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Abstract Based on the method of Poincaré mapping
under cell reference, we describe basins of attraction for
coexisting multi-dimensional tori attractors in a three-
degree-of-freedom vibro-impact system. Because the
multi-dimensional tori attractors are very rare in the
low-dimensional systems, we find that these coexist-
ing tori attractors have positive measure basins in the
sense of Milnor. The coexisting multi-dimensional tori
attractors can be distinguished by the exactly Poincaré
mapping and Lyapunov dimension. The basin of attrac-
tion can be estimated by the limit cycle in the Poincaré
section from the viewpoint of engineering.
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1 Introduction

It is well known that there may be multiple final stable
motions, called attractors, in a nonlinear dynamical sys-
tem [1]. The final state of a multi-stable system depends
crucially on the initial conditions and the set of initial
conditions that give rise to a set of trajectories converg-
ing toward to the attractor, are called basin of attraction
for this attractor. An equilibrium is said to be a simple
attractor if it is stable, and it will be a point attractor of
the system which attracts all nearby orbits. Besides the
zero-dimensional point attractors, there are also one-
dimensional periodic attractors, called limit cycles. A
quasiperiodic attractor (QA) with N incommensurate
frequencies is also denoted as torus T N [2]. Two types
of strange attractors are referred to as chaotic attrac-
tors (CA) [3] and strange nonchaotic attractors (SNAs)
[4], which usually chaotic attractors are characterize by
sensitive dependence on initial conditions. Attractors
for dynamical systems are traditionally viewed as being
stable invariant sets which have a neighborhood that
absorbs all sufficiently close initial conditions. How-
ever, in the absence of smoothness or invertibility, it is
clear that more exotic attractors have no basins or only
zero measure basins [5]. Partly in response to this prob-
lem, Milnor [6] introduced a concept of measure attrac-
tor (now usually called Milnor attractor), which is com-
pact invariant set whose basin of attraction has positive
measure in phase space. This gave a theoretical frame-
work for understanding attractors (stable motions) with
normal basins that are attracting for a large-measure set
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of initial conditions (ignoring initial conditions on a set
of zero measure). As regard as the coexisting attractors
in vibro-impact systems, earlier studies have shown
excellent correlation between the coexisting attractors
(a T 2 torus exhibiting a Hopf circle and a T 1 torus
exhibiting a fixed point in a Poincaré section) and a
degenerate Hopf bifurcation of Poincaré map in a two-
degree-of-freedom impact oscillator [7]. A particular
feature of multi-degree-of-freedom vibro-impact sys-
tems is the occurrence of so-called Hopf–Hopf bifur-
cations [8–10], which provides a fascinating feature in
nonlinear dynamics, exhibiting multi-dimensional tori
T N attractors. The motivation for the current work is
the following: On the theoretical side, coexisting multi-
dimensional tori T N is interesting in itself. In previ-
ous studies, two antisymmetric tori T 3 can coexist in
a vibro-impact system with symmetric two-sided rigid
constraints [11] and an unstable T 2 attractor embedded
in T 3 attractor can be observed [12]. However, it is still
not clear whether these coexisting attractors are Milnor
attractors (with positive measure basin). Thus, it is nec-
essary to investigate their basins of attraction. From the
viewpoint of applications, this multi-stable phenom-
enon often can create inconvenience in the design of
an impact device (e.g., a shaker) with specific charac-
teristics, where multi-stability needs to be avoided or
the desired state. To assess the significance of a spe-
cific attractor in vibro-impact system, it is necessary to
know its basin of attraction. The main purpose of this
paper is to describe the basins of attraction for the coex-
isting multi-dimensional tori attractors (coexisting tori
T 3 and tori T 2, coexisting one-tori T 2and multi-tori
T 2).

