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Abstract At present, a lot of image cryptosystems
with permutation/diffusion architecture have been
proposed. However, permutation and diffusion are con-
sidered as two separate stages, both requiring image-
scanning to obtain pixel values. Moreover, because of
extraction bits directly from the discrete state value of
a chaotic map to generate the pseudorandom binary
sequence, the quite time-consuming conversion from
floating points to integers cannot be avoided in practi-
cal applications. In this paper, a novel image encryp-
tion scheme for both combining permutation–diffusion
and avoiding conversion of floating-point number is
proposed. Firstly, using the lookup table constructed
and S-Box of AES, an efficient approach of generating
the pseudorandom sequence required by diffusion is
proposed. Then, the combined permutation/diffusion
architecture is employed to shuffle and change the
pixels. Theoretical analyses and computer simulations
both confirm that the new algorithm has high security
and is very fast for practical image encryption.
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1 Introduction

With the rapid growth of image transmission through
Internet, the secure transmission of confidential dig-
ital images over public channels has become a com-
mon interest in both research and application fields.
Although some traditional ciphers such as DES and
AES are designed with good permutation and diffu-
sion properties, they are generally difficult to handle
the image encryption because of some intrinsic proper-
ties of images such as bulk data volume and high pixel
correlation. Nevertheless, many new image encryp-
tion schemes have been proposed in recent years,
among which the chaos-based approach appears to be
a promising direction [1–15].

In [2], Fridrich suggested that a chaos-based image
encryption scheme should compose of the iteration
of two processes: permutation and diffusion, namely
permutation–diffusion architecture, as shown in Fig. 1.

The permutation stage permutes all the pixels as a
whole, without changing their values. In the diffusion
stage, the pixel values are modified sequentially so that
a tiny change in a pixel spreads out to as many pix-
els in the cipher-image as possible. To eliminate the
correlation between adjacent pixels, the whole permu-
tation/diffusion process repeats for a number of times in
order to achieve a satisfactory level of security. In Fig. 1,
permutation and diffusion are two separate and itera-
tive stages, and they both require scanning the image
in order to obtain the pixel value. Thus, at least twice
scanning the same image is required in each round
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Fig. 1 Architecture of
image encryption based on
permutation and diffusion
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Fig. 2 Architecture of image encryption combining permuta-
tion/diffusion

of the permutation–diffusion operation. This scanning
process is actually repeated but can be avoided if the
permutation and diffusion operations be combined, i.e.,
via changing the values of the pixels while relocating
them as illustrated in Fig. 2. As a result, the image only
needs to be scanned once so that the encryption speed
and efficiency is significantly improved.

On the other hand, some chaos-based image encryp-
tion algorithms with permutation–diffusion structure
are also attacked [13,16–19,21,22].

The common flaws or deficiencies of these algo-
rithms are summarized as follows:

(1) The keystream for encryption/decryption is inde-
pendent of the plain-image, and this favors known-
plaintext and chosen-plaintext attacks.

(2) In the diffusion process, the pseudorandom binary
sequence is extracted directly from the discrete
state value of a chaotic map. This means that the
conversion from floating points to integers cannot
be avoided in practical applications. However, it is
found from computer simulations that the conver-
sion process is quite time-consuming [5].

In [5], authors proposed a new fast image encryp-
tion. Although it can partly avoid to extract bits oper-
ation from the discrete state value of a chaotic map,
N 2/8 times extracting operation cannot yet be avoided
in each encryption round. In this paper, we propose
a novel scheme for both combining permutation–
diffusion and avoiding the conversion of floating-point

number. Firstly, using the lookup table constructed and
S-Box of AES, an efficient approach of generating
the pseudorandom sequence required by diffusion is
proposed. Then, the combined permutation/diffusion
architecture is employed to shuffle and change the pix-
els.

The rest of this paper is organized as follows. In
Sect. 2, the process of generating pseudorandom binary
sequence is described in detail. Section 3 focuses on
the description of the proposed fast image encryption.
Performance and security of this scheme are analyzed
in Sect. 4. In Sect. 5, a conclusion is drawn.

