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Abstract Multimedia streamingof three-dimensional
(3D) stereoscopic videos over last-generation networks
subject to bandwidth limitations is an open problem.
The development and spread of communication net-
works and devices that accept 3D videos is not sup-
ported by proper scheduling strategies. Namely the
high variability of streams should be considered to
reduce effects of network delays, packet losses, short-
age of bandwidth resources, and shared use bymultiple
clients. Then, it is important to improve the charac-
terization of 3D videos for more effective streaming.
To this aim, this paper proposes a fractional exponen-
tial reduction moments approach based on the statis-
tics of the so-called fractional moments. Each random
sequence of frames in 3D videos can be analyzed and
reduced to a finite set of parameters, that allow fitting to
the sequence by exponential functions and then a char-
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acterization and classification of the video by a sort of
fingerprint. The method does not depend on the format
and the encoding technique of the video. Finally, the
approachwill allow comparing real streams and numer-
ical data output from fractional dynamical models by
means of the reduced parameters. Statistical proximity
between time series and a fractional model or between
different models simplifies formalization and classifi-
cation of fractional models.

Keywords Fractional exponential reduction
moments approach (FERMA) · Fractional order
modeling · Statistics of fractional moments · 3D video
stream

1 Introduction

Research onmultimedia streaming over wired/wireless
last-generation mobile networks is motivated by com-
plex problems posed by technology advances. Namely
developments are fast,multimedia services on advanced
mobile terminals continuously grow, and structure and
operation of networks become complex [8]. More-
over, multimedia reproduction requires high Quality
of Service (QoS) performance indices and a reduced
impact of the permanent problems in a classical client–
server architecture (delays, packet losses, shortage of
bandwidth resources, contemporaneous use by multi-
ple users, etc.).
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These problems are emphasized by three-dimen-
sional (3D) stereoscopic videos that are very impor-
tant for entertainment, medicine and surgery, industrial
processes, etc. Effective streaming on fixed (TV sets)
or mobile (smartphones, tablets) terminals requires
to properly process the available information and to
choose an adequate scheduling algorithm. Namely the
amount of data for 3D video frames is higher than for
two-dimensional (2D) ones. In addition, more band-
width is required from resources on the network links,
and video compression and formats generate highly
Variable Bit Rate (VBR) streams [18,28]. VBR and
bandwidth limitations were considered [9], but few
works focusedon the specific topic regarding3Dvideos
[5,6].

To develop simple theoretical models and to prop-
erly assign bandwidth resources so that an efficient
VBR 3D video streaming achieves a high QoS, a statis-
tical characterization of the 3D frames sequence can be
of great help [2]. Moreover, it is helpful for reducing
complexity of the schedulers that control data trans-
mission. However, few works analyze the statistical
properties of 3D data flows. Long memory properties
or Long Range Dependence of compressed 3D flows
were characterized by estimating the Hurst parame-
ter. The drawback is that the empirical computation
methods assume asymptotic convergence of the sam-
ple size and, hence, a stationary process [26]. There
exist also several methods that analyze long time series
when there is no mathematical model of the process
generating the data. For example, computation of Lya-
punov exponents from time series [31]. But some lim-
iting assumptions are often required. In other cases,
algorithms extract useful hidden information and para-
meters from biological signals [22], signals related to
delivery of drugs [23], and signals for other biomedical
applications [24].

Moreover, the state-of-the-art literature proposes the
detrendedfluctuation analysis (DFA) [25,26] for reduc-
ing long time series. DFAwas applied to different kinds
of data [1,4,11,12,16,27] and can be considered as an
extension of the Hurst analysis in [26], then it suffers
from the same drawbacks of the Hurst parameter com-
putation. Moreover, it is suitable to catch only the cor-
relation properties on large time scales, i.e., if the trends
of the time series are slowly varying. However, this is
a specific property of a time series. So, it substantially
differs from the goal herein to capture all the statisti-
cal trends of the considered 3D videos. Then, the idea

behind this work is to develop a totally new approach
that is free from the drawbacks and limitations of DFA.

A novel method is developed by exploiting the idea
underlying the statistics of the fractional moments [19]
to provide a more reliable fitting and a robust set of the
reduced parameters. The purpose is twofold. Firstly, the
analysis should help to identify a fractional behavior
in absence of a process model. Secondly, the aim is to
reduce each sequence of 3D video frames to a finite and
stable set of parameters that encapsulate the statistical
properties of the 3D video. Then, the method is named
Fractional Exponential Reduction Moments Approach
(FERMA). It is straightforward and robust and aims at
generating a “fingerprint” for each 3D video. A small
number of parameters represent the statistical proper-
ties, whichever are the video and the length of the time
series associated with the sequence of frames. This
result is very important because:

a. the fingerprint allows to identify the main fea-
tures of the stream, depending on the compres-
sion degree, the format, and the type of represented
scenes;

b. different kinds of streams can be identified accord-
ing to the ranges of variation of the fingerprint para-
meters, then a classification of streams is possible;

c. scheduling of 3D video streams and bitrate con-
trol can benefit from fingerprint identification and
classification, i.e., a feedback system can regulate
the transmission bitrate to obtain the same sta-
tistical properties at receiver’s side as those that
characterize the video at transmission side. Then,
a fingerprint-based strategy can increase the user
QoS.

