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Abstract Identification of nonlinear Hammerstein
models has received much attention due to its ability
to describe a wide variety of nonlinear systems. This
paper considers the problem of the parameter estima-
tion of the ARMAX models for the Hammerstein sys-
tems. A novel nonlinear recursive instrumental vari-
ables method, which is simple and easy for practical
applications, is proposed to deal with the problem. In
order to make the instrumental variables uncorrelated
with the colored noise and to obtain better identification
effect, three approaches for choosing the instrumental
variables usually used in the linear RIV method are
introduced. Furthermore, the procedure of the nonlin-
ear RIV method and its property of the mean square
convergence of the nonlinear RIV method are rigor-
ously derived. Finally, an example is carried out as
illustration, where the ARMAX-RLS method is com-
pared as the basis, and the results show that the nonlin-
ear RIV method is superior to ARMAX-RLS method in
terms of identification accuracy and convergence speed
under colored noise, which reveals the effectiveness of
the proposed method.

Keywords Hammerstein ARMAX system · The
nonlinear RIV method · Mean square convergence ·
ARMAX-RLS

L. Ma · X. Liu (B)
State Key Laboratory of Industrial Control Technology,
Department of Control Science and Engineering, Zhejiang
University, Hangzhou 310027, People’s Republic of China
e-mail: lxg@zjuem.zju.edu.cn

List of symbols

y(t) System output
x(t) True output, not corrupted by noise
v(t) White noise
e(t) Colored noise
ū(t) Inner variable
ai , bi , ci , di System parameters
f (u(t)) Nonlinear function
w1, w2, . . . , wnc Basis of a nonlinear function
σ 2

v Variance of white noise
h∗(t) The instrumental variable
θ̂IV The identification result using instru-

mental variable method
θ̂RIV The identification result using nonlin-

ear RIV method
θ̂ARMAX-RLS The identification result using

ARMAX-RLS method
NSR Noise-to-Signal-Ratio, defined as

NSR =
√

var[v(t)]
var[u(t)] × 100 %

P Probability

1 Introduction

Most real-life systems can be modeled quite well with
a linear model, but in practice, almost all processes are
nonlinear if they are considered not merely in a small
vicinity of their working points, so better results can
be obtained by using a nonlinear model. As is known,
nonlinear models are commonly used to describe the
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behavior of many industrial processes because of the
increased accuracy and performances of the system
behavior, which has drawn great attention of many
researchers. And the nonlinear time series analysis is
usually a very useful and widely used tool to study
the observed nonlinear behavior [1–5]. Among the
nonlinear models, the so-called block-oriented mod-
els such as the Hammerstein model, Wiener model and
Hammerstein–Wiener model have turned out to be very
useful for the estimation of nonlinear systems. A great
deal of work on the identification of these models has
been proposed [6–20]. The Hammerstein model, which
consists of a static nonlinear block followed by a linear
time-invariant subsystem, is the focus of this paper.

The identification of Hammerstein systems has been
extensively studied in the recent years, so there exist
a large number of studies on this topic in the litera-
ture, which can be roughly classified into several cate-
gories, namely the over-parameterization method [21–
24], the nonparametric method [25–28], the iterative
method [29–32], the gradient algorithm [33–35], the
kernel machine and space projection method [36–38]
and the recursive algorithm [23,39–42]. Recently, Ding
et al. [43] put forward decomposition-based Newton
iterative method for the identification of a Hammer-
stein nonlinear FIR system with ARMA noise. Li [44]
developed an algorithm based on Newton iteration for
the identification of Hammerstein model. Hong and
Mitchell [45] used the Bezier–Bernstein approxima-
tion of the nonlinear static function to identify the
model. Han and Raymond [46] extended the rank min-
imization approach to Hammerstein system identifica-
tion by using reconstructing the models. And Zhang
et al. [47] proposed a hierarchical gradient-based iter-
ative parameter estimation algorithm for multivari-
able output error moving average systems. Chen and
Chen [41] designed a weighted least squares (WLSs)-
based adaptive tracker for a class of Hammerstein sys-
tems. Vanbeylen et al. [48] showed a method about
the identification of discrete-time Hammerstein sys-
tems from output measurements only. Ding et al. [35]
proposed a modified stochastic gradient-based para-
meter estimation algorithm for dual-rate sampled-data
systems. Sun and Liu [49] proposed a novel APSO-
aided maximum-likelihood identification method for
Hammerstein systems. Furthermore, some new non-
parametric identification methods are presented, such
as the using of neural network to model the static non-
linear part [50,51] and identification without explicit

parameterization of nonlinearity driven by piecewise
constant inputs [52].

Ding and Chen [23] presented an excellent recursive
least squares (RLSs) method to deal with the Ham-
merstein models, which has good identification accu-
racy and convergence rate. And many researchers take
Ding’s method and models as a basis to compare with
their methods [23,49,53]. However, Ding’s [23] RLS
approach is not applicable, when the noise model is
unknown. And better identification accuracy and faster
convergence rate still remain the targets both in theory
and applications.