2 The keystream generator

2.1 Generating the pseudorandom sequences

To avoid the float-point operation of extracting in
generating the pseudorandom number sequences, an
approach of generating the pseudorandom sequence
is proposed in this paper as shown in Fig. 3. The 1D
chaotic tent map is defined by the following equation:

Tα : x j =
{ x j−1

α
, if 0 ≤ x j−1 ≤ α

1−x j−1
1−α

, if α < x j−1 ≤ 1
(1)

where 0 < a < 1. This function maps the interval [0,
1] onto itself with only one parameter a. A sequence
formed by iterating Tα from an arbitrary initial point in
(0, 1) exhibits chaotic properties [23–26] when Tα is
expanding everywhere in the interval (0, 1).

The detail of generating the pseudorandom sequence
is described as follow.

Step 1 Partition interval [0, 1] into 256 the same length
subintervals subi, and subi ∈ [i · 2−8, (i + 1) ·
2−8], i = 0, 1, . . . , 255, and all subintervals
form lookup table LT as shown in Fig. 4.
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Fig. 3 Architecture of
generating the
pseudorandom sequences
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Fig. 4 Lookup table (LT)

Step 2 Extract 16 bits (1st to 16th bits after the decimal
point) from initial values x0, y0 of tent maps,
respectively, and be denoted as c1 and c2.

Step 3 XOR c1 and c2, left 8 bits of XOR result are
denoted as c3_L, and right 8 bits are denoted as
c3_R, respectively.

Step 4 Iterate the Eq. (1) once with two different initial
values and control parameters, and get two state
values xi and yi.

Step 5 Locate the subinterval index of xi and yi in
lookup table LT and denote the index as j1 and
j2, respectively

Step 6 Compute j1_1, j1_2, j2_1 and j2_2 as follow:

j1_1 ← j1 div 16; j1_2 ← j1 mod 16;
j2_1 ← j2 div 16; j2_2 ← j2 mod 16;

Step 7 Generate 8 bits pseudorandom sequence ϕ(i)
according to the following formula:

ϕ (i)← Sbox
[

j1_1
] [

j1_2
]

⊕Sbox
[

j2_1
] [

j2_2
]⊕ c3_L ⊕ c3_R (2)

where the Sbox is S-box used in AES algorithm as in
Fig. 5.

Step 8 : Performs operations as follow:

c3_R← cycL (3, ϕ (i)) ;
c3_L← (c3_L + cycL (3, ϕ (i)) mod 256

where cycL(x, y) denotes the x-bit left cyclic shift on
the pseudorandom sequence y.

By repeating the operations Steps 4–8, a pseudo-
random sequence with a desired length, (ϕ(1), ϕ(2),

. . ., ϕ(i), . . ., ϕ(n)), is obtained.

2.2 Randomness of the generated sequence

The National Institute of Standards and Technology
(NIST) provides 16 statistical tests to detect devi-
ations of a binary sequence from randomness in
SP800-22 document [27]. Each statistical test is for-
mulated to test a specific null hypothesis (H0). The
null hypothesis under test is that the sequence being
tested is random. The test statistic is used to cal-
culate a p value that summarizes the strength of
the evidence against the null hypothesis. For these
tests, each p value is the probability that a perfect
random number generator would have produced a
sequence less random than the sequence that was
tested, given the kind of non-randomness assessed by
the test. A significance level (a) can be chosen for
the tests. If p value ≥a, then the null hypothesis is
accepted; i.e., the sequence appears to be random.
If p value <a, then the null hypothesis is rejected;
i.e., the sequence appears to be non-random. Typi-
cally, a is chosen in the range [0.001, 0.01]. In our
experiment, 1,000 sequences, each of 1,000,000 bits,
are generated using our scheme, and they all pass
the statistic tests. The p values for various tests are
listed in Table 1. In test, the initial values and con-
trol parameters of Eq. (1) are chosen randomly as
x0 = 0.1345645961, y0 = 0.9432234875, a01 =
0.4565625849, a02 = 0.2435724359, respectively. If
there is more than one statistical value in a test, the
test is marked with an asterisk and the average value is
computed.
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Fig. 5 S-box in AES
algorithm