It is also remarkable the relationship between the
FERMA approach and fractional dynamics models
that can describe some phenomenon under analysis.
Namely assume to obtain numerical data from a known
model, say a fractional model, and to compare them
with other data available from real experiments (or
from a different model). Assume also that the dynamic
equations of the fractional model for the second set of
data are unknown. Then, the generality of FERMApro-
vides the unique possibility to compare one set of data
(generated from the known fractional equations) with
another set. The comparison between large sets of data
is possible because the final set of the reduced parame-
ters is relatively small. If the parameters obtained for
the two sets are close to each other, then one can con-
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clude about the closeness of the analyzed data/models,
then the second set has the same fractional behavior
as in the first set. In the opposite case, data are not
similar and can be rejected. Here, the flexibility of
the new approach is also stressed. If some set of sta-
ble parameters are not sufficient for model identifica-
tion of the compared data, then the cumulative data
obtained by integration or differentiation of initial data
can be used to receive an additional set of parameters.
The advantages of these options are illustrated below
in the paper. It can be concluded that this paper sets
the basis of a methodology, even if well formalized
fractional order models of 3D video streaming are not
available yet, as far as the authors are aware. However,
it is intuitive to conjecture about the fractional nature
of the process if one considers several studies and
results [3,10].

The rest of the paper is organized as follows. Sec-
tions 2.1 and 2.2 describe the reduction procedure
to identify the set of fingerprint parameters and the
classification method to group similar data sequences,
respectively. Section 2.3 shows how to obtain further
statistically different sequences. Section 3 shows sim-
ulation results with different compression techniques
and formats of 3D videos. Remarks are also made on
relevant points for future developments related to the
streaming control. Finally, Sect. 4 concludes the paper.

2 Reduction and classification of random 3D video
streams

In this section, the reduction of a random 3D video
sequence of frames to a finite set of stable parameters is
synthesized by an effective procedure and used to clas-
sify videos by a clusterization method. The reduction
must face the fact that modern technologies and termi-
nals allow receiving and reproducing long sequences
of data (video frames) that constitute a long time series
which is available for statistical analysis. On the other
hand, the existing statistical methods are not capable of
easily managing large amounts of data. Typically, ran-
dom sequences of 105−106 data points and more must
be processed to extract the useful information. There-
fore, new approaches are required to reduce the data to
a finite reduced and stable set of few fitting parameters
(say, 10–20 parameters), that allowus to establish prop-
erties of the stream. In thisway, different streams can be
compared to find the “qualitative” presence of an exter-

nal factor that affects some streams (maybe the altered
ones with respect to the original video frame sequence)
and to quantitatively express this factor by means of
the identified parameters. Moreover, after reduction, a
problem of clusterization originates. Namely if distinct
identified sets of reduced parameters are strongly cor-
related one with another, then it is necessary to form
clusters between these sets and hence further reduce the
complexity of the representation of distinct streams.

2.1 The reduction procedure

The proposed method is based on the statistics of the
fractional moments, based on the idea originally pre-
sented in [19]. Consider a sequence of N data points
with or without a clearly expressed trend. The matter is
to find k points in the sequence, so that the k moments
taken from this new set of points coincide with the k
moments derived from the N initial points. This occurs
if the following condition holds true [19]:

(Y1)p + (Y2)p + · · · + (Yk)p

k
= Δ

(p)
N

= 1

N

N∑

j=1

(y j )
p p = 1, 2, . . . , k (1)

The set {Ys, s = 1, 2, . . . , k} represents the reduced
set of k < N unknown points, while {y j , j =
1, 2, . . . , N } is the set of points in the initial sequence.
Obviously, for the simplest case k = 2, it follows:

⎧
⎪⎨

⎪⎩

(Y1) + (Y2)
2 = Δ

(1)
N = 1

N

∑N
j=1(y j ) (for p = 1)

(Y1)2 + (Y2)2

2 = Δ
(2)
N = 1

N

∑N
j=1(y j )

2 (for p = 2)

(2)

that easily leads to Δ
(2)
N −

(
Δ

(1)
N

)2 = (Y1 − Y2)2/4.

Since Y1,2 = (Y1+Y2)/2± (Y1−Y2)/2, the analytical
solution is:

Y1,2 = Δ
(1)
N ±

√
Δ

(2)
N −

(
Δ

(1)
N

)2
(3)

Instead, the analytical solution of (1) for k > 2 is not
always possible. For k = 3, 4, the Cardano and Ferrari
formulas can be used. For k > 4, only numerical solu-
tions can be provided. If k is sufficiently large (k > 10),
any procedure for calculating the roots of a kth order
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polynomial represents an ill-posed problem and there-
fore is numerically unstable [15]. However, the numer-
ical solution to system (1) can be determined by a dif-
ferent formulation of the problem. Namely restate (1)
more generally as:

w1 (Ỹ1)
x + w2 (Ỹ2)

x + · · · + wk (Ỹk)
x =

k∑

s=1

ws e
λs x

≈ 1

N

N∑

j=1

(
y j

ymax

)x

≡ ΔN (x) x = 0, 1, 2, . . . , k

(4)

with λs = ln(Ỹs) and
∑k

s=1
ws = 1, where ws are

normalized statistical weights and λs are exponents,
for s = 1, 2, . . . , k. In this way, (4) establishes the
problem of determining a reduced set of 2k unknown
parameters (ws, λs), for s = 1, 2, . . . , k, by using the
normalized initial sequence of values

(
y j/ymax

)
, for

j = 1, 2, . . . , N , that define ΔN (x) and the moments
x , with 0 ≤ x ≤ k. Note that system (4) provides an
approximate solution by employing the total set of the
moments x from [0, k], including the fractional ones.