In this paper, the nonlinear recursive instrumental
variables (RIVs) method is proposed to the identifica-
tion of a classic Hammerstein model. Better identifica-
tion results can be obtained in comparison with RLS
method, and the method can be applied when the noise
structure is unknown, which has shown that the pro-
posed method is more flexible than RLS method. Fur-
thermore, the property of the mean square convergence
of the nonlinear RIV method is rigorously proved.

This paper is organized as follows: Sect. 2 describes
the problem formulation based on Hammerstein mod-
els. Section 3 depicts the instrumental variable method
for the Hammerstein models and three approaches to
choose instrumental variables in linear RIV method.
Section 4 presents the derivation of the nonlinear RIV
method and proves its property of the mean square
convergence, respectively. Section 5 illustrates the pro-
posed approach with a classic model based on Hammer-
stein systems, where the nonlinear RIV method and the
ARMAX-RLS method reported in the open literature
[23] are compared in detail to show the effectiveness
of the proposed method, and finally some conclusions
from the above analysis are achieved in Sect. 6.

2 Problem statement

In a deterministic setting, the linear part of the sys-
tem is characterized by a rational transfer function, and
the system output y(t) is exactly observed. However,
in practice, the system itself may be random and the
observations may be corrupted by noise. So, it is of
practical importance to consider stochastic Hammer-
stein systems as shown in Fig. 1, which is composed of
a nonlinear memoryless block f (·) followed by a linear
subsystem. u(t) is the system input, y(t) is the system
output and v(t) is a white noise sequence, respectively.
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Fig. 1 The discrete-time SISO Hammerstein system

The true output x(t), colored noise e(t) and the inner
variable u(t), which is the output of the nonlinear block,
are unmeasurable. N (z) is the transfer function of the
noise model, and G(z) is the transfer function of the
linear part in the model [49].

The linear dynamical block in Fig. 1 is an ARMAX
subsystem, the nonlinear model in Fig. 1 has the fol-
lowing input–output relationship [23,33]:

y(t) = x(t) + e(t) (1)

x(t) = G(z)ū(t) = B(z)

A(z)
ū(t) (2)

e(t) = N (z)v(t) = D(z)

A(z)
v(t) (3)

A(z) = 1 + a1z−1 + a2z−2 + · · · + ana z−na (4)

B(z) = b1z−1 + b2z−2 + · · · + bnb z−nb (5)

D(z) = 1 + d1z−1 + d2z−2 + · · · + dnd z−nd (6)

This can be transformed as

y(t) = −
na∑

i=1

ai y(t − i) +
nb∑

i=1

bi ū(t − i)

+
nd∑

i=1

div(t − i) + v(t) (7)

where v(t) is a white noise sequence with the nor-
mal distribution v(t) ∼ N (0, σ 2

v ) for the nonpara-
metric f (·), the value f (u) is estimated for any fixed
u. In the parametric case, f (·) either is expressed by
a linear combination of known basis functions with
unknown coefficients, or is a piecewise linear function
with unknown joints and slopes, and hence, identifi-
cation of the nonlinear block in this case is equivalent
to estimating unknown parameters. The nonlinear part
is considered as a known basis (ω1, ω2, . . . , ωnc ) with
coefficients (c1, c2, . . . , cnc ) in this paper:

f (u(t)) = ū(t) = c1ω1(u(t)) + c2ω2(u(t))

+ . . . + cncωnc (u(t)) =
nc∑

i=1

ciωi (u(t)) (8)

Notice that the parameterization is actually not
unique. In order to get a unique parameter estimate,

without loss of generality, one of the gains of f (·) must
be fixed. Here, the first coefficient of the nonlinear func-
tion is assumed to equal 1, i. e., c1 = 1 [12,54].

Substitute Eq. (8) into Eq. (7) gives

y(t) = −
na∑

i=1

ai y(t − i) +
nb∑

j=1

b j

nc∑

i=1

ciωi (u(t − j))

+
nd∑

i=1

div(t − i) + v(t) (9)

This paper is aimed at presenting the nonlinear RIV
method to get the estimation of the unknown parame-
ters ai (i = 1, 2, . . . , na), b j ( j = 1, 2, . . . , nb) and
ck(k = 1, 2, . . . , nc) of the nonlinear ARMAX model
by using the input and output data {u(t)}, {y(t)} and to
find the property of the algorithm.

3 Instrumental variables

Define the parameter vector, referring to [23,33], as

θ =

⎡
⎢⎢⎢⎢⎣

a
c1b
c2b
· · ·

cnc b

⎤
⎥⎥⎥⎥⎦

∈ Rn0 , a =

⎡
⎢⎢⎣

a1

a2

· · ·
ana

⎤
⎥⎥⎦ ∈ Rna ,

b =

⎡
⎢⎢⎣

b1

b2

· · ·
bnb

⎤
⎥⎥⎦ ∈ Rnb , e(t) =

nd∑

i=1

div(t − i) + v(t)

(10)

Equation (9) can be written as

y(t) = hT (t)θ + e(t) (11)

or

YL = HLθ + eL (12)

where

h(t) =

⎡
⎢⎢⎢⎢⎣

ψ0(t)
ψ1(t)
ψ2(t)
· · ·

ψnc
(t)