The attractors and their basins of attraction in the
region of interest must be delineated to characterize
the global behavior of the system [12]. No analytical
method can accomplish such a global analysis effec-
tively. There are a number of techniques for deter-
mining the basins of attraction for periodic solutions.
Two kinds of cell mapping methods used for comput-
ing basins of attraction provide a useful insight into
computational efficiency [13–15]. Virgin et al. [16]
had used the interpolated cell mapping method to an
impact-friction oscillator. Since interpolated cell map-
ping (ICM) method cannot distinguish multiple strange
attractors or limit cycles, ICM cannot use for global
analysis of presented multi-dimensional tori attrac-
tors. Thus, some modified or developed method based
on cell mapping had been used for different types

of systems, see, for example [17–19] and references
therein. For three-degree-of-freedom vibro-impact sys-
tem (higher-dimensional systems), the motion of this
system is a combination of smooth motions governed
by linear differential equation interrupted by a series of
nonsmooth impacts and the flow of the solutions may
experience a disjointed evolution. The multi-degrees-
of-freedom cell mapping (MDCM) method overcomes
the scaling limitations of other cell mapping meth-
ods, allowing efficiency benefits to be realized for
higher-dimensional systems [20,21]. These methods
can improve computational efficiency for locating peri-
odic attractors, which is still not precise to locate the
tori T 3 and multi-tori T 2. For attractors with special
properties, some analytical tools must be used to dis-
tinguish the types of attractors, e.g., the phase sensi-
tivity exponent and the maximal Lyapunov exponent is
used to detect the basins of SNAs [22]. Though these
methods on global analysis are not straightforward to
apply to the vibro-impact systems under the considera-
tion of above elements, the good news is that the exact
Poincaré map can be obtained in the vibro-impact sys-
tem [23]. Furthermore, there are some studies on calcu-
lation of Lyapunov exponents and Lyapunov dimension
in the vibro-impact systems [23–25], which these meth-
ods can distinguish tori T N . We combine these tech-
niques to locate tori attractors and consider the method
of Poincaré mapping under cell reference [26–28]. We
show that the coexisting tori attractors have positive
measure basins in the sense of Milnor. Under suitable
system parameter conditions, the system can exhibit
different quasiperiodic behaviors. From the viewpoint
of engineering, the basin of attraction for special T 2

tori motions can be estimated by the limit cycle in the
Poincaré section.

2 Mechanical model and method on identifying
multi-dimensional tori

We consider a three-degree-of-freedom vibro-impact
system, which is shown schematically in Fig. 1. The
masses M1 and M2 are connected to linear springs
with stiffness K1 and K2, and linear viscous dashpots
with damping constants C1 and C2. The excitation on
mass M1 is harmonic with amplitudes P , the excitation
frequency � and the phase τ . The mass M3 impacts
against M1 when M3sinks from the upward side of M1

due to gravitation. The displacements of M1, M2 and
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Fig. 1 Schematics of the vibro-impact system

M3, are represented by X1, X2 and X3, respectively.
The impact is described by a coefficient of restitution
R, and it is assumed that the duration of impact is neg-
ligible compared to the period of the force. Damping
in the mechanical model is assumed as proportional
damping of the Rayleigh type.

The system can be considered in a non-dimensional
form, and all parameters and variables are assumed to
be non-dimensional. The governing equations for the
system away from impact can be expressed as

MẌ + CẊ + KX = f̄ sin(ωt + τ) (1)

ẍ3 = −δ (2)

where M =
[

1 0
0 α

]
, C =

[
2ζ(1 + β) −2ζβ

−2ζβ 2ζβ

]
and

K =
[

1 + γ −γ

−γ γ

]
represents non-dimensional mass,

damping and stiffness matrixes, respectively, X =
(x1, x2)

T , f̄ = (1, 0), a dot (·) denotes differentiation
with respect to the non-dimensional time t , and the
non-dimensional quantities are given by

α = M2

M1
, β = K2

K1
, γ = C2

C1
, μ = M3

M1
,

ω = �

√
M1

K1
, t = T

√
K1

M1
, ζ = C1

2
√

K1 M1
,

δ = M3g

P
xi = Xi K1

P
(i = 1, 2, 3) (3)

The impact equation of mass M1 and M3 may be
modeled using an instantaneous coefficient of restitu-

Fig. 2 Schematics of Poincaré section on a two-dimensional
torus

tion rule such that ẋ1− + μẋ3− = ẋ1+ + μẋ3+ and
ẋ1+ − ẋ3+ = −R(ẋ1− − ẋ3−), where, ẋ1− and ẋ3−
represent respectively velocities of mass M1 and M3

immediately before impact. And where, ẋ1+ and ẋ3+
represent respectively velocities of mass M1 and M3

immediately after impact.
Since the method using exact mappings can be

used to locate exact attractors, we first give the exact
Poincaré map of the system. Periodic-impact motions
of the vibro-impact system can be characterized by
the symbol n − p, where p is the number of impacts
and n is the number of the forcing cycles. We found
the analytical expressions for n − 1 motion and its
disturbed map of the system by choosing a Poincaré
section