The main benefit of the proposed algorithm is that
the unknown exponents can be easily computed in a
linear way. Namely it is possible to redefine (4) as
follows:

ΔN (x) = fs(x) + Es(x) = ws e
λs x

+
k∑

q=1,q �=s

wq e
λq x x = 0, 1, 2, . . . , k (5)

where the sth weight and exponent are separated from
the other ones. Given that fs(x) = ws eλs x , it follows
d fs (x)
dx = λs fs(x) so that one integration gives fs(x) =

fs(0) + λs
∫ x
0 fs(u)du and expression (5) gives:

ΔN (x) = λs

∫ x

0
ΔN (u)du +

k∑

q=1,q �=s

Bq,s e
λq x + Cs

(6)

with Bq,s = wq

(
1 − λs

λq

)
and Cs = fs(0) +

∑k

q=1,q �=s
wq

λs

λq
= 1 −

∑k

q=1,q �=s
Bq,s , for s =

1, 2, . . . , k.
The previous formulas can then be used to itera-

tively compute the unknownfitting parameters {λs , s =
1, 2, . . . , k} by applying the linear least square method
(LLSM). Namely (6) can be explicitly written as:

ΔN (x) − 1 ≈ λ1

∫ x

0
ΔN (u)du

ΔN (x) − 1 ≈ λ2

∫ x

0
ΔN (u)du + B1,2

(
eλ1x − 1

)

...

ΔN (x) − 1 ≈ λk

∫ x

0
ΔN (u)du +

k−1∑

q=1

Bq,k
(
eλq x−1

)

(7)

that is solved by LLSM to find the exponents {λs, s =
1, 2, . . . , k} and the coefficients Bq,k (q = 1, 2, . . . ,
k − 1). Moreover, to correct the computed values and
further adjust the approximate values of the exponents,
the normalized statistical weights can be considered,
and the LLSM is again applied by using the following
expression:

ΔN (x) = eλ1x +
k∑

q=2

wq
(
eλq x − eλ1x

)
(8)

The unknown value of k can be found by considering
all positive statistical weights and by minimizing the
percentage relative fitting error:

min
wq>0

E(k) = min
wq>0

⎧
⎪⎪⎨

⎪⎪⎩

stddev

(
ΔN (x) −

∑k

q=1
wq e

λq x
)

mean (ΔN (x))
100%

⎫
⎪⎪⎬

⎪⎪⎭

(9)

To synthesize, the reduction procedure is defined by
(7)–(9) and solves (4) to determine the reduced set of
parameters {(ws, λs), s = 1, 2, . . . , k}, k � N .

2.2 The clusterization method

The similar time series of 3D video frames can be
grouped together by using a complete correlation fac-
tor, based on an accurate selection that takes into
account internal correlation between sequences. To
this aim, the generalized Pearson correlation function
(GPCF) is used [20,21] based on generalized mean
value (GMV) functions:

GPCFp = GMVp(s1, s2)√
GMVp(s1, s1)GMVp(s2, s2)

(10)
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where the GMV function of K th order is

GMVp(s1, s2, . . . , sK )

=
⎛

⎝ 1

N

N∑

j=1

|nrm j (s1)nrm j (s2) · · · nrm j (sK )|momp

⎞

⎠

1
momp

(11)

that employs normalized sequences nrm j (y), with 0 <

nrm j (y) < 1, and the current value of the moment,
i.e., momp. More specifically, for j = 1, 2, . . . , N , it
holds:

nrm j (y)

=
⎧
⎨

⎩

y j+|y j |
max(y j+|y j |) − y j−|y j |

min(y j−|y j |)
y j−min(y j )

max(y j−min(y j ))
(for initialpositive sequence)

(12)

where y j denotes the initial random sequence that can
contain a trend or that is to be compared with another
trendless sequence. The initial sequences are chosen
like follows. The minimum of the GMV function is
zero, while the maximum coincides with the maxi-
mum of the normalized sequence. Moreover, the set
of moments is computed as follows:

momp = eLnp , Lnp = mn

+ p

P
(mx − mn) p = 0, 1, . . . , P (13)

so that Lnp takes values between (mn) and (mx) that
define the limits of the moments in the uniform log-
arithmic scale. Usually, mn = −15, mx = 15, and
50 ≤ P ≤ 100. This choice is because the transition
region of the random sequences that are expressed in
the form of GMV-functions is usually concentrated in
the interval [−10, 10]. The extension to [−15, 15] is
considered for the accurate calculation of the limit val-
ues of the functions in the space of fractional moments.
Finally, note that GPCFp determined by (10)–(11)
coincides with the conventional definition of the Pear-
son correlation coefficient at momp = 1.

If the limits (mn) and (mx) have the opposite signs
and take sufficiently large values, then the GPCF has
two plateaus (with GPCFmn = 1 for small values of
mn) and another limiting value GPCFmx that depends
on the degree of internal correlation between the two
compared randomsequences. This right-hand limit, say
Lm, satisfies the following condition:

M ≡ min(GPCFp) ≤ Lm ≡ GPCFmx ≤ 1 (14)

The appearance of two plateaus implies that all infor-
mation about possible correlations is complete and a
further increase of (mn) and (mx) is useless. Sev-
eral tests showed that the highest degree of correla-
tion between two random sequences is achieved when
Lm = 1, while the lowest when Lm = M . This remark
holds for all random sequences and allows us to intro-
duce a new correlation parameter CC , the so-called
complete correlation factor:

CC = M

(
Lm − M

1 − M

)
(15)

Note thatCC is determined by using the total set of the
fractionalmoments in [emn, emx ]. Putting (mn) = −15
and (mx) = 15, CC tends to M for high correlation,
and to 0 for the lowest (remnant) degree of correlations.
Moreover, CC does not depend on the amplitudes of
two compared random sequences. Since 0 ≤ |y j | ≤ 1
must hold for both sequences, (15) gives indication of
the internal correlation between sequences that is based
on the similarity of probability distribution functions of
the sequences, even if the last are usually not known.