⎤
⎥⎥⎥⎥⎦

∈ Rn0 ,
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ψ0(t) =

⎡
⎢⎢⎣

−y(t − 1)

−y(t − 2)

· · ·
−y(t − na)

⎤
⎥⎥⎦ ∈ Rna ,

eL =

⎡
⎢⎢⎣

eT (1)

eT (2)

· · ·
eT (L)

⎤
⎥⎥⎦ , YL =

⎡
⎢⎢⎣

y(1)

y(2)

· · ·
y(L)

⎤
⎥⎥⎦ ,

HL =

⎡
⎢⎢⎣

hT (1)

hT (2)

· · ·
hT (L)

⎤
⎥⎥⎦ , (13)

ψ j (t) =

⎡
⎢⎢⎣

ω j (u(t − 1))

ω j (u(t − 2))

· · ·
ω j (u(t − nb))

⎤
⎥⎥⎦ ∈ Rnb ,

j = 1, 2, . . . , nc

The least squares estimation formula is as follows:

θ̂LS =(HT
L HL )−1HL YL = θ+

(
1

L
HT

L HL

)−1 ( 1

L
HT

L eL

)

(14)

where

⎧
⎪⎨
⎪⎩

1
L HT

L HL = 1
L

∑L
t=1 h(t)hT (t)

W.P.1−→
L→∞ E

{
h(t)hT (t)

}

1
L HLeL = 1

L

∑L
t=1 h(t)e(t)

W.P.1−→
L→∞ E {h(t)e(t)}

(15)

The Frechet Theorem [55] is introduced here.

Theorem 1 Assume that {x(t)} is a sequence of ran-
dom variables which converges to a constant x0, then,
there are

f (x(t))
W.P.1−→
t→∞ f (x0) (16)

or

P lim
t→∞ f (x(t)) = f (x0) (17)

where f (·) is continuous scalar function.

Theorem 2 Assume that matrices At and Bt exist the
probability limit, and the dimension of them does not
change with the increase of t , apply Theorem 1, it gives

⎧
⎨
⎩

P lim
t→∞ (At Bt ) =

(
P lim

t→∞ At

) (
P lim

t→∞ Bt

)

P lim
t→∞

(
A−1

t

)
=
(

P lim
t→∞ At

)−1 (18)

Apply the two convergence theorems above, there
are

θ̂L S
W.P.1−→
L→∞ θ0 + [E{h(t)h(t)}]−1 E{h(t)e(t)} (19)

If e(t) is white noise, E{h(t)e(t)} = 0, thus

θ̂L S
W.P.1−→
L→∞ θ,then the unbiased estimation can be

obtained.
If e(t) is not white noise, E{h(t)e(t)} �= 0. In order

to get the unbiased estimation of the parameters, or to

say θ̂L S
W.P.1−→
L→∞ θ holds, an instrumental matrix is defined

as

H∗
L =

⎡
⎢⎢⎣

h∗T (1)

h∗T (2)

· · ·
h∗T (L)

⎤
⎥⎥⎦ (20)

Two conditions are given as follows:

(a) 1
L H∗T

L HL
W.P.1−→
L→∞ E{h∗(t)hT (t)} is a nonsingular

matrix;
(b) h∗(t) is independent of e(t), which means 1

L H∗T
L

eL
W.P.1−→
L→∞ E{h∗(t)e(t)} = 0, where h∗(t) are the

instrumental variables.

If the instrumental variables meet the two conditions
above, it gives

θ̂IV = (H∗T
L HL)−1H∗T

L YL

= θ +
(

1

L
H∗T

L HL

)−1 ( 1

L
H∗T

L eL

)

W.P.1−→
L→∞ θ + (E{h∗(t)hT (t)})−1 E{h∗(t)e(t)} = θ

(21)

where θ̂IV is the parameter estimation with instrumental
variables method.

It can be seen that if the chosen instrumental vari-
ables are suitable to satisfy the two conditions above,
then unbiased and consistent parameter estimation can
be obtained. So, how to choose suitable instrumental
variables is crucial to instrumental variables method,
the following three approaches, usually used in the lin-
ear RIV method [56], are introduced first to choose
instrumental variables.
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Fig. 2 The choice of the instrumental variables

m(t) is noted as the instrumental variables in Fig. 2.
h∗(t) is given as follows:

h∗(t) =

⎡
⎢⎢⎢⎢⎣

ψ∗
0(t)

ψ1(t)
ψ2(t)
. . .

ψnc
(t)

⎤
⎥⎥⎥⎥⎦

∈ Rn0 ,

ψ∗
0(t) =

⎡
⎢⎢⎣

−m(t − 1)

−m(t − 2)

. . .

−m(t − na)

⎤
⎥⎥⎦ ∈ Rna (22)

1. Adaptive filtering method

When u(t) is persistent excitation signal, then
E{h∗(t)hT (t)} is nonsingular. Since m(t) is only
related to u(t), that is to say h∗(t) must be uncorre-
lated with the noise, hence E{h∗(t)e(t)} = 0.

