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Abstract Friction forces can be advantageously used
as a source of passive damping in various mechanical
systems. This paper deals with an experimental mod-
elling and numerical simulation of blades interaction
by means of a friction element placed in the shroud
between the blade heads. The radial force, which rep-
resents the centrifugal force acting on the friction ele-
ment, determines the values of contact forces between
the element and blades. The experimental set-up for a
couple of non-rotating blades is described in the paper,
and the measured dynamic response of two blades is
documented. The same situation is modelled by means
of a basic and a more complex dynamical model of two
blades with a friction element. The effect of friction
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is studied for the case of harmonic excitation by suit-
able frequency and subsequent free vibration attenua-
tion. Both mathematical models are based on the finite
element method combined with lumped rigid bodies.
The interaction of the friction element and blades is
described by normal contact and tangential friction
forces derived for particular geometrical parameters of
the studied mechanical system. The performed compar-
ison of experimental and numerical results shows the
satisfactory agreement and the modelling methodology
could be used for possible parameter optimization.
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Friction · Experimental measurement · Finite element
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1 Introduction

Turbine blades are subjected to higher and higher sta-
tic and dynamic straining with development of higher
efficiency and power range of steam and gas turbines.
Although the turbines and their bladings can be care-
fully designed, it is not possible to omit resonant vibra-
tion leading to a high-cycle fatigue risk. The reso-
nance phenomena arise from two different mechanisms
depending on whether it is forced response vibration
or self-excited vibration. The former case leads to so-
called synchronous vibration that is caused by unbal-
ances or by circumferential periodical pressure field
known as nozzle excitation. Then, blade vibration fre-
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1712 L. Pešek et al.

quencies are integer multiple of shaft rotation frequen-
cies that coincide with some eigenfrequencies of a
bladed disk. These critical speeds can be predicted in
the design. In the latter case, the vibration is caused
by aeroelastic coupling between blades and a flow
field. According to distortions of flow and its volu-
metric rate around blade airfoil, the different types of
self-excited vibration occur non-synchronously with
respect to the rotation frequency. These states in full
operational range are more difficult to predict. The
bladed wheel with sufficient dissipation of mechani-
cal energy is the protection against this case. Since the
material damping of the blades (mostly of metal) is
very low, it is necessary to increase the damping by
additional construction damping. Therefore, dry fric-
tion damping as blade to blade or blade to ground
with couplings in roots, shrouds or platforms is intro-
duced into the turbine design (e.g. [1]). Besides very
positive effect of higher damping on the self-excited
vibration, it decreases forced response vibration level,
too.

The influence of the friction damping [2] on the
dynamic behaviour of the blading is a complex prob-
lem of continuum mechanics as to the dynamic behav-
iour of spatial distorted blades coupled by disk [3] and
time-variant surface to surface dynamical contact with
friction. It leads to multipoint non-Hertzian contacts
influenced by production accuracy and roughness of
the contact surfaces, thermo-mechanical coupling, etc
[4]. There are many approaches that allow to solve this
problem from analytical models with few degrees of
freedom to numerical spatial 3D models [5–7].

Plenty of publications deal with the friction phe-
nomena in blade dynamics and many design variants
are used. A detailed investigation of influences of fric-
tion on dynamical response of a simplified mechani-
cal system represented by a beam can be found in [8].
One of the design possibilities is the usage of under-
platform (wedge) dampers [9]. A method for the calcu-
lation of static balance supposing an in-plane motion
of the wedge dampers is developed in [10]. An analyt-
ical approach is described in [11], and a comparison of
numerical simulation results with the results obtained
by linearization is shown in [12]. The equivalent lin-
earization method for the evaluation of friction effects
in blade dynamics represented by a very simple discrete
mechanical system is discussed in [13]. Some compar-
ison of experimental and theoretical analysis is shown
in [14], and pure experimental results are described in

[15]. The possibilities of friction damping at turbine
root joints are studied and numerically solved in [16].