Recently, the statistics of the fractional moments
was applied with promising results [21], that gave the
idea to use theCC factor for clusterization of the signif-
icant parameters. Namely for a set of significant para-
meters referring to one qualitative factor, it holds:

c fmin ≤ CC ≤ 1 (16)

where c fmin is determined by the sampling volume
and the practical conditions of random sequences, that
should be almost the same when comparing two dif-
ferent sequences, e.g., the first affected by a qualitative
factor, the secondby another factor like a control action.

Then, the clusterization method is based on com-
paring the values of the CC factor, by making a sort
of extension of the conventional method based on the
Pearson correlation coefficient (PCC) that is instead not
proper for the purpose of this paper.

To synthesize, the clusterization of S different
sequences by their correlation follows a step procedure:

i. For each sequence r , determine the set of the 2k
reduced parameters Prq = {wq , lq}r , for q =
1, 2, . . . , k, and for r = 1, 2, . . . , S. Moreover,
compute the fitting error (9) and other parameters
that are important for the structuring.
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ii. Obtain the normalized sequences according to (12)
by the set of reduced parameters Prq .

iii. Compute GPCFp(s1, s2) for each pair (s1, s2),
with s1 and s2 = 1, 2, . . . , S, find the limits, and
apply (15) to get the symmetricalmatrixCC(s1, s2)
of size S × S.

iv. Realize the clusterization by taking into account
(16) and defining the whole correlation interval
[c fmin, 1.0] on subset of other intervals.

The previously defined clusterization procedure has
a relative character because it depends on the number of
correlation subintervals that are defined in [c fmin, 1.0].
Then, an absolute clusterization cannot be realized.

2.3 Integration and differentiation pre-processing

To stress the power of the proposed approach, a further
processing of the originally available data is added.
Namely an integration and a differentiation is applied
to the sequence of frames, so that two additional and
different random sequences of frames are obtained that
are characterized by totally different statistical prop-
erties. By processing data in this way, it is expected
that differentiation creates high-frequency fluctuations.
On the contrary, integration is particularly suitable for
restoring the long-term trend of video sequences and
analyzing their fluctuations on longer time scales. This
is a very important consideration, since it is known by
literature that the low-frequency part of the spectrum
of compressed VBR video data are utilized for man-
aging bandwidth and QoS [7,17,32]. The very simple
numerical integration by the trapezoidal rule filters the
high-frequency components of the video data.

More specifically, integration is performed on the
initial video sequence of frames by the following
numerical approximation [29]:

J y j = J y j−1 + 1

2
(x j − x j−1)(Dyj + Dyj−1)

Dyj = y j− < y >, < y >

= 1

N

N∑

j=1

y j , j = 1, 2, . . . , N (17)

where J y j is the integrated sample, Dyj is the original
sample y j , but translated in its value with respect to
the mean < y>. By this operation, a low-pass filtering
is performed, that cuts off the high-frequency compo-
nents. The low complexity of this filter is guaranteed by

the trapezoidal rule, which is a particularization of the
Simpson’s rule method for numerical integration [29].

Nevertheless, the 3D video statistical characteriza-
tion in the high-frequency domain can still be useful.
It is known, in fact, that high-frequency components
in compressed VBR videos allow to study the amount
of buffering needed to reduce frame losses in video
transmission [13,17]. To this aim, data are also differ-
entiated by a discrete approximation of the derivative:

dy j = y j − y j−1

x j − x j−1
j = 2, . . . , N (18)

Both the integrated and differentiated sequences are
treated and represented by the same FERMAapproach.
Then, the same reduction procedure and the clusteriza-
tion method are applied to the integrated and differen-
tiated curves. This helps to find and recognize common
features of random sequences without a specific trend
(i.e., the sequences obtained bydifferentiation), besides
those that are proper of sequences that may be charac-
terized by a certain weakly expressed trend (i.e., the
original sequences).

3 Simulation results

The reduction and clusterization method is tested on
data taken from real 3D stereoscopic videos. The for-
mats are: side by side (SBS) and frame-sequential (FS).
SBS combines left and right views into standard 2D for-
mat so that the resolution of a given 3D frame is the
same as a regular 2D frame. The left and right frames
are subsampled along the horizontal axis and put side
by side. FS creates a single frame sequence by tem-
porally interlacing left and right images. Each image
preserves its original resolution, but the transmission
rate is doubled with respect to SBS.

All videos last about 35min at the constant rate of 24
frames per second, with resolution of 1920×1080 pix-
els. The well-known H.264/MPEG-4 Advanced Video
Coding standard [14] is used to encode them. The
compressed streams are defined by Group of Pic-
tures (GoP) [30], i.e., a periodic sequence of three
types of frames: Intracoded (I), Predictive-encoded (P)
and Bidirectionally-encoded (B). I-frames are coded
independently from other frames, whereas the P-
frames take into account the dependencies with I-
frames and B-frames the dependencies with both I-
and P-frames. The GoP sequence is defined by the
total number of frames and by the number of B-
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Table 1 Set of the reduced parameters from each 3D movie data set in FS format