Table 1 Statistical properties of randomness test

Statistical test Freq BlkFreq CuSumFwd CuSumRev Runs LineComp

p value 0.618385 0.056785 0.042255 0.794391 0.964295 0.492436

Pass rate (%) 99.30 98.60 99.20 99.30 98.70 99.00

Statistical test LongRuns Rank DFFT Nonp-Temp∗ Overl-Temp Univ

p value 0.837781 0.552383 0.955835 0.419417 0.987896 0.666245

Pass rate (%) 99.30 99.20 98.50 98.96 98.50 98.90

Statistical test Apen Rand-Exc∗ Rand-Exc-V∗ Serial 1 Serial 2

p value 0.026057 0.459732 0.391315 0.035174 0.697257

Pass rate (%) 99.00 99.00 98.79 99.00 99.20

1,000 sequences of length 106 bits are tested. According to NIST documentation, a pass rate of 98.056 % is acceptable

3 The proposed encryption scheme

3.1 Permutation

Lian et al. pointed out that there exists some weak
keys for ciphers employing the cat and the baker maps.
Moreover, the key space of the two maps is not as
large as that of the standard map. Therefore, they sug-
gested using a standard map for permutation [3]. In our
scheme, the discrete standard map is also employed to
permute the image pixels.

To avoid the fixed point, namely the corner pixel
(s = 0, t = 0), under the standard map, a random scan
couple (rs, rt) is included to move this corner pixel
together with other pixels. The modified standard map
equations are given by Eq. (3).{

sk+1 = (sk + tk + rs + rt ) mod N

tk+1 =
(

tk + rt + Kc sin N ·sk+1
2π

)
mod N

(3)

Here, (sk,tk) and (sk+1,tk+1) are the original and the
permuted pixel position of an N × N image, respec-
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tively. The standard map parameter Kc is a positive
integer.

3.2 Encryption

The detailed encryption algorithm is described as
follows:

Step 1 Randomly choose the secret keys x0, a01, y0

and a02 as the initial values and control para-
meter in Eq. (1), respectively.

Step 2 Generate the rs, rt, Kc and C(0) from x0, a01,

y0 and a02 using the following function, respec-
tively:

rs ← Bin2I nt (b1b2. . .b24);
rt ← Bin2I nt (b1b2. . .b24);
Kc ← Bin2I nt (b1b2. . .b24);
C(0)← Bin2I nt (b1b2. . .b8)

where x0, a01, y0 and a02 are represented in binary for-
mat 0. b1b2b3. . .b51b52, respectively, bi ∈ {0, 1}. bi

represents the i th bit after the decimal point. The IEEE
754 double precision floating-point format possesses
64-bit word length with a 52-bit fraction part, but only
the 1st to 24th bits after the decimal point are chosen.
The function Bin2Int (.) transforms a binary number to
an integer.

Step 3 Permute the plain-image pixels using the mod-
ified standard map given by Eq. (3)

Step 4 Diffuse the permuted pixels using the scheme
as followed:
To avoid known-plaintext and chosen-plaintext
attacks, the pixel values are altered sequentially
in the diffusion process so that the change made
to a particular pixel depends on the accumulated
effect of all the previous pixel values. Details
of the diffusion operation are described below:

(i) Exchange the status values of two tent maps, if
C(0) is a odd number.

(ii) Generate a pseudorandom numbers ϕ(i) (8 bits)
as described in Sect. 2.1.

(iii) The cipher-pixel value is calculated from the value
of the currently operated and the previously oper-
ated pixels, according to Eq. (4):

C(i) = ϕ(i)⊕ {(P(i)+2 · ϕ(i) mod G}
⊕C(i−1) (4)

where P(i) and C(i) are the currently operated plain-
image pixel and the cipher-image pixel, respectively. G
is the total number of possible gray scales in the plain-
image. C(i − 1) is the previous cipher-image pixel.
C(0) is a secret initial value derived from the key, as
described by Step 2. The inverse form of Eq. (4) for
decryption is given by:

P(i) = {ϕ(i)⊕ C(i)⊕ C(i − 1)

+G − 2 · ϕ(i)}mod G (5)

(iv) Exchange the status values of two tent maps, if C(i)
is an odd number, and return to (ii) until all plain-
image pixels are processed.