∑ = {(x1, ẋ1, x2, ẋ2, x3, ẋ3, θ) ∈ R6 ×
S1|x1 = x3, ẋ1 = ẋ1+, ẋ3 = ẋ3+} in [23]. Sup-
pose that a periodic motion starts at the fixed point
X∗ = (x10, ẋ10, x20, ẋ20, ẋ30, τ )T on

∑
, we establish

the Poincaré map associated with the periodic motion

�X′ = f(σ ,�X) (4)

where θ = ωt , �X′ ∈ R6 and �X ∈ R6 are the per-
turbed vector of X∗,�X = (�x10,�ẋ1+,�x20,�ẋ20,

�ẋ30,�τ)T ,�X′ =(�x ′
10,�ẋ ′

1+,�x ′
20,�ẋ ′

20,�ẋ ′
30,

�τ ′)T , σ is the parameter vector.
In some vibro-impact systems, it is easy to visu-

alize from an intuitive viewpoint when some coexist-
ing attractors are shown in the Poincaré sections. A
torus T 2 can easily be observed by a torus T 1 in a
Poincaré section (Fig. 2). Similarly, a torus T 3 can
easily be observed by a torus T 2 in a Poincaré sec-
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tion. If a torus T 1 becomes folded, we will denote the
torus as multi-torus T 1. The Poincaré map technique
can be used to identify the type of attractors qualita-
tively, such periodic attractors, quasi-periodic attrac-
tors, chaotic attractors. To verify the multi-dimensional
tori attractors (the quasi-periodic attractors with differ-
ent dimensions) in the vibro-impact system, we give
the method to compute the Lyaponov dimension. The
spectrum of Lyaponov exponents has been calculated
for many smooth, continuous systems described by
differential equation of motion and for discrete maps
described by difference equations. But, if a system is
nonsmooth, the calculation of Lyaponov exponents is
not straightforward because of the discontinuity. We
use a transcendental map that describes the solutions of
the differential equations between impacts. In our pre-
vious work, we have obtained the transcendental map
and the Jacobian matrix Jn of the transcendental map
by the analytical solution [23]. Suppose the variables
just after the n-th impact is Xn, then the transcendental
map can be obtained

Xn+1 = F(Xn) (5)

and its variational equation

Yn+1 = JnYn (6)

For the considered systems, the transcendental maps
are six-dimensional. In this case, the Lyapunov expo-
nents are expressed by the following case

λ j = lim
N→∞

1

N
ln

∣∣∣ j
N
∣∣∣ (7)

where
∣∣∣N

j

∣∣∣ are eigenvalues of the matrix M = N
�

n=1
Jn

and Jn is the Jacobian matrix of the nth iteration of
the transcendental map. The Lyapunov exponents are
ranked from large to small as λ1 ≥ λ2 ≥ · · · ≥ λ6. The
Eq. (7) cannot be used to calculate the Lyapunov expo-
nents directly. The reason for this is that the components
of matrix M become very large for chaotic attractors
and null for the periodic attractors when the number of
iteration of the transcendental map increases. To avoid
the overflow trouble, we must convert the matrix M
into a product of the orthogonal matrices and the upper
right triangular matrices. In this way, the matrix M is
transformed in product of the upper right triangular

matrices, whose eigenvalues are the numbers along the
diagonal and Lyapunov exponents can be expressed by

λ j = lim
N→∞

1

N
ln

∣∣∣aN
j

∣∣∣ (8)

where aN
j are diagonal components of nth iteration

of the product of the upper right triangular matri-
ces. Thus, the convergence of the Lyapunov expo-
nents occurs with good precision after just a few thou-
sand iterations. Let K be the largest integer such that
λ1 + λ2 + · · · + λK ≥ 0, the Lyapunov dimension as
defined by Kaplan and Yorke [29] is

DL = K +
∑K

i=1 λi

|λK+1| (9)

where
∑K

i=1 λi ≥ 0,
∑K+1

i=1 λi < 0. If no such K
exists, as is the case for a fixed point, DL is defined to
be 0.

Therefore, different multi-dimensional tori attrac-
tors are distinguished by the Lyapunov dimension.