Reduced Mov1 Mov1 Mov1 Mov2 Mov2 Mov2 Mov3 Mov3 Mov3
Param. O I D O I D O I D

B1, QP = 24 λ1 0.2915 0.0316 0.3665 0.2501 0.0324 0.4247 0.5560 0.0409 0.4215

λ2 2.5780 0.2120 0.6950 1.9186 0.1603 0.7337 2.9713 0.1160 0.6948

λ3 4.6776 0.3554 1.7556 4.9103 0.2022 1.9858 4.6538 0.3285 1.7080

λ4 – 1.0589 – – 1.2312 – – 1.3935 –

w1 0.0024 0.0789 0.0200 0.0089 0.1177 0.1318 0.0132 0.0541 0.0218

w2 0.6754 0.2267 0.9739 0.6859 0.3891 0.8541 0.8313 0.0623 0.9745

w3 0.3238 0.0705 0.0062 0.3072 0.0649 0.0144 0.1528 0.3692 0.0037

w4 – 0.6191 – – 0.4221 – – 0.5123 –

αsep 0.9920 0.0811 0.6544 0.7560 0.0730 0.6016 0.5120 0.0951 0.6720

er% 1.2656 1.6902 0.0201 1.7800 1.4566 0.0573 2.4862 2.0412 0.0107

B1, QP = 28 λ1 0.2760 0.02898 0.3633 0.2142 0.0328 0.4612 0.2167 0.0352 0.4083

λ2 2.7511 0.2491 0.6915 1.9913 0.1303 0.7336 2.7347 0.1686 0.6944

λ3 4.9206 0.3617 1.7432 5.0235 0.2002 1.9413 4.9806 0.3730 1.7067

λ4 – 0.9537 – – 1.3101 – – 1.4092 –

w1 0.0019 0.0816 0.0157 0.0062 0.1021 0.1518 0.0012 0.0443 0.0167

w2 0.6762 0.3914 0.9793 0.6467 0.1742 0.8383 0.6968 0.0893 0.9799

w3 0.3234 0.1392 0.0051 0.3493 0.3119 0.0100 0.3029 0.3222 0.0035

w4 – 0.6601 – – 0.4081 – – 0.5407 –

αsep 1.0030 0.0779 0.6600 0.7705 0.0767 0.6200 1.0100 0.0951 0.6708

er% 1.2985 1.8638 0.0160 2.0730 1.1956 0.0362 1.0775 2.1689 0.0102

B1, QP = 34 λ1 0.2298 0.0238 0.3789 0.1640 0.0322 0.4606 0.2491 0.0311 0.3716

λ2 2.6900 0.3022 0.6959 2.0288 0.1437 0.7331 2.5371 0.2649 0.6881

λ3 4.8851 0.3524 1.7574 5.2534 0.2238 1.9577 4.8340 0.4682 1.7670

λ4 – 0.8606 – – 1.2808 – – 1.5195 –

w1 0.0016 0.0813 0.0182 0.0042 0.0850 0.1685 0.0019 0.0367 0.0207

w2 0.6757 1.4377 0.9768 0.6276 0.1665 0.8217 0.7351 0.1699 0.9737

w3 0.3242 1.3220 0.0051 0.3710 0.3366 0.0100 0.2639 0.1560 0.0057

w4 – 0.7945 – – 0.4084 – – 0.6319 –

αsep 0.9800 0.0733 0.6615 0.7745 0.0790 0.6120 0.9530 0.0963 0.6505

er% 1.3092 2.3365 0.0161 2.5222 1.1965 0.0373 1.0137 3.6050 0.0185

B7, QP = 24 λ1 0.2310 0.0300 0.3180 0.2493 0.0324 0.3429 0.2401 0.0400 0.4205

λ2 2.4929 0.2614 0.6844 1.9236 0.1435 0.6598 2.6109 0.1113 0.6917

λ3 4.7370 0.3700 1.7477 5.0274 0.1973 2.0080 4.8911 0.3314 1.7478

λ4 – 0.9930 – – 1.2699 – – 1.4246 –

w1 0.0026 0.0838 0.0148 0.0089 0.1132 0.0687 0.0016 0.0457 0.0217

w2 0.6753 0.4552 0.9790 0.6521 0.2567 0.9204 0.6412 0.0560 0.9751

w3 0.3241 0.2485 0.0063 0.3412 0.2135 0.0110 0.3581 0.3895 0.0033

w4 – 0.7023 – – 0.4118 – – 0.5070 –

αsep 0.9005 0.0779 0.6395 0.7640 0.0744 0.5680 0.9950 0.0974 0.6670

er% 1.6737 2.2887 0.0220 2.0082 1.2658 0.0509 1.2421 2.1661 0.0096

B7, QP = 28 λ1 0.2204 0.0278 0.3316 0.2129 0.0328 0.3834 0.2402 0.0349 0.4131

λ2 2.6522 0.2861 0.6877 1.9951 0.9056 0.6795 2.7514 0.1733 0.6907
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Table 1 continued