It should be noticed that the permutation and diffu-
sion processes are performed simultaneously in a sin-
gle scan of image. The value is altered while relocating
a pixel [4–6].

Step 5 Repeat Steps 3 and 4 for R ≥ 2 rounds accord-
ing to the security requirement. Notice that the
cipher-image pixel of last pixel will be used as
the C(0) of next round. The more rounds are
processed, the higher security the encryption
will have, but at the expense of computational
effort and time delay.

3.3 Decryption

Since the permutation and diffusion are performed
simultaneously in a single scan of plain-image pixels,
the decryption procedure is slightly different from the
encryption one. Details are described as follows:

Step 1 From the x0, a01, y0 and a02 received secretly
from the sender, determine the values of the
parameters rs, rt, Kc and C(0) using the same
bit assignment stated in Sect. 3.2.

Step 2 Permute the pixels of the cipher-image reversely
to obtain an intermediate image.

Step 3 Perform the reverse operations in the interme-
diate image to remove the effect of diffusion.
The detail operations are the same as those
described in Sect. 3.3, except that Eq. (4) is
replaced by Eq. (5).

Step 4 Repeat Steps 2 and 3 for R rounds.

4 Performance analysis

To evaluate and test the proposed algorithm, a series of
experiments is conducted. In experiments, the image
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Table 2 NPCR and UACI values at different encryption rounds and different pixel positions of the proposed

Image Round = 1 (change in pixel) Round = 2 (change in pixel)

(0, 0) (123, 420) (511,511) (0, 0) (123, 420) (511, 511)

NPCR UACI NPCR UACI NPCR UACI NPCR UACI NPCR UACI NPCR UACI

Babala 99.5956 33.4884 75.5020 25.3893 00.0004 00.0000 99.6002 33.4583 99.6048 33.4934 99.6132 33.5483

Lena 99.6193 33.3755 75.5306 25.3519 00.0004 00.0000 99.6132 33.5019 99.6101 33.4469 99.6132 33.4012

for testing is the standard 512 × 512 image with
8-bit grayscale, and the initial values and controls of
two tent maps are chosen randomly as x0 = 0.1345
645961, y0 = 0.9432234875, a01 = 0.4565625849,

a02 = 0.2435724359.

4.1 Key space analysis

To resist the brute-force attack, the key space of any
encryption algorithms should be sufficiently large. In
the proposed image encryption algorithm, the four
secret keys x0, a01, y0 and a02, which are the initial
values and control parameter of two tent maps, are
used to generate the pseudorandom sequences which
are then employed for encryption and decryption. So,
the key space is composed of x0, a01, y0 and a02. If
the state value of all chaotic maps is represented by
the IEEE 754 double precision floating-point standard,
the key space is much larger than 2128. This is enough
large for the general requirement of resisting brute-
force attack.

4.2 Differential attack

To resist differential attack, any tiny modification in the
plain-image should cause a significant difference in the
cipher-image. Two measures are usually employed to
measure this capability quantitatively: number of pix-
els change rate (NPCR) and unified average chang-
ing intensity (UACI). They are defined as follows [3–
11]:

NPCR =
∑

r,c D (r, c)

W × H
× 100 % (6)

UACI = 1

W×H

[∑
r,c

|C1 (r, c)−C2 (r, c)|
255

]
×100 %

(7)

where C1(r, c) and C2(r, c) are the grayscale values of
the pixels at position (r, c) of C1 and C2, respectively,
C1 and C2 are the two cipher-images whose corre-
sponding plain-images have only one-pixel difference.
W and H are the width and height of the image, respec-
tively. The element D(r, c) is determined by C1(r, c)
and C2(r, c). Namely, if C1(r, c) = C2(r, c), then
D(r, c) = 0; otherwise, it is 1. The values of these
two quantitative measures (NPCR and UACI) for our
algorithm are listed in Table 2.

Experimental results show that the proposed cryp-
tosystem only needs a minimum of two rounds to
achieve a high performance such as NPCR > 0.995
and UACI > 0.333. Therefore, the proposed algorithm
can resist the differential attack if Round ≥ 2.