Chosen recent developments of the methodology for
spatial interaction of blades are shown in [17], where
the multi-harmonic balance method and numerical inte-
gration approach are employed. A fully finite element
solution is presented in [18]. Interaction of blades and
their disk is studied in [19]. The general Coulomb law,
where friction coefficient is a function of a relative
velocity and quality of surfaces, is mostly used for the
description of friction forces in contacts. It causes a
nonlinear behaviour especially in non-stationary load-
ing and macroslip motion in the contact. The friction
model can be simplified for stationary harmonic vibra-
tion by an equivalent linearization of friction forces (the
harmonic balance method) [20].

For the analysis of friction processes and their influ-
ence on blades’ vibrations presented in this paper, the
numerical modelling and experiments of the blade cou-
ple with the friction element made of steel or compos-
ite material with ARAMID fibres in non-rotating state
were performed. The main attention herein is paid to
the results with ARAMID material. This material has
very good friction properties, wear and heat resistances
that could sustain the heavy operational conditions of
the steam turbine blades.

The paper is structured as follows. The experimental
set-up and the results of measurements are described
in the second chapter. As to the experiment, the exci-
tation of one blade with both sweep sine and resonant
by electromagnet was accomplished. Time character-
istics of the excitation force, blade and friction ele-
ment responses were measured for different normal
pressures in the contact areas. The basic numerical
model and the complex numerical model are described
in the third and the fourth chapter, respectively. The fifth
chapter is focused on the presentation of the numerical
results, discussion and comparison with experimental
results.

2 Experimental investigation of two blades
vibration with ARAMID friction element

The experimental set-up is shown in Fig. 1. The blades
(blade A, blade B—a prismatic part of blades has width
0.02 m and thickness 0.01 m, length 0.2 m, total length
0.25 m) were clamped into the steel block by bolts.
The friction element (FE) (mass of 0.0084 kg) placed
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Experimental and numerical investigation 1713

Fig. 1 Picture of the experimental set-up (red spots—target laser
points). (Color figure online)

in the slot between the blade ends (height 0.01 m,
mass 0.078 kg) was radially extruded by the thread pre-
stressed by the static weight over the pulley (Fig. 1).

The radial force was set in range 0.5 ÷ 2 N. The exci-
tation was performed by electromagnet (EM) acting
to the blade A. The electromagnetic force was consid-
ered up to 1.8 N. The experimental set-up is shown in
Fig. 2.

The displacements u A resp. u B of the each blade
were picked up by the Schenk IN-081 proximity probes
and at the same time the velocities vA of the blade
A and vET of the friction element by the POLYTEC
laser vibrometers. The electromagnet was supplied by
LDS power amplifier and controlled by signal yE of the
HP 33120A generator. Force fE M of the electromag-
net was measured by the B&K8200 force transducer.
Time characteristics of the force, the blade and the fric-
tion element responses and the generator signal were
registered in the YOKOGAWA DL750 Scope Recorder
for different force levels and static pre-stresses of the
friction element in the slot.

A short block of the harmonic excitation with res-
onant first flexural frequency 130.1 Hz generated by
the electromagnet was employed in order to per-
form the friction coupling analysis. The time length
of excitation was chosen to achieve a stationary res-
onant vibration. Then, the excitation was abruptly
switched off. The damping effect was evaluated from
vibration amplitude decay of blades after switching
off the excitation. Damping ratios were identified
from amplitude logarithmic decrement by Hilbert’s
transformation.

The typical results of the two blades vibration with
the friction element are shown in the Figs. 3, 4 and 5

Fig. 2 Block scheme of the
experimental set-up
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Fig. 3 Graphs of the case I:
(top) displacements of the
blades B and A, relative
displacement of the friction
element and electromagnet
force; (bottom)
displacement of the blade A
with the amplitude envelope
and damping ratio during
the attenuation
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for three combinations (I–III) of the radial force Fr and
excitation amplitude Fa values:

case I—Fr = 0.5 N, Fa = 1.6 N,
case II—Fr = 1 N, Fa = 0.8 N,

case III—Fr = 1 N, Fa = 1.8 N.