Reduced Mov1 Mov1 Mov1 Mov2 Mov2 Mov2 Mov3 Mov3 Mov3
Param. O I D O I D O I D

λ3 4.9765 0.3720 1.7457 5.1592 0.1990 2.0243 5.0830 0.3871 1.7370

λ4 – 0.9136 – – 1.3073 – – 1.4502 –

w1 0.0021 0.0848 0.0131 0.0062 0.1000 0.0720 0.0013 0.0403 0.0177

w2 0.6612 0.7215 0.9817 0.6226 0.1769 0.9189 0.6682 0.0841 0.9793

w3 0.3386 0.5793 0.0053 0.3738 0.3136 0.0093 0.3313 0.3405 0.0031

w4 – 0.7652 – – 0.4059 – – 0.5320 –

αsep 0.9320 0.0756 0.6503 5.3785 0.0767 0.5980 1.0265 0.0974 0.6680

er% 1.6733 2.3122 0.0176 2.2973 1.1731 0.0374 1.1282 2.0765 0.0090

B7, QP = 34 λ1 0.2305 0.0230 0.3522 0.1602 0.0316 0.4110 0.2564 0.0317 0.3821

λ2 2.6463 0.3358 0.7118 2.0426 0.1413 0.6747 2.5395 0.2748 0.7128

λ3 5.0137 0.3671 1.7513 5.4260 0.2234 2.1007 4.9164 0.4890 1.7939

λ4 – 0.8425 – – 1.2792 – – 1.5586 –

w1 0.0019 0.0829 0.0142 0.0041 0.0865 0.0965 0.0021 0.0344 0.0184

w2 0.6523 3.1163 0.9797 0.6175 0.1594 0.8961 0.7051 0.1670 0.9761

w3 0.3474 3.1444 0.0061 0.3813 0.3425 0.0075 0.2940 0.1583 0.0056

w4 – 0.9354 – – 0.4082 – – 0.6350 –

αsep 0.9635 0.0721 0.6750 0.7745 0.0790 0.5910 0.9635 0.0974 0.6750

er% 1.4996 2.7509 0.0183 2.6902 1.1818 0.0302 1.1359 3.7291 0.0166

frames between successive I- and P-frames. Moreover,
each trace is characterized by a Quantization Parame-
ter (QP) that indicates the degree of compression of
video frames [30]: a high QP corresponds to a coarse
resolution.

To test the proposed reduction and clusterization
algorithm, three 3D movies are considered with differ-
ent dynamic characteristics:Alice inWonderland, amix
of animations and real characters (Mov1);Monsters vs
Aliens, a computer-graphics animation (Mov2); IMAX
Space Station, a documentary (Mov3). All videos have
left and right views, each composed by 51200 3D
frames (pictures), and are encoded with three differ-
ent values (24, 28 and 34) of QP (each value is used for
all I-, P-, and B-frames) and two different types of GoP,
called B1 and B7 (one or seven B-frames between suc-
cessive I- and P-frames). Tests aremade for the formats
FS and SBS. All data points in the sequences are posi-
tive, then the normalization follows the second case in
(12).

Finally, to further analyze the statistical properties
of the 3D video sequences, the initial data sets are
integrated and differentiated, so that two more ran-
dom sequences are obtained from the original one but

with completely different statistical properties. Then,
the reduced set of parameters is computed both for the
original video data (O) and for the sequences that are
obtained from integration (I) and differentiation (D).
Tables 1 and 2 summarize the results for FS (GoP =
32) and SBS (GoP = 16) videos, respectively.

As an illustration example, Mov1 is considered
in SBS format with GoP = B7 and QP = 34 (see
column “Mov1 O” of Table 2). Similar results are
obtained in other cases. An initial monotone curve of
the normalized fractional moments in (4) is obtained
by linear combination of exponential functions with
λ1 = −2.4526, λ2 = −0.2546. An exponential fit is
obtained, and the reduced parameters provide the fin-
gerprint. The exponentially decaying curve in Fig. 1
shows the normalized function of themomentsΔN (x).

Then, the separation procedure improves the expo-
nents λ1 = −2.4526, λ2 = −0.2546 fitting the ini-
tial function. The function is preliminarily multiplied
by eαsepx , with αsep > 0, in order to increase artifi-
cially the contribution of small exponents (see Fig. 1).
To this aim, αsep is set by the condition that the lim-
iting heights of the separated curve should coincide
one with another. Then, the separated curve is fitted by
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Table 2 Set of the reduced parameters from each 3-D movie data set in SBS format

