block
and output backlash illustrate the feasibility of pro-
posed identification method.

Example 1 The input static nonlinearity of the three-
block cascade system was characterized by the two-
segment polynomial

v(t) =
{

1.3u(t) − 0.2u2(t) − 0.3u3(t) if u(t) ≥ 0
0.3u(t) + 0.5u2(t) + 0.6u3(t) if u(t) < 0

and is depicted in Fig. 6. The linear dynamic system
was given by the difference equation

x(t) = v(t − 1) + 0.15v(t − 2)

+ 0.2x(t − 1) − 0.35x(t − 2)

followed by the output backlash (Fig. 7) characterized
by the parameters mL = 1.0, cL = 0.3, m R =
1.2, cR = 0.2. The identification was performed on
the basis of 6,000 samples of uniformly distributed
random inputs with |u(t)| < 1.5 and simulated out-
puts. To make the simulation more realistic, a zero

Fig. 6 Example 1—input nonlinearity

Fig. 7 Example 1—output backlash

Fig. 8 Example 1—the process of parameter estimation for the
nonlinear block

mean random disturbance uncorrelated with u(t) was
added to the outputs. Normally distributed random
noise was chosen with zero mean and signal-to-noise
ratio—SNR=50 (the square root of the ratio of output
and noise variances). The iterative estimation algorithm
was applied with the initial values 1cL =1 cR = 0.001.
However, the initial value for the right slope was cho-
sen 1m R = 0.5, to show that the convergence is also
good for the initial value of m R being more distant
from its real value. The process of parameter estima-
tion is shown in Fig. 8 for the nonlinear block (the top-
down order of parameters is α1, β3, β2, β1, α2, α3),
in Fig. 9 for the linear block and in Fig. 10 for the back-
lash. The estimates meet the values of real parameters
after about 7 iterations.

Example 2 The input static nonlinearity of the three-
block cascade system was characterized by the two-
segment polynomial

v(t) =
{

0.3u(t) − 0.3u2(t) + 0.5u3(t) if u(t) ≥ 0
0.9u(t) − 0.1u2(t) − 0.4u3(t) if u(t) < 0

and is depicted in Fig. 11. The linear dynamic system
was given by the difference equation
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Fig. 9 Example 1—the process of parameter estimation for the
linear block

Fig. 10 Example 1—the process of parameter estimation for the
backlash

Fig. 11 Example 2—input nonlinearity

x(t) = v(t − 1) + 0.15v(t − 2)

+ 0.2x(t − 1) − 0.35x(t − 2)

followed by the output backlash (Fig. 12) character-
ized by the parameters mL = 1.0, cL = 0.1, m R =
1.2, cR = 0.2. The identification was performed
under the same conditions as in Example 1. The process
of parameter estimation is shown in Fig. 13 for the
nonlinear block (the top-down order of parameters is

Fig. 12 Example 2—output backlash

Fig. 13 Example 2—the process of parameter estimation for the
nonlinear block

Fig. 14 Example 2—the process of parameter estimation for the
linear block

β1, α3, α1, β2, α2, β3), in Fig. 14 for the linear block
and in Fig. 15 for the backlash. The estimates meet the
values of real parameters after about 7 iterations.

Example 3 The input static nonlinearity of the three-
block cascade system was characterized by the two-
segment polynomial

v(t) =
{

0.03u(t) − 0.27u2(t) + 1.27u3(t) if u(t) ≥ 0
−0.02u(t) − 0.17u2(t) + 0.07u3(t) if u(t) < 0
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Fig. 15 Example 2—the process of parameter estimation for the
backlash

Fig. 16 Example 3—input nonlinearity

Fig. 17 Example 3—output backlash

and is depicted in Fig. 16. The linear dynamic system
was given by the difference equation

x(t) = v(t − 1) + 0.5v(t − 2)

+ 0.5x(t − 1) − 0.4x(t − 2)

followed by the output backlash (Fig. 17) character-
ized by the parameters mL = 1.0, cL = 0.2, m R =
0.8, cR = 0.3. The identification was performed

Fig. 18 Example 3—the process of parameter estimation for the
nonlinear block

Fig. 19 Example 3—the process of parameter estimation for the
linear block

under the same conditions as in Example 1. The process
of parameter estimation is shown in Fig. 18 for the
nonlinear block (the top-down order of parameters is
α3, β3, α1, β1, β2, α2), in Fig. 19 for the linear block
and in Fig. 20 for the backlash. The estimates meet the
values of real parameters after about 12 iterations.

5 Conclusion

The presented approach to the identification of non-
linear dynamic systems with output backlash is based
on three-block cascade models with both static and
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Fig. 20 Example 3—the process of parameter estimation for the
backlash

dynamic nonlinearities. These models are appropriate
for control systems with both actuator and sensor non-
linearities. The identification is based on a special form
of model description resulting from more consecutive
decompositions of compound mappings describing this
block-oriented model. An iterative least-squares-based
parameter estimation algorithm with internal variables
estimations has been proposed and illustrated in exam-
ples of simulated nonlinear dynamic systems with two-
segment polynomial nonlinearities in the input block
and with the backlash in the output block. Although
a general proof of convergence for the iterative algo-
rithm with internal variable estimation is not available,
the simulation results show good convergence.

As the proposed three-block cascade models are lin-
ear in parameters, they can also be applied for on-line
identification of nonlinear dynamic systems with sta-
tic input nonlinearity and output backlash using the
known recursive least-squares algorithm [39,40]. They
can be used for nonlinear systems with other estimation
techniques, e.g., based on scarce measurements [41]
or dual-rate sampled-data [42]. Finally, note that also
other types of static and dynamic nonlinearities can be
considered in the input block and/or in the output block
of presented three-block cascade models.
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