3 Method of PMUCR and basins of coexisting
multi-dimensional tori

The cell reference used in the vibro-impact system (1)–
(2) is composed of a cell coordinate system. The cell
coordinate system is the same as the one developed by
Jiang and Xu, which is used to construct a cell space
and the characteristic functions defined in the cell space
[28]. A cell is no longer regarded as a mathematical ele-
ment, and no map is defined in the cell space, namely,
the cell references plays only a role as an inspector or a
recorder and does not make any change on the results
of the Poincaré mapping method in the initial step.

Let xi , i = 1, 2, . . . , N be the state variables of the
state space. To construct a cell coordinate, divide the
coordinate axis of a state variable xi into a countable
infinite number of intervals of uniform size hi . The
interval zi along the xi -axis is defined to be one which
contains all xi satisfying

(zi − 1/2)hi < xi ≤ (zi + 1/2)hi i = 1, . . . , N ,

(10)

where zi is an integer. A N -tuple zi is then called a
cell vector of the state space and denoted by z. In this
way, a cell coordinate system Zn is created. For clarity,
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we give the brief notion, adding some important details
(more details are shown in reference [30]). For any two
cell vectors z and z′, the distance between them denoted
by d(z, z′) = max

∣∣z′
i − zi

∣∣ (1 < i < N ). Two cells
z and z′ are adjoining if and only if d(z, z′) = 1. The
cells in the corresponding part of the cell coordinate are
finite, say Nc called the studied cells. Usually, a point
x in the state space is related to a cell represented by
a positive integer c and c ∈ S = {1, 2, . . . , Nc}. We
use two preliminary characteristic functions called the
character identification function I d(c) and the deter-
minacy measurement function I b(c) by the cell ref-
erence. The values of I d(c) and I b(c) can be stored
by two one-dimensional integer arrays of length Nc.
The value of I d(c) is used to characterize the studied
cell and the value of I b(c) of a cell reflects the num-
ber of processed points that this cell contains. A cell
is called a virgin cell characterized by I d(c) = 0 if
the cell has not captured any processed pints, or no
trajectory has started from or passed by the cell. A
boundary cell characterized by I d(c) = Nc refer to
the processed points within the cell tend to different
attractors. A basin cell (for the nth attractor) is charac-
terized by I d(c) = n if all the processed points con-
tained in the cell belong to the same basin of attraction
of an attractor. An attracting cell of the nth attractor is
denoted by I d(c) = −n, which is defined as follows.
The boundary cell is easily detected by the value of
I b(c) when two processed points (belong to different
basins of attraction) are detected within the cell. Since
the value of I b(c) for the basin cell can be varies from
a small number to a large number, an updating basin
cell (UBC) is always used in the process of a compu-
tation. Given a large positive integer Ip as an analyzer,
if the processed points in UBC contain the points of
a steady-state response and the number of processed
points in this cell have no less than Ip, or if the number
of the processed points in UBC exceeds a positive inte-
ger IP∗(IP∗ < Ip) and there are no three types of cells
(virgin cells, boundary cells and UBC to other attrac-
tors to be the adjoining cells of basin cell), then this
basin cell is called an attracting cell. All the attracting
cells to a same attractor are denoted as an attracting set
of the attractor.

Below, we introduce a computational method of
PMUCR using the Poincaré map (4) and add the addi-
tional analyzer to previous method in order to detect the
tori attractors. It is noted that each trajectory from an
initial point is terminated when it settles on an attrac-