Reduced Mov1 Mov1 Mov1 Mov2 Mov2 Mov2 Mov3 Mov3 Mov3
Param. O I D O I D O I D

B1, QP = 24 λ1 0.2251 0.0321 0.3195 0.1268 0.0275 0.2481 0.2925 0.0366 0.3553

λ2 2.3050 0.3253 0.6946 2.2048 0.1238 0.6942 2.2101 0.1472 0.7040

λ3 4.9748 0.3858 1.8736 5.3091 0.2556 2.0350 4.8429 0.4074 1.8886

λ4 – 0.9647 – – 1.0830 – – 1.6091 –

w1 0.0045 0.1119 0.0294 0.0054 0.0642 0.0307 0.0052 0.0310 0.0417

w2 0.6354 1.3266 0.9589 0.6076 0.1020 0.9489 0.6092 0.0548 0.9465

w3 0.3629 1.2826 0.0119 0.3904 0.3821 0.0207 0.3874 0.3635 0.0120

w4 – 0.8322 – – 0.4499 – – 0.5490 –

αsep 0.8275 0.0748 0.6190 0.6960 0.0802 0.5700 0.8860 0.1032 0.6190

er% 2.3362 3.3505 0.0463 3.5130 1.3471 0.1012 1.7592 1.8162 0.0458

B1, QP = 28 λ1 0.2184 0.0288 0.3116 0.1363 0.0247 0.2282 0.2626 0.0346 0.3153

λ2 2.4210 0.3019 0.6911 2.3598 0.1333 0.6907 2.2573 0.1518 0.6976

λ3 5.2454 0.3871 1.8707 5.5871 0.2655 2.0433 5.0199 0.4214 1.8992

λ4 – 1.1063 – – 1.0525 – – 1.5369 –

w1 0.0040 0.0762 0.0250 0.0054 0.0536 0.0247 0.0050 0.0305 0.0323

w2 0.6180 0.7450 0.9644 0.5811 0.1064 0.9562 0.6195 0.0544 0.9545

w3 0.3807 0.6062 0.0108 0.4167 0.3941 0.0194 0.3776 0.3732 0.0135

w4 – 0.7737 – – 0.4442 – – 0.5407 –

αsep 0.8385 0.0793 0.6190 0.7055 0.0804 0.5700 0.8575 0.1024 0.6120

er% 2.4898 3.9972 0.0421 3.7521 1.3032 0.0950 1.9797 1.4198 0.0540

B1, QP = 34 λ1 0.2570 0.0230 0.2984 0.1729 0.0185 0.2337 0.3096 0.0333 0.3263

λ2 2.4497 0.4146 0.6929 2.4391 0.1673 0.6899 2.3374 0.1484 0.7000

λ3 5.3139 0.4183 1.8913 5.7523 0.3094 2.0790 5.1224 0.4250 1.9045

λ4 – 0.9538 – – 1.0169 – – 1.4892 –

w1 0.0040 0.0731 0.0240 0.0065 0.0370 0.0253 0.0053 0.0289 0.0321

w2 0.5865 0.1186 0.9645 0.5368 0.1169 0.9578 0.6195 0.0532 0.9561

w3 0.4118 0.1211 0.0117 0.4598 0.4142 0.0172 0.3769 0.3657 0.0119

w4 – 1.1616 – – 0.4297 – – 0.5512 –

αsep 0.8860 0.0741 0.6180 0.7245 0.0825 0.5700 0.9050 0.1014 0.6180

er% 2.2297 5.3285 0.0460 3.7331 1.1336 0.0850 1.7445 1.4471 0.0470

B7, QP = 24 λ1 0.2365 0.0296 0.3010 0.1330 0.0263 0.2393 0.3057 0.0364 0.3198

λ2 2.3517 0.2740 0.7296 2.2887 0.1238 0.7449 2.2527 0.1356 0.7282

λ3 4.9444 0.3591 1.8267 5.3136 0.2568 1.9977 4.7955 0.4036 1.8411

λ4 – 0.9994 – – 1.0622 – – 1.6005 –

w1 0.0047 0.1038 0.0185 0.0055 0.0576 0.0215 0.0053 0.0278 0.0244

w2 0.6211 0.6650 0.9708 0.5868 0.0986 0.9584 0.5880 0.0477 0.9643

w3 0.3770 0.5255 0.0108 0.4109 0.4039 0.0204 0.4084 0.3897 0.0114

w4 – 0.7450 – – 0.4386 – – 0.5335 –

αsep 0.8385 0.0741 0.6480 0.6960 0.0804 0.6000 0.9050 0.1045 0.6420

er% 2.3255 3.2264 0.0381 3.6374 1.3309 0.0918 1.7196 1.7840 0.0407

B7, QP = 28 λ1 0.2270 0.0248 0.2992 0.1412 0.0225 0.2178 0.2633 0.0344 0.2964
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Table 2 continued

Reduced Mov1 Mov1 Mov1 Mov2 Mov2 Mov2 Mov3 Mov3 Mov3
Param. O I D O I D O I D

λ2 2.4533 0.3264 0.7171 2.4224 0.1281 0.7194 2.2889 0.1458 0.7052

λ3 5.2161 0.3825 1.8181 5.5949 0.2694 2.0066 4.9994 0.4209 1.8393

λ4 – 1.0113 – – 1.0421 – – 1.5302 –

w1 0.0041 0.0772 0.0175 0.0056 0.0470 0.0200 0.0049 0.0280 0.0228

w2 0.6029 1.4660 0.9731 0.5572 0.0907 0.9615 0.6024 0.0497 0.9665

w3 0.3958 1.4239 0.0095 0.4404 0.4331 0.0188 0.3947 0.3952 0.0108

w4 – 0.8676 – – 0.4281 – – 0.5262 –

αsep 0.8480 0.0751 0.6420 0.7055 0.0814 0.5820 0.8670 0.1035 0.6240

er% 2.5092 4.2570 0.0342 3.9266 1.3110 0.0905 2.0068 1.3927 0.0417

B7, QP = 34 λ1 0.2554 0.0257 0.2912 0.1754 0.0182 0.2271 0.3006 0.0329 0.3164

λ2 2.4576 0.3462 0.7359 2.4713 0.1707 0.7208 2.3505 0.1373 0.7331

λ3 5.3436 0.4152 1.8429 5.7844 0.3178 2.0445 5.1572 0.4234 1.8452

λ4 – 1.0627 – – 0.9943 – – 1.4873 –

w1 0.0039 0.0721 0.0171 0.0066 0.0366 0.0215 0.0051 0.0261 0.0222

w2 0.5638 1.2771 0.9715 0.5158 0.1146 0.9605 0.6053 0.0456 0.9665

w3 0.4346 1.2564 0.0116 0.4807 0.4215 0.0182 0.3916 0.3966 0.0114

w4 – 0.8940 – – 0.4249 – – 0.5312 –

αsep 0.8955 0.0772 0.6480 0.7245 0.0825 0.5880 0.9050 0.1035 0.6480

er% 2.3017 4.8101 0.0410 3.9367 1.1382 0.0846 1.8634 1.4504 0.0399
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Fig. 1 Fitting of the function ΔN (x): initial curve (λ1 =
−2.4526, λ2 = −0.2546) and exponential separated curve
(λsep1 = −1.5546, λsep2 = 0.6434)

linear combination of two exponential functions with
λsep1 = −1.5546, λsep2 = 0.6434.

However, this fit is not sufficient. The requirements
on the weighting constants ws and the iteration for-
mula (7) show that only three exponents are enough.
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Fig. 2 The final fit of the initial function ΔN (x) with 8 finger-
print significant parameters

A higher number of exponents is avoided because it
leads to negative values of weighting factors. The final
fit of the initial function ΔN (x) with three exponents
is shown in Fig. 2. Three exponents allow to reduce
the relative fitting error with respect to Fig. 1, which
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Fig. 3 Mean values and confidence intervals of the parameters for the original data of the three considered videos, with SBS format
(left) and FS format (right)

showed the fit of the initial function and of the separated
function by two exponential functions only.