The top graphs of Figs. 3, 4 and 5 depict the measured
signals, i.e. displacements of blades A, B, relative dis-
placement of the friction element with respect to the
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Fig. 4 Graphs of the case
II: (top) displacements of
the blades B and A, relative
displacement of the friction
element and electromagnet
force; (bottom)
displacement of the blade A
with the amplitude envelope
and damping ratio during
the attenuation
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Fig. 5 Graphs of the case
III: (top) displacements of
the blades B and A, relative
displacement of the friction
element and electromagnet
force; (bottom)
displacement of the blade A
with the amplitude envelope
and damping ratio during
the attenuation
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blade A and electromagnet force fem . The relative dis-
placement was evaluated from the difference of veloci-
ties vA and vET after their numerical integrations. The
bottom graphs in Figs. 3, 4 and 5 depict the displace-
ment of the Blade A with evaluated damping ratios at
the attenuation after switching off of the electromagnet
current supply.

Nonlinear effect of dry friction is mostly pro-
nounced for the case I (Fig. 3). The relative displace-
ment of the friction element shows macroslip (the first
stage) and microslip (the second stage) movements
of the friction element during the attenuation. Due to
macroslips, the vibration amplitudes of the blades fall
down with high damping ratio 1.12 % in the first stage.
After the first stage, the macroslip movement trans-
fers into the microslip movement of the friction ele-
ment between the blades and the damping ratio drops
to 0.16 %.

The weak effect of microslips on damping behaviour
of the blade couple can be observed in case II (Fig. 4).
The relative displacement of the friction element is in
the range of approximately ±10−5 m, and the damping
rate is 0.2 %. The attenuation is almost exponential in
the whole time.

The usage of the same radial force and a higher
excitation force (case III, Fig. 5) causes higher excited
amplitudes of blade vibration, higher relative displace-
ment of the friction element and slightly higher damp-
ing ratio (0.3 %) of the attenuation.

Due to higher damping ratio in case I (Fig. 3), the
vibration amplitudes of blades A, B are approximately
half than their amplitudes in case II (Fig. 4), where the
relative motion of the friction element is smaller due to
higher radial force and higher adhesion forces between
the friction element and the blades.

3 Simplified mathematical model of two blades
coupling by friction element

The computational model of the couple of steel blades,
which are clamped into the non-rotating disk, is shown
in Fig. 6. The ends of the blades are fixed in end nodal
points to the blade heads that are modelled as rigid
bodies. The rigid friction element is pulled using the
constant tension force FC into a wedge gap between
the blade heads. The second blade ( j = 2) is excited
in the head’s centre of gravity parallel with the contact

Fig. 6 Scheme of the
couple of blades with the
friction element—the basic
model (the numbers denote
finite element nodes)
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surface (direction of y axis) by harmonic time-varying
force F0 sinωt .

The blades have been discretized using the finite ele-
ment method [21] by five identical beam elements with
three degrees of freedom in every node i , transversal vi ,
flexural ψi and torsional ϕi displacements from static
state equilibrium. Mass Me and stiffness Ke matrices
of the beam element e between nodal points i and i +1
of length l have been derived in the configuration space

qe = [ vi ψi vi+1 ψi+1 ϕi ϕi+1 ]T (1)

using identities

∂E (e)k

∂q̇e
= Meq̇e,

∂E (e)p

∂qe
= Keqe, (2)

where E (e)k is kinetic and E (e)p potential (strain) energy
of the beam element. The lateral deformations of the
centreline beam element are approximated in the form

v(x, t) = v(x)S−1
1 q(e)1 (t) (3)

and the torsional deformation in the form

ϕ(x, t) = ϕ(x)S−1
2 q(e)2 (t), (4)

where

v(x) =
[

1 x x2 x3
]
, ϕ(x) = [ 1 x ] , (5)

S1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
1 l l2 l3

0 1 2l 3l2

⎤
⎥⎥⎦ , S2 =

[
1 0
1 l

]
, (6)

and

q(e)1 (t) = [ vi ψi vi+1 ψi+1 ]T ,q(e)2 (t) = [ϕi ϕi+1 ]T .