The instrumental model can be regarded as an adap-
tive filter. The instrumental variables can be obtained
by the following method:

m(t) = h∗T (t)θ̂(t)

or

{
m(t) = h∗T (t)θ̄(t)
θ̄(t) = (1 − α)θ̄(t − 1) + αθ̂(t − d)

(23)

where α ∈ (0.01, 0.1), d ∈ (0, 10), θ̂(t) is the parame-
ter estimation at moment t with instrumental variable
method, it can be calculated by recursive method. If the
two conditions (a) and (b) are satisfied, then Eqs. (23)
and (24) are equivalent.

2. Tally principle

If noise e(t) can be regarded as following model:

e(t) = D
(

z−1
)

v(t) (24)

where w(t) is uncorrelated stochastic noise with zero
mean value and

D
(

z−1
)

= 1 + d1z−1 + d2z−2 + · · · + dnd z−nd (25)

The instrumental variables can be chosen as

m(t) = y(t − nd) (26)

3. Pure lag method

The instrumental model can be regarded as pure lag
segment. The instrumental variables can be chosen as
follows:

m(t) = u(t − nb) (27)

where nb is the order of polynomial B(z−1). It is evi-
dent that if u(t) is persistent excitation signal and is
unrelated to e(t), the instrumental variables will meet
the two conditions above.

Detailed description about the three methods to
choose instrumental variables can be found in [56].

4 The nonlinear recursive instrumental variables
method

4.1 The nonlinear RIV algorithm

Following gives the derivation of the nonlinear RIV
algorithm.

Replace h(t) by h∗(t) in Eq. (14) gives

θ̂IV = (H∗T
L HL)−1H∗T

L YL

=
[

L∑

i=1

h∗(i)hT (i)

]−1 [ L∑

i=1

h∗(i)y(i)

]
(28)

Define

⎧
⎨
⎩

P−1(t) =
t∑

i=1
h∗(i)hT (i)

K(t) = P(t)h∗(t)
(29)

Then,

P−1(t) =
t−1∑

i=1

h∗(i)hT (i)+h∗(t)hT (t)

= P−1(t − 1) + h∗(t)hT (t) (30)
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P−1(t − 1)θ̂IV(t − 1) =
t−1∑

i=1

h∗(i)y(i) (31)

Substitute Eqs. (30)–(31) into Eq. (28) gives

θ̂IV(t) = P(t)

[
t∑

i=1

h∗(i)y(i)

]

= θ̂IV(t − 1) + P(t)h∗(t)[y(t) − hT (t)θ̂IV(t − 1)].
(32)

Apply the inversion formula of matrix (A+BC)−1 =
A−1 − A−1B(I + CA−1B)−1CA−1 to (30) yields

P(t) = {I − P(t − 1)h∗(t)hT (t)[1
+ hT (t)P(t − 1)h∗(t)]−1}P(t − 1) (33)

Substitute Eq. (33) into Eq. (29) gives

K(t) = P(t)h∗(t)

=
[
1 + hT (t)P(t − 1)h∗(t)

]−1
P(t − 1)h∗(t)

(34)

And finally the nonlinear RIV algorithm is obtained
as follows:

θ̂(t) = θ̂(t − 1) + K(t)[y(t) − hT (t)θ̂(t − 1)] (35)

K(t) = P(t − 1)h∗(t)[1 + hT (t)P(t − 1)h∗(t)]−1

(36)

P(t) = [I − K(t)hT (t)]P(t − 1) (37)

where h∗(t) are the instrumental variables shown in Eq.
(20)–(21), the choice of h∗(t) can use the three methods
described above. If the instrumental variables are in
adaptive filtering form, it needs least squares method
to calculate a few steps to obtain the initial parameter
estimation θ̂(t) as the initial state of the nonlinear RIV
method, to initialize the algorithm, p0 is taken as a
large positive real number, e.g., p0 = 106I, and θ̂(0) =
10−6In0×1.

4.2 Mean square convergence of the nonlinear RIV
method

Firstly, two lemmas [57] are introduced.

Lemma 1 Assume the eigenvalues of matrix A ∈
Rn×n are λi [A], i = 1, 2, . . . , n, then the eigenval-
ues of matrix A + sI are λi [A + sI] = λi [A] + s, i =
1, 2, . . . , n, s is a constant

Lemma 2 Assume the eigenvalues of matrix A ∈
Rn×n are λi [A], i = 1, 2, . . . , n, mini {λi [A]} = α,

then AT A ≥ α2I, (A + sI)T (A + sI) ≥ (α − s)2I,
where 0 < s < α.

Theorem 3 Assume that {e(t)} is a random noise vec-
tor sequence with zero mean and bounded variance,
namely E[||e(t)||2] = σ 2

e (t) ≤ σ 2 < ∞; the input
vectors {u(t)} and the instrumental vectors {h∗(t)} are
uncorrelated with {e(t)} and the system meets the weak
persistence of excitation, which is to ensure that the
matrix 1

t H∗
t Ht is nonsingular, that is

A1 : min

{∣∣∣∣λi

[
1

t
H∗

t Ht

]∣∣∣∣
}

= min

{∣∣∣∣∣λi

[
1

t

t∑

i=1

h∗(i)h(i)

]∣∣∣∣∣

}
≥ α > 0, a.s.