For the final comparison, eight reduced parameters
are obtained, including the modulus of the exponents
(|λs |, s = 1, 2, 3), their weights (ws, s = 1, 2, 3), the
value of the separation exponent (αsep), and the value of
the percentage relative error (er%). Note that the values
specified in Tables 1 and 2 are slightly different because
the final comparison is based on 50moments instead of
10, as used in Figs. 1 and 2 for clarity of illustration. All
the other files, also for the other movies, are processed
in the same way. The resulting reduced parameters are
collected in Tables 1 and 2. The clusterization proce-
dure applied to these reduced parameters shows that
they are statistically close to each other. The minimal
value of the correlation matrix lies between 0.95 and
0.97.

The previous results lead to twovery interesting con-
clusions. The first is that, since these parameters ver-
ify the condition of statistical stability, it is possible to
reduce the statistical properties of each of the different
considered 3D video movies to a subset of parame-
ters, whichever is the 3D video format (FS or SBS)
and whichever is the encoding technique as defined
by the specific grouping of frames, according to the
GoP parameter, and by the quantization parameter QP.
The identified reduced parameters constitute the stream
fingerprint that can be fruitfully adopted to mark the
stream sequence and possibly regulate the streaming
process.Moreover, this kind of result occurs evenwhen
the reduction method is applied to completely new and
statistically different sequences that are determined by
integration and differentiation that completely change
the original sequence. Then, this remarkable fact is

observed for the first time here and can be exploited
in future investigations.

Finally, Figs. 3, 4, 5 show the average values and
the confidence intervals for the reduced parameters, for
each analyzed movie, format, and data type (original,
differentiated, and integrated data). All the values of
the reduced set of parameters have been averaged on
both the quantization parameter (24, 28, and 34) and
the GoP structure (G16B1 and G16B7 for SBS, and
G32B1 and G32B7 for FS). More in details, the results
provided in Figs. 3 and 4 are very interesting. For each
considered movie, the original and differentiated data
show very small variations of all the parameters around
themean. Thismeans that the reduced set of parameters
can be fruitfully exploited to accurately characterize an
original, or differentiated, 3D flow regardless its com-
pression degree (the QP) and GoP structure, providing
in this way an effective “fingerprint” of the 3D flow.

Regarding the analysis of integral data provided in
Fig. 5, the streams characterization is a bit less accurate.
This is testified by two different aspects: an increased
number of parameters that constitute the set (ten in total,
against the eight of the two previous cases), and a larger
variation around the mean of some parameters. For this
reason, the integral data are less suitable for providing a
3D video fingerprint independent of the encoding prop-
erties. Nevertheless, the previously illustrated general
procedure keeps its validity.

Finally, it is worthy to note that the proposedmethod
can be developed and used to evaluate the statisti-
cal effect the communication network has onto the
reduced and stable set of parameters that character-
ize the streamed video sequence of frames. Since the
video fingerprint in general does not depend on the
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Fig. 4 Mean values and confidence intervals of the parameters for the differentiated data of the three considered videos, with SBS
format (left) and FS format (right)

Fig. 5 Mean values and confidence intervals of the parameters for the integrated data of the three considered videos, with SBS format
(left) and FS format (right)

encoding and compression properties, the existence
and influence of external factors from the network can
be detected and expressed quantitatively. This could be
of great help for updating the streaming process and
changing the transmission bitrate in order to obtain a
better quality of video reproduction on the client’s ter-
minal.

4 Concluding remarks

This paper proposed and described a novel approach
to analyze and characterize a random sequence that
is associated with the streaming of 3D stereoscopic
videos. The statistics approach is basedon the reduction
of the available data points to a reduced set of parame-
ters, so that each sequence can be characterized in the
space of few fractional moments. Typically, 6–8 para-
meters are sufficient to characterize each video random
sequence and consequently to define a sort of finger-
print that is specific to the considered video. The pow-

erful effectiveness of the approach is demonstrated by
considering also a perturbation of the original sequence
that is obtained by differentiating or integrating the
initial sequence. It is remarkable that the derivative
and integral sequences have totally different statisti-
cal properties, but the proposed approach is capable
to identify the stream fingerprint. Then, it is stressed
that the method is rather general and can be applied
to sequences with or without trend. It can differentiate
the statistical peculiarities for integrated (with trend)
and differentiated (when possible trend is removed)
sequences, without any knowledge of the probability
distribution function (PDF), which is not known in
many cases. Then, the PDF can be replaced by the para-
meters in the space of the fractional moments. As far
as the authors’ are aware, this is a novel result obtained
for the first time in the literature.

Moreover, the efficiency of the approach is shown
by applying the methodology to videos that differ
by the format or the encoding parameters. Finally, it
is remarked that the approach may detect the influ-
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ence of external factors that affect the fingerprint of
the streamed video sequences (communication delays,
errors, specific actions, etc.) and that can not be quan-
titatively measured by other methods. Therefore, the
statistics of fractional moments and FERMA can be an
opportunity to find new effective solutions in commu-
nication and control problems in which the complexity
of the networks, the multiple users, and the shortages
of bandwidth resources represent a major issue.

Finally, the novel FERMAapproach enables to com-
pare different data extracted from fractional models
having different dynamics. If the fractional dynamics
of one set of data is unknown, the comparison by the
reduced parameters computed in the frame of FERMA
helps to evaluate the statistical proximity of two com-
pared models and judge upon the fractional nature of
the unknown model. This “language” is very common
and helps to classify different fractional models in one
unified scheme.
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