(7)

The beam element mass and stiffness matrices are of
the form

M(e) = �

[
S−T

1 (AIv + JzIv′)S−1
1 0

0 JpS−T
2 IϕS−1

2

]
,

(8)

K(e) = �

[
E JzS−T

1 Iv′′S−1
1 0

0 G JkS−T
2 Iϕ′S−1

2

]
, (9)

where auxiliary integral matrices are

Iv =
l∫

0

vT (x)v(x) dx, Iv′ =
l∫

0

v′T (x)v′(x) dx,

Iv′′ =
l∫

0

v′′T (x)v′′(x) dx,

Iϕ =
l∫

0

ϕT (x)ϕ(x) dx, Iϕ′ =
l∫

0

ϕ′T (x)ϕ′(x) dx .

(10)

Every beam element is determined by parameters ϕ
(mass density), A (blade cross-section area), Jz (sec-
ond moment of the blade cross-section area about the
z-axis ), Jp and Jk (polar and torsion resistance, second
moment of the blade cross-section area), E (Young’s
modulus) and G (shear modulus) for particular blade
material.

The configuration space (1) defined by vector qe was
created in order to efficiently derive the finite element
matrices. The new configuration space

q̃e = [ vi ψi ϕi vi+1 ψi+1 ϕi+1 ]T , (11)

which is more suitable than (1) for the evaluation of
blade dynamics results and for the manipulation with
the model, will be used in further derivations. The
simple coordinate transformation (transmutation) by
means of matrix P can be written in the form

qe = Pq̃e. (12)

Transformed mass and stiffness matrices of the beam
element are defined as

M̃e = PT MeP, K̃e = PT KeP. (13)

Using standard finite element procedures and after
completion with blade mass matrices, we get the mass
and stiffness matrices of blades

M j =
5∑

e=1

diag
(
0, M̃e, 0

) + MH ,

K j =
5∑

e=1

diag
(
0, K̃e, 0

)
, j = 1, 2. (14)
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Fig. 7 Friction element
pulled into a wedge gap
between the blade
shrouds—the basic model

in configuration space

q j = [ . . . vi ψi ϕi . . . ]T , i = 1, 2, . . . , 5;
j = 1, 2. (15)

The blade head is modelled in (14) by mass matrix

MH = diag
(
0, 0, . . . , 0, m H , IzH , IxH

) ∈ R
15,15

(16)

determined by mass m H and inertia mass moments IxH ,
IzH about xH and zH axes crossing the centre of head
gravity H .

The friction element of mass m F (see Fig. 7) is con-
sidered to be rigid body suspended on a thin elastic fibre
with vertical stiffness kF . The pulling force FC repre-
sents centrifugal force. According to the blade couple
and the friction element geometry (see Figs. 6, 7) the
contact normal forces NA and NB , acting in contact
areas between the friction element and blade shrouds,
are calculated based on the static equilibrium condi-
tions of the friction element in the form

NA = FC
cos(β + δ)

sin β
, NB = FC

cos δ

sin β
, (17)

where δ is the angle between the radius vector of the
friction element centre of gravity and the radial contact
area of the first blade shroud.

The friction forces on contact areas, assuming verti-
cal displacement vF of the friction element, are approx-
imated by continuous function depending on the slip
velocity cA or cB

cA = v̇
(1)
6 + rAϕ̇

(1)
6 − v̇F , cB = v̇

(2)
6 − rB ϕ̇

(2)
6 − v̇F

(18)

of the central contact points A or B (Fig. 6). The char-
acteristic of friction forces Ft is displayed in Fig. 8,
where N is the normal force, fs is the static (Coulomb)
coefficient of friction, fd is the dynamic coefficient
of friction and d is the coefficient of friction decrease
between maximal and minimal values. The charac-
teristic respects microslips at very low slip velocities
(|c| ≤ ck). The resulting friction forces in contact areas
are defined as

Ft X = NX [ fd + ( fs − fd)e
−d(|cX |−ck)]sign(cX ),

for |cX | > ck,

Ft X = NX
cX

ck
,

for |cX | ≤ ck, X = A, B. (19)

The critical slip velocity ck defines the length of the
interval in which the Coulomb friction discontinuity
is approximated via a steep straight line (micro-slip
phase).