A2 : 1

t

t∑

i=1

h∗(i)h(i) = 1

t
H∗

t Ht ≤ βI < ∞, a.s.

Define ||X ||2 = tr [X X T ].
Assume E[||θ̂(0) − θ||2] ≤ M0 < ∞, and θ̂(0) is

uncorrelated with {e(t)}, then the parameter estimation
error using the nonlinear RIV method converges to zero
at the rate of O( 1√

t
), that is

E[||θ̂(t) − θ̂||2] ≤ 2

[ ||P−1(0)||2 M0

(αt − a)2 + nβσ 2t

(αt − a)2

]

� f (t) or lim
t→∞ E[||θ̂(t) − θ||]2 = 0 (38)

where n is the rank of matrix H∗
t PT (t)P(t)H∗T

t , β is the

largest eigenvalue of matrix H∗
t PT (t)P(t)H∗T

t , P(0) =
P0 = 1

a I, 0 < a < 1, say a = 10−6.
Refer to [58,59], the following gives the proof of

Theorem 3.
Define

θ̃(t) = θ̂(t) − θ (39)

Combine Eqs. (30) and (35) gives

θ̃(t) = [I − P(t)h∗(t)hT (t)]θ̃(t − 1) + P(t)h∗(t)e(t)
(40)

Multiplying both sides of the Eq. (30) by P−1(t)
gives

I − P(t)h∗(t)hT (t) = P(t)P−1(t − 1) (41)
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Substituting Eq. (41) in Eq. (40) gives

θ̃(t) = P(t)P−1(0)θ̃(0) + P(t)H∗T

t et = γ1(t) + γ2(t)

(42)

where H∗T

t et = ∑t
i=1 h∗(t)eT (t), P−1(t) = H∗

t Ht +
P−1(0), γ1(t) = P(t)P−1(0)θ̃(0), γ2(t) = P(t)H∗T

t et .
Apply Lemmas 1 and 2, then for any t → ∞, it

gives P−T (t) = (H∗
t Ht )

T + P−1(0)I.
Define

1

t
H∗

t Ht = A, P−1(0) = sI, min
i

{
|λi [H∗

t HT
t ]|

}
= α

(43)

Then,

min
i

{∣∣∣∣λi

[
1

t
H∗

t HT
t

]∣∣∣∣
}

= α (44)

[
1

t
P−T (t)

]T [
1

t
P−T (t)

]
= (A + sI)T (A + sI)

≥
(

α − 1

t
a

)2

PT (t)P(t) ≤ 1

(αt − a)2 (45)

Thus, it gives

0 ≤ E[||γ1(t)||2]
= E

[
θ̃

T
(0)P−T (0)PT (t)P(t)P−1(0)θ̃(0)

]

≤ ||P−1(0)||2 M0

(αt − a)2 (46)

0 ≤ E[||γ2(t)||2] = E
[
eT

t H∗
t PT (t)P(t)H∗T

t et

]

≤ nβσ 2t

(αt − a)2 (47)

Substitute Eq. (46)–(47) into Eq. (42)

0 ≤ E ||θ̃(t)||2 = E||γ1(t) + γ2(t)||2 ≤ 2E
[
||γ1(t)||2

+ ||γ2(t)||2
]

= 2

( ||P−1(0)||2 M0

(αt − a)2 + nβσ 2t

(αt − a)2

)

or lim
t→∞ E[||θ̂(t) − θ||]2 = 0 (48)

Then the mean square convergence of the nonlinear
RIV method is completely proved.

From what is discussed above, it can be seen that e(t)
is colored noise, but as long as the system is persistently
excited, and the noise e(t) is zero mean and bounded
variance and uncorrelated with θ̂(0), which means con-
dition A1 and A2 are satisfied, then the nonlinear RIV
method has the property of mean square convergence
for identification of Hammerstein models, that is to say
the parameter estimation error θ̃(t) using the proposed
method converges to zero at the rate of O( 1√

t
), which

guarantees that the nonlinear RIV method has good
capability against colored noise.

5 Example

Due to the commonly recognized effectiveness of
Ding’s RLS algorithm, Ding’s example [23] is hereby
taken as the model to demonstrate the improved iden-
tification performance of the new algorithm. This is a
Hammerstein ARMAX system as follows:

A(z)y(t) = B(z)ū(t) + D(z)v(t) (49)

A(z) = 1 + a1z−1 + a2z−2 = 1 − 1.60z−1

+ 0.80z−2 (50)

B(z) = b1z−1 + b2z−2 = 0.85z−1 + 0.65z−2

(51)

D(z) = 1 + d1z−1 = 1 − 0.64z−1 (52)

ū(t) = f (u(t)) = c1u(t) + c2u2(t) + c3u3(t)

= u(t) + 0.5u2(t) + 0.25u3(t) (53)

θ = [a1, a2, b1, b2, c2, c3] = [−1.60, 0.8, 0.85,

0.65, 0.5, 0, 25] are the parameters to be identified.
{u(t)} is taken as a persistent excitation signal sequence
with zero mean and unit variance, and {v(t)} as a white
noise sequence with zero mean and constant variance
σ 2

v . The noise-to-signal-ratio (NSR) is defined by the
standard deviation of the ratio of input-free output and

noise-free output, namely NSR =
√

var[v(t)]
var[u(t)] × 100 %.