4.3 Key sensibility analysis

An ideal cryptosystems should be sensitive to key. This
means that tiny change in the key results in a com-
pletely different encrypted image when applied to the
same plain-image. Key sensitivity analysis has been
performed for the proposed image encryption algo-
rithm. To evaluate the key sensitivity of our algorithm,
one of secret keys x0 is changed from 0.1345645961
to 0.1345645962, denoted as x ′0, and the encryption
is repeated. The two corresponding cipher-images are
compared, and a 99.62 % difference in pixel values is
found. The results are depicted in Fig. 6, which show
that our proposed algorithm is sensitive to the key even
for a difference as tiny as 10−10.

4.4 Statistical analysis

According to Shannon’s theory, a secure cryptographic
scheme should be strong enough to resist any statistical
attack. In order to prove the security of the proposed
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Fig. 6 Key sensitivity test:
a plain-image, b
cipher-image using key
x0, y0, a01, a02,
c cipher-image using key
x ′0, y0, a01, a02, d
difference image between
the two cipher-images, e
decrypted image form (b)
using a slightly modified
key x ′0, y0, a01, a02

Fig. 7 Histograms of
original image and
encrypted image

image encryption scheme, the following statistical tests
are performed.

(1) Histograms of the plain-image and the
cipher-image.

Histograms of the plain-image and the cipher-image
are shown in Fig. 7. As shown in this figure, the latter
histogram is fairly uniform and significantly different
from the histograms of the plain-image image. Hence, it
does not reveal any statistical information of the former.

(2) Correlation of two adjacent pixels.

A secure encryption scheme should remove the correla-
tion between adjacent image pixels in order to improve
the resistance against statistical analysis. To test the
correlation between two adjacent pixels in vertical,
horizontal and diagonal directions of a cipher-image,
respectively, the following procedures are carried out.

First, randomly select 10,000 pairs of two adjacent
image pixels in the corresponding direction. Then, cal-
culate the correlation coefficient of each pair using the
following formula:

cov (x, y) = E [(x − E (x)) (y − E (y))]

= 1

N

N∑
i=1

[(xi − E (x)) (yi − E (y))] (8)

rxy = cov (x, y)√
D (x) · √D (y)

(9)

where x and y are grayscale values of two adjacent
pixels in the image, E (x) = 1

N

∑N
i=1 xi and D (x) =

1
N

∑N
i=1 (xi − E (x))2. In each test, N = 10,000. The

correlation distributions of two adjacent pixels in the
plain-image and the cipher-image are shown in Fig. 8,
respectively. The measured correlation coefficients of
the plain-image are close to 1, while those of the cipher-
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Fig. 8 Correlations of two
adjacent pixels in a
horizontal direction of the
plain-image, b horizontal
direction of the
cipher-image, c vertical
direction of the plain-image,
d vertical direction of the
cipher-image, e diagonal
direction of the plain-image,
f diagonal direction of the
cipher-image

image are nearly 0. This indicates that the proposed
algorithm has successfully removed the correlation of
adjacent pixels in the plain-image so that neighbor pix-
els in the cipher-image virtually have no correlation.
Therefore, the proposed algorithm possesses high secu-
rity against statistical attacks.

4.5 Information entropy analysis

Information entropy, such as K–S, is the most outstand-
ing feature of the randomness. It is well known that the
entropy H(s) of a message source s can be measured
by
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Table 3 Results of
information entropy of
plain-image, cipher-image
and cipher-image with
one-pixel change in
plain-image

Image Plain-image Cipher-images (plain pixel changed in pixel)

(no change) (0, 0) (123, 420) (511, 511)

Babala 7.6321 7.9992 7.9992 7.9993 7.9993

Lena 7.4295 7.9994 7.9992 7.9993 7.9993

Table 4 The round number
of scanning-image,
permutation and diffusion
and extracting times of per
round to achieve
NPCR > 0.996 and
UACI > 0.334

Round number
of scanning-
image

Round
number of
permutation

Round
number of
diffusion

Conversion times
floating-points to
integers of per round

Proposed 2 2 2 2

Lian et al. [6] 18 18 6 N 2

Wong et al. [7] 4 4 2 N 2

Wang et al. [xx] 2 2 2 N 2/8

H(s) = −
M−1∑
i=0

P(si ) log2 P(si ) (10)

where M is the total number of symbols si∈ s, P(si )

represents the probability of occurrence of symbol si .
For a truly random source emitting 256 symbols, the
ideal entropy is H(s) = 8. If the output of a cipher
emits symbols with the entropy value of less than 8,
there is a certain degree of predictability which threat-
ens its security. H(s) has been tested on the encrypted
images. The results are shown in Table 3. Experiments
results show that the cipher-images are close to a true
random source and the proposed algorithm is secure
against the entropy attack.