The mathematical model of the whole system of a
couple of blades with the friction element, assuming
only dominant vertical displacement vF of the friction
element in a wedge gap, is of the form

Fig. 8 Friction
characteristics (c ≡ cA
or c ≡ cB )
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⎡
⎢⎣

M1 0 0

0 m F 0

0 0 M2

⎤
⎥⎦

⎡
⎣

q̈1

v̈F

q̈2

⎤
⎦ +

⎡
⎢⎣

B1 0 0

0 0 0

0 0 B2

⎤
⎥⎦

⎡
⎣

q̇1

v̇F

q̇2

⎤
⎦

+
⎡
⎢⎣

K1 0 0

0 kF 0

0 0 K2

⎤
⎥⎦

⎡
⎣

q1

vF

q2

⎤
⎦

=
⎡
⎣

0
0

f2 sin(ωt)

⎤
⎦ +

⎡
⎢⎣

−fA(cA)

Ft A(cA)+ Ft B(cB)

−fB(cB)

⎤
⎥⎦ , (20)

where B j , j = 1, 2 are matrices of the blade propor-
tional damping. The harmonic excitation of the second
blade is described by vector f2 sin(ωt) with nonzero
13th coordinate F0 sin(ωt). Vectors f X , X = A, B,
expressing friction effects in the contact points A, B of
the blade heads, are of the form

fA(cA) = Ft A[ 0 0 . . . 1 0 rA ]T ∈ R
(15),

fA(cB) = Ft B[ 0 0 . . . 1 0 − rB ]T ∈ R
(15), (21)

where constants rA, rB are perpendicular distances
between the contact points and the axis of the blades
(see Fig. 6).

4 Complex mathematical model

The usage of the simplified mathematical model
described in the previous chapter can be advantageous
in case of basic problems concerning the structural
complexity and the complexity of excitation. The more
complex model (Fig. 9) utilizable for more structurally
complex cases will be shown in this chapter. Moreover,
the complex blade couple model will be derived consid-
ering all effects of a disk rotation for sake of later usage
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Fig. 9 Scheme of the couple of blades with the friction element and its detail—the complex model
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in the general problems of bladed disk dynamics. The
review of various modelling methodologies for rotating
blade dynamics can be found, e.g. in [22] or [23].

As a simplification, the contacts of the friction ele-
ment and the blade shrouds (see Fig. 9) are concen-
trated to the rectangular effective area with geometric
centre in point B (in plane b defined by axes ξBηB)
and to the rectangular effective area with geometric
centre in point A (in plane a defined by axes ξAηA),
respectively. The blades are modelled as 1D continuum
discretized by beam finite elements with uniformly dis-
tributed nodes at axes of the blades. The first nodes of
the blades are fixed to the rigid frame rotating with
angular velocity ω. End nodes C1 and C2 of the blades
are fixed to the blade shrouds modelled as rigid bod-
ies because the shrouds are obviously stiffer then the
blades. The spatial motion of all blade nodes as well
as the friction element is characterized by six degrees
of freedom. As the blades rotate, the centrifugal force
m ErDω

2 pushes the friction element towards contact
surfaces a and b of the adjacent blade shroud. In case
of numerical simulation of the experimental measure-
ment, the centrifugal force will be substituted by the
proper constant force.

The friction element acts on the blades by contact
normal forces NX and contact torques MξX , MηX , X =
A, B and by friction forces

−→
T X (TXξ , TXη) and friction

torques MζX , X = A, B in contact surfaces.
The real excitation in turbines can be defined as har-

monic forces with the nozzle passing frequency (i.e.
the first engine order times number of nozzles) acting
in tangential (Ft ) and axial (Fax parallel to axis of rota-
tion) direction. Excitation forces can be uniformly con-
centrated in nodes along the blades. The choice of exci-
tation type is general, and it does not influence the mod-
elling approach. However, the excitation forces in this
paper will be limited to the single force in y-direction
in order to simulate the same conditions as in the exper-
imental set-up.