tor. More generally, a small number of initial points
are used to detect all attractors in the chosen region as
well as the corresponding initial attracting sets. For a
given initial point x0, first determine in which cell it is
located, say c0, then apply mapping (4) to get the image
point f1(x0) and determine in which cell f1(x0) lies, say
c1. Repeat this process continuously and a sequence of
points and a set of cells are obtained, which record the
cells passed by this trajectory. In each step of generating
trajectory, some criterions on detecting different attrac-
tors are used to check. For different periodic attrac-
tor, the method in the references [26–28] describes the
process of implementation in more details. For different
quasi-periodic attractor, the additional analyzer (e.g.,
Lyapunov dimensions) is used to distinguish differ-
ent attractors. For the process A : x0 → f1(x0) →
f2(x0) → · · · → fm(x0) →, is companied by the
process B : c0 → c1 → c2 → · · · → cm →. Assume
the sequential number of A is n′and all points in tra-
jectory A are marked to be the processed point of n′th
attractor. This process works in the following way. For
a virgin cell ci , the process B is marked by I d(ci )=0,
assign I d(ci ) = n′. For a cell ci , in the process B
with abs(I d(ci )) = n′, keep I d(ci )unchanged. For
a cell ci , in the process B with abs(I d(ci )) 
= n′,
change I d(ci ) to Nc. To update the value ofI b(ci ),
do I b(ci ) = I b(ci )+1 for all the cells in the process
B. After all the initial points have been processes in
this manner, attractors can be accurately determined.
Simultaneously, the cells studied have been classified
into the virgin cells, the basin cells to different attrac-
tors and the boundary cells. Of course, a trajectory will
be terminated when it is mapped into an attracting cell
characterized by I d(ci ) < 0 if we obtain the attracting
sets. Namely, if the newly generated point fm(x0) is in
a cell cm with I d(cm) ≥ 0, the generation is continued
forward to the next point fm+1(x0) in the trajectory.
If the newly generated point fm(x0) is in a cell with
I d(cm) < 0, the trajectory is terminated and all the
points in this trajectory will be considered to be the
processed points of attractor n′ with I d(cm) = n′. In
order to construct a basin portrait of the region describe
by

� = {x ∈ RN
∣∣∣x (l)

i ≤ xi ≤ x (u)
i ,

i = 1, 2 ∩ xi = x∗
i , i = 3, 4, . . . , N } (11)

where x∗
i is the i − th component element of fixed point

X∗ in the Poincaré map.
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Fig. 3 Coexisting multi-dimensional tori T N attractors in a
Poincaré section. a Torus T 2 (in red) for ω = 3.91; b torus T 1 (in
blue) for ω = 3.91; c one-dimensional multi-torus for ω = 3.92;

d one-dimensional one-torus T 1 (in blue) for ω = 3.92. (Color
figure online)

In the first example, the vibro-impact system with
parameters (1): α = 0.25, β = γ = 0.35, R =
0.07, ζ = 0.01, μ = 0.4, δ = 0.25, ω = 3.91 have
been chosen for analyses. The project region of the state
space to be examined is defined by −0.135 ≤ x2 ≤
−0.085 and −0.060 ≤ x2 ≤ 0.010. For these para-
meters two coexisting multi-dimensional tori attractors
exist. The coexistence of a torus T 3 (red) and a torus
T 2 (blue) attractor is presented (Fig. 3a, b) where a
torus T 3 is presented by a torus T 2 in a Poincaré sec-
tion in Fig. 3a and a torus T 2 attractor is presented by a
torus T 1 in a Poincaré section in Fig. 3b. We calculate
their Lyapunov exponents and Lyapunov dimensions
(shown in Table 1). The Lyapunov dimension of Fig. 3a
is 3 and the Lyapunov dimension of Fig. 3b is 2. In the

second example, the vibro-impact system with para-
meters (2): α = 0.25, β = γ = 0.35, R = 0.07, ζ =
0.01, μ = 0.4, δ = 0.25, ω = 3.92 have been cho-
sen for analyses. A multi-torus T 2 (red) and one-torus
T 2 (blue) can also coexist, where a multi-torus T 2 is
presented by a multi-torus T 1 in a Poincaré section
in Fig. 3c and a one-torus T 2 attractor is presented
by a one-torus T 1 in a Poincaré section in Fig. 3d.
Table 1 shows that their Lyapunov dimensions are 2.
We will show that these coexisting multi-dimensional
tori attractors have positive measure basins in the sense
of Milnor. To get a fine resolution of basins of attraction
of an 800 × 800 plot, a cell coordinate system is built
in the state space, which overlays a cell array of dimen-
sion 800 × 800 in the chose region. The sets of cells
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Table 1 The Lyapunov exponents, Lyapunov dimension, and the type of attractors

Figure name λ1 λ2 λ3 λ4 λ5 λ6 DL Dimp The type of
attractor in the
Poincaré map

The type of attractor
in the system (1)

Fig. 3a 0.000 0.000 −0.001 −0.002 −0.476 −0.502 2 3 Torus T 2 Torus T 3

Fig. 3b 0.000 −0.008 −0.030 −0.080 −0.246 −0.584 1 2 One-torus T 1 Torus One-torus T 2 torus

Fig. 3c 0.000 −0.001 −0.028 −0.035 −0.089 −0.758 1 2 Multi-torus T 1 Multi-torus T 2