When σ 2
v = 0.32, σ 2

v = 0.52 and σ 2
v = 0.72, the

corresponding NSRs are 16.34, 25.45 and 35.70 %,
respectively. The accuracy of identification of the pro-
posed models is assessed by comparing overall output
response of estimated model and the true output, and
also the relative parameter estimation error, which is

δ = ||θ̂(t) − θ||/||θ|| × 100 % (54)

For the model discussed above, the nonlinear RIV
method is chosen to be compared with ARMAX-RLS
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[23] under three NSRs mentioned above and sampling
data length 3,000 to get the results. The comparison of
the relative parameter estimation errors between real
parameters and identified parameters of the nonlin-
ear RIV and ARMAX-RLS methods with NSR 16.34,
25.45 and 37.50 % is shown in Figs. 3, 4 and 5 (dashed
line for the errors by RLS method and solid line for
the errors by the nonlinear RIV method), respectively.
And Tables 1, 3 and 5 are the records of the parame-
ter estimation and the related relative error of nonlin-
ear RIV method with NSR 16.34, 25.45 and 37.50 %,
respectively. And Tables 2, 4 and 6 keep record of
the parameter estimation and the related relative error
of ARMAX-RLS method with NSR 16.34, 25.45 and
37.50 %, respectively.

Figure 3 shows the changing process of relative
error between nonlinear RIV method and ARMAX-
RLS method when NSR is 16.34 %. And the relative
error is obtained through Eq. (54). When the sampling
time is between 0 and 400, the identification error of
ARMAX-RLS method is smaller than that of the non-
linear RIV method. However, the identification error of
nonlinear RIV method shows decline trend and is lower
than that of the ARMAX-RLS method afterward. This
has shown that the advantage of the proposed method
may not be obvious at first, but with the increase of the
sampling time, the advantage becomes more and more
obvious.

Tables 1 and 2 have shown that the concrete val-
ues of the parameters with 16.34 %. θ1, θ2, θ3, θ4,
which can be directly obtained through Eqs. (35)–

Fig. 3 Comparison of relative error between the nonlinear RIV
method and ARMAX-RLS method (NSR=16.34 %)

Fig. 4 Comparison of relative error between the nonlinear RIV
method and ARMAX-RLS method (NSR=25.45 %)

Fig. 5 Comparison of relative error between the nonlinear RIV
method and ARMAX-RLS method (NSR=35.70 %)

(37), represent the parameter a1, a2, b1, b2, respec-
tively. θ5, θ6, θ7, θ8 are not the parameters of the real
system but obtained by linear transform and they rep-
resent b1c2, b2c2, b1c3, b2c3, respectively. And c2, c3

can be obtained by the following method:

c2 = (θ5 + θ6)/(θ3 + θ4)

c3 = (θ7 + θ8)/(θ3 + θ4) (55)

After iteration of 3,000, the final error of the nonlin-
ear RIV method is 2.54 %, the final error of ARMAX-
RLS method is 3.32 %.
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Table 1 Identification results of the nonlinear RIV method (NSR=16.34 %)

Iteration θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ

100 −1.5853 0.7788 1.0862 0.4640 0.4789 0.2191 0.0550 0.4460 0.2115

200 −1.5869 0.7890 1.1467 0.4666 0.4668 0.2927 −0.0652 0.3518 0.2248

500 −1.5984 0.7968 0.9744 0.5028 0.4572 0.2795 0.0741 0.3441 0.1402

1,000 −1.5960 0.7968 0.8771 0.5956 0.4166 0.3560 0.2141 0.2307 0.0447

1,500 −1.5985 0.7982 0.9137 0.5964 0.4174 0.3443 0.1613 0.2263 0.0547

2,000 −1.5978 0.7985 0.9037 0.6342 0.4308 0.3341 0.1610 0.1935 0.0382

2,500 −1.5987 0.7998 0.8967 0.6370 0.4290 0.3405 0.1617 0.1903 0.0356

3,000 −1.5971 0.7987 0.8835 0.6613 0.4241 0.3445 0.1755 0.1681 0.0254

Real value −1.6000 0.8000 0.8500 0.6500 0.4250 0.3250 0.2125 0.1625 0

Table 2 Identification results of the ARMAX-RLS method (NSR=16.34%)

Iteration θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ

100 −1.5772 0.7754 1.1378 0.4437 0.5121 0.2195 −0.1141 0.4544 0.2677

200 −1.5859 0.7910 1.0962 0.4256 0.4601 0.2894 −0.0408 0.3940 0.2219

500 −1.5952 0.7908 0.9684 0.4342 0.4352 0.2778 0.0805 0.4030 0.1715

1,000 −1.6045 0.8025 0.9084 0.5354 0.4040 0.3534 0.1620 0.2807 0.0855

1,500 −1.6055 0.8025 0.9214 0.5631 0.3967 0.3422 0.1461 0.2476 0.0735

2,000 −1.6068 0.8057 0.9078 0.5993 0.4079 0.3391 0.1483 0.2091 0.0521

2,500 −1.6050 0.8055 0.8889 0.6005 0.4077 0.3479 0.1680 0.2127 0.0446

3,000 −1.6036 0.8050 0.8821 0.6249 0.4057 0.3496 0.1705 0.1899 0.0332

Real value −1.6000 0.8000 0.8500 0.6500 0.4250 0.3250 0.2125 0.1625 0

The final parameter identification result is:

θ̂RIV = [−1.5971 0.7987 0.8835 0.6613

0.4975 0.2224]
θ̂ARMAX-RLS = [−1.6036 0.8050 0.8821 0.6249

0.5012 0.2392]

Figure 4 depicts the changing process of relative
error between predicted output and real output by the
nonlinear RIV method and ARMAX-RLS method with
25.45 % NSR. From Fig. 4, it can be seen that the advan-
tage of the nonlinear RIV method is still significant and
the error curve of this method is sharply declining when
the sampling time is about 300 and keeps under the error
curve of the ARMAX-RLS method afterward.

Tables 3 and 4 have shown that the concrete values of
the parameters with 25.45 %. After iteration of 3,000,
the final error of the nonlinear RIV method is 3.73 %,
the final error of ARMAX-RLS method is 5.51 %.

Based on Eq. (55), the final parameter identification
result is:

θ̂RIV = [−1.6030 0.8022 0.8957 0.6428

0.4920 0.2302]
θ̂ARMAX-RLS = [−1.5965 0.7973 0.8901

0.6126 0.5140 0.2891].

Figure 5 depicts the changing process of relative
error between predicted output and real output by non-
linear RIV method and ARMAX-RLS method when
NSR is 35.70 %. From Fig. 5, it can be shown that the
advantage of the proposed method is not significant at
first. The overlapping of the two curves when the sam-
pling time is between 0 and 700 indicates that the two
methods show their advantages at different sampling
times, and when the sampling time is over 700, the error
curve of the nonlinear RIV method keeps under the
error curve of the ARMAX-RLS method all through.
The identification results of the nonlinear RIV method
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Table 3 Identification results of the nonlinear RIV method (NSR=25.45 %)

Iteration θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ

100 −1.5854 0.7821 1.0437 0.4610 0.3247 0.3127 −0.1957 0.5875 0.3028

200 −1.5937 0.7949 1.0415 0.3731 0.2997 0.4466 −0.2891 0.7940 0.4110

500 −1.5987 0.7983 0.9910 0.5779 0.3713 0.3464 −0.1355 0.3744 0.2033

1,000 −1.6037 0.8013 0.9588 0.5833 0.3613 0.3657 0.0386 0.2560 0.1139

1,500 −1.6046 0.8029 0.9262 0.6640 0.3537 0.3737 0.1068 0.1356 0.0735

2,000 −1.6039 0.8016 0.8965 0.6433 0.3686 0.3652 0.1842 0.1723 0.0410

2,500 −1.6055 0.8036 0.9104 0.6325 0.3646 0.3745 0.1859 0.1656 0.0479

3,000 −1.6030 0.8022 0.8957 0.6428 0.3829 0.3740 0.2007 0.1534 0.0373

Real value −1.6000 0.8000 0.8500 0.6500 0.4250 0.3250 0.2125 0.1625 0.0000

Table 4 Identification results of the ARMAX-RLS method (NSR=25.45%)

Iteration θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ

100 −1.5744 0.7728 1.1382 0.4891 0.3474 0.3121 −0.2512 0.4822 0.3037

200 −1.5911 0.7924 1.0572 0.3439 0.2878 0.4670 −0.2634 0.7349 0.3939

500 −1.5958 0.7970 1.0070 0.5399 0.3447 0.3668 −0.1302 0.4059 0.2171

1,000 −1.5958 0.7938 0.9364 0.5355 0.3787 0.3773 0.0813 0.3713 0.1355

1,500 −1.6001 0.7991 0.9219 0.6232 0.3848 0.3692 0.1168 0.2303 0.0703

2,000 −1.5975 0.7953 0.8956 0.6022 0.3768 0.3651 0.1800 0.2762 0.0689

2,500 −1.5975 0.7967 0.9157 0.6140 0.3802 0.3770 0.1660 0.2418 0.0632

3,000 −1.5965 0.7973 0.8901 0.6126 0.3840 0.3884 0.1987 0.2357 0.0551

Real value −1.6000 0.8000 0.8500 0.6500 0.4250 0.3250 0.2125 0.1625 0.0000

are all better than those of ARMAX-RLS method with
the three different NSRs.

Tables 5 and 6 have shown that the concrete values of
the parameters with 35.70 %. After iteration of 3,000,
the final error of the nonlinear RIV method is 4.25 %,
the final error of ARMAX-RLS method is 6.17 %.