Equations of motion of the blades with the shroud
and the friction element can be expressed in rotat-
ing local coordinate systems x j , y j , z j , j = 1, 2 (the
blades) and xD, yD, zD (the friction element), where
axes x j are the axes of the blades, and axis xD cor-
responds to the radial direction from the disk centre
to the friction element. Axes y j , yD are parallel to the
fixed axis of disk rotation y f (see Fig. 9). The vectors
of nodal blade generalized coordinates

q j = [. . . ui , vi , wi , ϕi , ϑi , ψi , . . .]T
j , j = 1, 2,

(22)

are expressed by translational displacements and rota-
tional displacements in nodes i = 1, . . . , N of the
blade j . The equations of motion of two blades with
shroud and without the friction element are of the form
(see e.g. [24])

MB q̈ j + (ωGB + BB)q̇ j

+ (Ks,B − ω2Kd,B + ω2Kω,B)q j = fω,B + fB j (t),

(23)

where symmetric matrices of order 6N MB , BB , Ks,B ,
Kd,B , Kω,B are mass, material damping, static stiff-
ness, softening under rotation and bending stiffening
under rotation, respectively. The symmetrical matrix
ωGB considers gyroscopic effects. Constant centrifu-
gal forces are expressed by vector fω,B and general
time-dependent forces are expressed by vector fB j (t).

The spatial motion of the rigid friction element is
described in rotating coordinate system xD, yD, zD by
generalized coordinates qE = [u, v, w, ϕ, ϑ,ψ]T , and
the equations of motion of still isolated rigid friction
element can be written in matrix form analogous to the
blade model

ME q̈E + ωGE q̇E − ω2Kd,E qE = fω,E . (24)

After placing the friction element in between the blade
shroud, acting of contact elastic and friction forces is
concentrated into contact points A and B.

Using configuration space of generalized coordi-
nates defined by vector

q = [ qT
1 , qT

E , qT
2 ]T , (25)

equation of motion of the whole system is written in
the form

Mq̈ + (ωG + B + BC )q̇

+ (Ks − ω2Kd + ω2Kω + KC )q = h(q̇,q)+ f(t).

(26)

In accordance with the equations of motion (23) and
(24), the matrices stated below have block-diagonal
structure

M = diag (MB, ME , MB) ,

G = diag (GB, GE , GB) ,
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B = diag (BB, 0, BB) ,

Ks = diag
(
Ks,B, 0, Ks,B

)
,

Kd = diag
(
Kd,B, Kd,E , Kd,B

)
,

Kω = diag
(
Kω,B, 0, Kω,B

)
. (27)

The influence of contact viscous-elastic and friction
forces in (26) is represented by stiffness coupling
matrix KC , damping matrix BC comprising the influ-
ence of contact damping in contact surfaces and by vec-
tor h(q̇,q), which expresses nonlinear friction forces in
friction couplings between the shroud of blade 1 and 2
and the friction element, respectively. Vector h(q̇,q) of
nonlinear friction forces and torques can be expressed
as

h(q̇,q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

f1

mF
1 + m1

fa + fb

mF
a + mF

b + mb + ma

0
...

0

f2

mF
2 + m2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

where nonzero force and torque vectors are on the posi-
tions corresponding to the generalized coordinates of
the blade shrouds and to the generalized coordinates of
the friction element. For example, vector

f1 = [−TBξ cos δB, −TBη, TBξ sin δB]T (29)

and vector mF
1 express the effects of friction forces

between the friction element and the shrouds on motion
of the shroud of the first blade (see Fig. 9). Vector m1

expresses the effect of friction torque in case of relative
rotation of two surfaces in contact. It is analogous for
other vectors.