Fig. 3d 0.000 −0.007 −0.032 −0.086 −0.276 −0.593 1 2 One-torus T 1 One-torus T 2

Fig. 4 Attracting sets correspond two attractors for ω = 3.92: a multi-torus T 2; b one-torus T 2

studied consist of 640,000 cells. Two integer arrays,
I d(640,000) and I b(640,000) are used to store the
updating values of the character identification function
and the character certainty function. Still, it must be
noted that the coexisting attractors present an illusion
of overlap in the project section. A grid of 60 × 60 ini-
tial points is used to determine attractors and the initial
attracting set. For example, Fig. 4a, b shows the initial
attracting set to two tori attractors for parameters (2).
The attracting cells are selected from the basin cells
whose I b(c) values are larger than 1,000. Figure 5a
describes their basins of attraction, where the basin
of the torus T 1 is shown in light gray and the basin
of the torus T 2 is shown in white for parameters (1).
Figure 5b describes the basins of multi-torus T 2 and
one-torus T 2, where the basin of the one-dimensional
multi-torus is shown in gray and the basin of the one-
torus T 1 is shown in white for parameters (2). Obvi-
ously, their basins have positive measures so that these
tori attractors are common in the sense of Milnor. From
the viewpoint of engineering, we can estimate the basin

of attraction for this type of coexisting attractors. It is
very easy to find the limit cycle attractors when we
find the fixed point of the Poincaré map for the vibro-
impact systems. For the vibro-impact systems with
linear ODEs coupled to an impact map at collisions
between the two primary components, it is not a diffi-
cult task. Figure 5c, d gives two examples to estimate
the basins (gray) of limit cycles.

4 Conclusions

Precious results show that the vibro-impact systems
have coexisting periodic attractors and chaotic attrac-
tors. It is interesting and striking to see that this vibro-
impact system reported here has coexisting multi-
dimensional tori attractors. We investigated their basins
and answer the question about the existence of these
attractors in the sense of Milnor. We combine Poincaré
map mapping and Lyapunov dimension techniques to
describe tori attractors. We described their basins of
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Fig. 5 Basin of attraction. a The basin of the torus T 1 is shown
in light gray and the basin of the torus T 2 is shown in white
for ω = 3.91; b the basin of the one-dimensional multi-torus is
shown in gray and the basin of the one-torus T 1 is shown in white

for ω = 3.92; c estimate the basin of attraction for the torus T 1

for ω = 3.91; d estimate the basin of attraction for the torus T 1

for ω = 3.92

attraction by the method of PMUCR. In the precious
work on the PMUCR, it is used to detect the peri-
odic attractors in two-dimensional systems. Here, we
have tried to expend this method to the nonsmooth
systems with high dimensions. We combined the idea
of multi-degrees-of-freedom cell mapping and con-
struct a basin portrait of the studied regions by a two-
dimensional subset [20]. In this two-dimensional sec-
tion, we introduce the cell reference method and the
method has reduced the computational cost. The vibro-
impact systems shown in Fig. 1 (or others [7,11]) are
piecewise linear hybrid dynamical systems with linear
ODEs coupled to an impact map at collisions between
the two primary components. It is not hard to obtain

the exact Poincaré map which provides an accurately
global analysis method for this type of vibro-impact
systems. Thus, we can verify that coexisting tori attrac-
tors have positive measure basins in the sense of Milnor.

We have done a large number of numerical exper-
iments and found that these coexisting tori attractors
can occur in other parameters. In the implementation
of PMUCR for some vibro-impact systems or different
parameters, a factor (the number of processed points
may be very large) will affect the accuracy and effi-
ciency of the computation except for the choice the
discretization of the state or the cell size of the cell
reference. In order to keep the accuracy, it is of impor-
tance to choose the number of processed points. An
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important application where the model studied here
may be of use is in the dynamics of vibration hammers,
impact dampers, inertial shakers, pile drivers, offshore
structures, and machinery. The basin dynamics play
an important role in assessing the significance of a spe-
cific attractor (motion). Statistically speaking, the more
important attractors may have large basins of attraction.
The larger the relative size of a basin of attraction, the
higher the probability that an initial condition picked at
random will converge to this attractor. Thus, the results
and methods may help engineers to design system para-
meters or select expected motions. We believe that the
arguments of this paper concerning the basin for special
tori attractors can also be applied to other vibro-impact
systems.
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