4.6 Resistance to known-plaintext and
chosen-plaintext attacks

To resist the known-plaintext and chosen-plaintext
attacks, two different plain-images should have differ-
ent keystreams even if they are encrypted with identi-
cal keys. In the proposed algorithm, the status values
of two tent maps are exchanged according to the pre-
vious pixel cipher value. Consequently, the next state
value of maps is related to the plain-image. Since the
pseudorandom number ϕ(i), which is the keystream of
the proposed algorithm, is related to the state values
of maps, different images will have different ϕ(i). It
is difficult to decrypt a particular cipher-image using

the keystream ϕ(i) obtained from other images. There-
fore, the proposed algorithm can well resist the known-
plaintext and chosen-plaintext attacks.

4.7 Speed analysis

With the exception of security consideration, other
issues of an image cryptosystem such as the opera-
tion speed are also significant, especially for real-time
applications. The actual execution time of an algorithm
is determined by many factors such as algorithm, pro-
gramming skill, programming language and execution
environment. Therefore, we discuss mainly the perfor-
mance of the proposed scheme from the computational
complexity perspective. The running speed of an algo-
rithm based on chaotic maps is mainly determined by
the following three factors:

(1) Architecture of encryption/decryption.
(2) Encryption rounds of algorithm.
(3) Generating means of pseudorandom sequences.

To architecture of encryption/decryption, the per-
mutation and diffusion processes are combined in the
proposed algorithm, so only one time image-scanning
step is required in each encryption round. This leads to a
speed advantage compared with algorithms separating
permutation and diffusion operations.

As shown in Table 4, the proposed cryptosystem
and the Wang’s [xx] only need a minimum of two
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overall rounds to achieve a high performance such as
NPCR > 0.996 and UACI > 0.333 for a tiny change at
any position of the plain-image. The results show that
the round number of encryption required by the pro-
posed scheme is fewer than that by Wong’s and Lian’s.
Thus, the proposed algorithm indeed leads to a faster
encryption speed.

To generating pseudorandom sequences, the algo-
rithms of Wong’s and Lian’s extract bits to generate
pseudorandom numbers directly from the each itera-
tion values of the logistic map and mask the image pix-
els one by one. In Wang’s algorithm, 8 times extracting
operation are required per 8 × 8 block. Because the
state value of a chaotic map is a floating-point number,
and a pseudorandom number is usually an integer, the
conversion from floating points to integers cannot be
avoided in practical applications. Computer simulation
results show that such a conversion is time-consuming
[5]. Thus multiplication and conversion from floating
points to integers should be avoided in order to have
high efficiency of generating pseudorandom numbers.
In our algorithm, only two times conversion is required
per round as in Sect. 2.2 and Table 4, so the conver-
sion from floating points to integers is avoided. There-
fore, compared with these algorithms, our algorithm
has faster running speed.

5 Conclusion

A fast and secure image encryption is proposed and
analyzed. This employs two technologies to improve
the encryption/decryption speed. One is to combine
the permutation and diffusion stages. As a result, the
image needs to be scanned only once in each encryption
round. Another is an effective generation of pseudo-
random numbers by S-Box lookup, XOR, Modular
and cyclic shift operations and so on. It avoids some
time-consuming operations such as bit extraction form
floating-points and conversion from floating-points to
integers, so a higher encryption speed is obtained.
Then, both theoretical analyses and experimental tests
have been carried out. The results show that satis-
factory security performance is achieved in only two
overall encryption rounds and so the speed efficiency
is improved. Moreover, the security of the proposed
scheme is verified by the analyses on its size of key
space, key sensitivity, statistical and differential prop-
erties and so on. In conclusion, the new cipher indeed

has excellent potential for practical image encryption
applications.
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