The contact stiffness matrix KC can be linearized
for constant normal forces NX,0 (X = A, B). These
forces are calculated from static equilibrium condition
of friction element

NX,0 = Fr
cos δX

sin(δa + δb)
, X = A, B, (30)

where Fr = m ErEω
2 in case of rotation or Fr can be

chosen according to the experimental set-up. Angles
of contact surfaces skewing between blade shroud and
friction element are displayed in Fig. 9. The contact
stiffness matrix KC connecting the blades with the fric-
tion element can be calculated based on the coupling
(deformation) energy

EC = 1

2

∑
X=A,B
i=1,2

dT
X,Ci

KX dX,Ci ,

dX,Ci = TX,Ci qCi − TX,E qE , (31)

where qCi , i = 1, 2 are the vectors of generalized dis-
placements in the last nodes Ci of blades, and qE is
the vector of friction element displacements. Matrices
TX,Ci and TX,E in (31) transform the vectors of dis-
placements of nodes Ci and D into displacements of
contact points A, B on corresponding body in coordi-
nate systems ξX , ηX , ζX . Diagonal local contact stiff-
ness matrix

KX = diag
(
0 0 kζX kξX ξX kηXηX 0

)
, (X = A, B)

(32)

in coordinate system ξX , ηX , ζX (X = A, B) is defined
by contact stiffness kζX in normal direction ζX to con-
tact area and two rotational (flexural) stiffnesses kξX ξX ,
kηXηX about axes ξX and ηX (see Fig. 9).

The contact normal stiffnesses can be linearized for
contact normal forces (30) according to

kξX = NX,0

γX
, γX = cσ p

X , σX = NX,0

Aef,X
, X = A, B,

(33)

where γX designates contact normal deformations, σX

average contact pressure acting on effective are Aef,X .
Contact deformation coefficient c and contact exponent
p were estimated using data published in [25]. The rota-
tional stiffnesses were calculated based on the assump-
tion of identical area contact stiffness kξX /Aef,X in an
arbitrary point of effective contact area.

Contact stiffness matrix KC was derived using iden-
tity

∂EC

∂q
= KC q (34)
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and contact damping matrix BC in (26) was considered
as proportional BC = βKC .

Model (26) can be solved by various mathemati-
cal methods with respect to the character of expected
results. The most direct one is a numerical integration
of nonlinear equations of motion, which will be used in
the next chapter. The resulting variables are obtained
for particular case in the form of time series, while
all types of nonlinearities including complex excitation
can be considered. Nevertheless, other valuable results
can be obtained from an analysis based on more qual-
itative comparisons, which is, e.g. eigenvalue analysis
or steady state harmonic analysis, see, e.g. [26].

5 Discussion and results comparison

The above-mentioned mathematical models of the
blade couple with the friction element were imple-
mented as an in-house software in the MATLAB sys-
tem. The values of model parameters were set in accor-
dance with the experimental set-up. All three cases
(I–III) were numerically simulated by means of both
basic and complex models using numerical integration
of the nonlinear equations of motion (20) and (26).
Material damping of the blades was considered 0.2 %
for all eigenmodes in all simulated cases. The particular
values of the friction model parameters were estimated
on the basis of previous experimental results ( fs = 0.6,
fd = 0.3, d = 2, ck = 10−3 ms−1).

The displacements of the blade A calculated by the
basic model are shown in Figs. 10, 11 and 12. The dis-
placements of the blade A calculated by the complex
model are shown in Figs. 13, 14 and 15. The summary
of evaluated damping ratios for all cases is in Table 1.
The damping ratios for both experimental and numer-
ical results were calculated from the particular parts
of time history by means of an amplitude logarithmic
decrement by Hilbert’s transformation.

The course of the time histories in case I (Figs. 3,
10, 13) compared to the cases II and III is character-
ized by macroslip movements in the first stage of the
vibration attenuation and by microslip movements in
the second stage of the attenuation. It was an expected
result since the amplitude value of the harmonic exci-
tation force was relatively high, and the radial force
value was lower comparing to other cases. Thus, the
adhesion forces in the contact were exceeded, and the
macroslip movements were induced.
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Fig. 10 Displacement of the blade A calculated using the basic
model (case I)
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Fig. 11 Displacement of the blade A calculated using the basic
model (case II)

The computed displacement amplitudes (Figs. 10,
13) are about twice higher compared to the experiment
(Fig. 3). It is caused by the slight different eigenfre-
quencies of the real mechanical system and the numer-
ical model of the system. The first bending eigenfre-
quency was calculated by the numerical model, and
this value was used for the definition of the excitation
frequency. If the same excitation frequency is used for
the loading of the real mechanical system with slightly
different bending eigenfrequency, the response will not
be the same, i.e. the exact resonance is not achieved.
The difference in the computed and measured ampli-
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Fig. 12 Displacement of the blade A calculated using the basic
model (case III)
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Fig. 13 Displacement of the blade A calculated using the com-
plex model (case I)

tudes can be also caused by the fact that the excitation
force has an ideal harmonic character in case of calcu-
lations, but this is not true for the real force generated
by the electromagnet. Therefore, the larger resonance
is obtained during the numerical simulation than during
the experiment.