The final parameter identification result is:

θ̂RIV = [−1.5948 0.7951 0.9036 0.6498

0.4918 0.1995]
θ̂ARMAX-RLS = [−1.5943 0.7961 0.9224

0.6530 0.4865 0.1907].
From the identification results above, the following

conclusions can be obtained:

(1) The proposed nonlinear RIV method for Hammer-
stein system identification is effective, and the iden-
tification errors with three NSRs are lower than that
of ARMAX-RLS method after sampling time about
400, 300 and 700, respectively. From Figs. 3, 4
and 5, we get the identification error curve of the

nonlinear RIV method is basically under that of
ARMAX-RLS method in the whole identification
course. When NSR is 16.34 %, the identification
error of the nonlinear RIV method is lower than that
of ARMAX-RLS by 30.7 % after 3,000 iteration,
when NSR is 25.45 %, the identification error of
the proposed method is lower than that of ARMAX-
RLS by 47.7 %. When NSR is 35.70 %, the identifi-
cation error of the nonlinear RIV is lower than that
of ARMAX-RLS by 45.2 %. So, the larger NSR is,
the better advantage of the proposed method over
ARMAX-RLS method is.

(2) With the increase of the NSR, the deviation of
identification error of predicted output with the
real output is enlarging, which means the pro-
posed method is applicable with small noise sig-
nals. When the noise signal is getting larger, the
identification results are getting worse or the sys-
tem may not be identified. But the nonlinear RIV
method is superior to ARMAX-RLS method with
noise interference.
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Table 5 Identification results of the nonlinear RIV method (NSR=35.70 %)

Iteration θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ

100 −1.5912 0.7870 0.3941 0.6365 0.6252 0.2422 0.5913 0.3240 0.3005

200 −1.5729 0.7732 0.5995 0.5908 0.6146 0.1707 0.5140 0.3085 0.2258

500 −1.5852 0.7794 0.9016 0.5027 0.5775 0.1451 0.1426 0.3837 0.1691

1,000 −1.6001 0.7981 0.8919 0.5550 0.4334 0.2894 0.1499 0.2925 0.0837

1,500 −1.5969 0.7956 0.9112 0.6129 0.4346 0.2872 0.0910 0.2808 0.0868

2,000 −1.6011 0.7997 0.9183 0.6466 0.4400 0.2975 0.1093 0.1679 0.0589

2,500 −1.5967 0.7960 0.9388 0.6571 0.4480 0.3079 0.1012 0.1348 0.0683

3,000 −1.5948 0.7951 0.9036 0.6498 0.4465 0.3175 0.1417 0.1682 0.0425

Real value −1.6000 0.8000 0.8500 0.6500 0.4250 0.3250 0.2125 0.1625 0.0000

Table 6 Identification results of the ARMAX-RLS method (NSR=35.70 %)

Iteration θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ

100 −1.4886 0.7026 0.7978 0.9050 0.6864 0.2796 0.0112 0.0068 0.2186

200 −1.5390 0.7422 0.7757 0.7344 0.5985 0.1417 0.2374 0.2153 0.1359

500 −1.5812 0.7716 0.9352 0.6231 0.6040 0.1269 0.0740 0.2655 0.1531

1,000 −1.6086 0.8067 0.9499 0.6152 0.5213 0.2216 0.0511 0.2229 0.1139

1,500 −1.5933 0.7934 0.9764 0.6687 0.4822 0.2343 −0.0017 0.2100 0.1272

2,000 −1.5990 0.7975 0.9571 0.6798 0.4720 0.2588 0.0565 0.1450 0.0963

2,500 −1.5946 0.7953 0.9508 0.6818 0.4705 0.2860 0.0824 0.1305 0.0835

3,000 −1.5943 0.7961 0.9224 0.6530 0.4688 0.2977 0.1155 0.1850 0.0617

Real value −1.6000 0.8000 0.8500 0.6500 0.4250 0.3250 0.2125 0.1625 0.0000

(3) As is shown in the error curves, at the beginning of
identification, the parameter identification results
converge very quickly; the cutoff point appears
almost at 1,000 iterations. After 1,000 iterations,
with the increase of iteration number, the speed of
convergence is getting slower, and there exists some
steady-state error between identification parame-
ters and real parameters under different NSRs.

6 Conclusions

A nonlinear recursive instrumental variable method
in identification of nonlinear system is obtained. It is
applied to Hammerstein ARMAX model under dif-
ferent NSRs and is compared with ARMAX-RLS
method in detail. The results show that the nonlin-
ear RIV method is not only an effective method but
also superior to ARMAX-RLS method in terms of

identification accuracy and convergence speed espe-
cially under colored noise. ARMAX-RLS method is
not applicable when noise model is unknown, while
the proposed method is far more appropriate. In other
words, the nonlinear RIV method is more flexible
in identification of nonlinear systems with colored
noise.

With the increase of the NSR, the deviation of iden-
tification error of predicted output with the real out-
put is enlarging, which means the proposed method is
applicable with small noise signals. When the noise sig-
nal is getting larger, the identification results are getting
worse or the system may not be identified. But the non-
linear RIV method is superior to ARMAX-RLS method
with noise interference.

The procedure of the proposed method and its mean
square convergence for identification of Hammerstein
models are also established, and its convergence analy-
sis is worth further research.
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