The course of the time history in case II (Figs. 4,
11, 14) is characterized by microslip movements in
the whole attenuation region. It is caused by the small
amplitude value of the electromagnet excitation force
with respect to the radial extruding force. It should be
noted that the situation is the same as in a real turbine
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Fig. 14 Displacement of the blade A calculated using the com-
plex model (case II)
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Fig. 15 Displacement of the blade A calculated using the com-
plex model (case III)

in case of a low dynamic excitation of blades, which
are locked for higher angular velocities (i.e. higher cen-
trifugal forces acting on the friction element). The pos-
itive effect of the friction element placed in shrouding
should occur in case of higher undesirable excitation
(and successive higher vibration amplitudes of blades).

The accordance of the results obtained for case III
(Figs. 5, 12, 15) is not so good as in the two previ-
ous cases. The measured course of the displacement
time history for the blade A does not show a substan-
tial transition between macroslip and microslip move-
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Table 1 Evaluated damping ratios (%) for the experiment and
both numerical models

Case I Case II Case III

Experiment 1.120/0.160 0.220 0.300

Basic model 1.130/0.196 0.202 0.210

Complex model 1.019/0.224 0.203 0.217

ments. It is rather characterized by certain average
switching between these two types of movements. On
the other hand, the comparable numerical results show
the standard macroslip movements in the first stage of
the vibration attenuation and the microslip movements
in the second stage of the attenuation (the damping
ratios written in Table 1 are identified for the second
stage). The inconsistency of the measured and calcu-
lated results in this limit case could be explained by
insufficient friction model parameters, which are not
suitable for the particular combination of the radial and
transverse excitation forces.

6 Conclusions

The results of the experimental and numerical mod-
els of the dissipative effect of the friction elements
inserted between the blade heads (and thus possibly cre-
ating a continuous shroud) are presented in the paper.
The experimental stand consisting of two blades and
one friction element was used for the obtaining of
measured dynamic responses. Two numerical models
such as the basic one and the complex one describ-
ing plane and spatial motion of the mechanical system,
respectively, based on the finite element method and
force description of bodies interaction were elaborated.
The damping ratios evaluated from the blade vibration
attenuations under different radial forces were chosen
as a quantity to ascertain the dissipative effect of the
proposed friction coupling. A satisfactory agreement
between numerical results and experimental results,
both for the case of macroslips and for the case of
microslips in the contact areas, were reached.

As to the effectiveness of the dry friction damping,
the high damping of blades is apparent after exceed-
ing the adhesion forces and achieving the macroslip
motion in the contact areas. A nonlinear effect in the
vibration attenuation caused by the macroslip motion is
mostly pronounced for this case. This motion transfers
into the microslip motion with much lower damping

after the decreasing of vibration amplitudes. Although
the applied friction characteristic contains a part of the
decreasing dependence of a friction force on relative
velocity that can cause instability and self-excited oscil-
lations at the constant velocity, due to the harmonic
variation of the velocity, no self-excitation appeared in
our investigations.

Mutual friction has positive effects concerning
vibration suppression when the normal forces are under
certain limit for given excitation (radial and axial
forces). The amount of normal forces is determined
by the shape (i.e. geometrical parameters) of the fric-
tion element and the sides of blade heads. One of the
most important results of the work presented in this
paper is that the developed modelling and simulation
methodology can be used together with optimization
tools in order to find the optimal shape of friction for
chosen operation conditions of real bladed disks. The
second significance of the paper is in the experimen-
tal and numerical verification of the friction element
effects on vibration suppression.
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