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Abstract Dynamical system theory is applied to the
generalized two-component Hunter–Saxton system.
Two singular straight lines are found in the associ-
ated topological vector field. The influence of para-
meters as well as the singular lines on the smoothness
property of the traveling wave solutions is explored
in detail. We obtain the single peak solitary wave
and compacton solutions for the generalized two-
component Hunter–Saxton system. Asymptotic analy-
sis and numerical simulations are provided for smooth
solitary wave, peakon, cuspon and compacton solu-
tions of the generalized two-component Hunter–Saxton
system.

Keywords Hunter–Saxton system · Solitary wave ·
Peakon · Cuspon · Compacton

1 Introduction

It is well known that the study of the nonlinear wave
equation is more and more important in many fields
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of physics. Finding their traveling solutions of these
equations has become a hot research topic for many
scholars. Many methods have been used to investigate
these types of equations, such as tanh–sech method [1],
Lie group method [2], exp-function method, bifurca-
tion method [3–6] and sine–cosine method.

In the shallow-water fields, many two-component
systems already have increasing been payed attention
and studied. For example, one is the well-known gen-
eralized two-component Camassa–Holm system:
⎧
⎨

⎩

ut − uxxt − Aux + 3uux + eρρx

− σ(2ux uxx + uuxxx ) = 0,

ρt + (ρu)x = 0.

(1.1)

where u(t, x) represents the horizontal velocity of the
fluid, σ is a new free parameter and A > 0. The
researchers have studied the solitary wave solutions,
cusp wave solutions, periodic wave solutions, kink and
anti-kink wave solution and breaking wave solutions of
the system with e = ±1 [7–9]. Hitherto this equation
has already attracted a lot of attention all around the
world.

In [10–12], Moon and Wu considered the general-
ized two-component Hunter–Saxton system with k = 1
{

uxxt + 2σux uxx + σuuxxx − kρρx + Aux = 0,

ρt + (ρu)x = 0,

(1.2)

where σ is a new free parameter and A ≥ 0. The system
(1.2) is the short wave limit ((t, x) �→ (εt, εx), ε →
0) of the generalized two-component Camassa–Holm
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system (1.1). Wu and Wunsh have gotten the global
existence of solutions to the system (1.2) with σ =
1, k = 1 in the periodic setting [12]. Moon and Liu
have further obtained the global existence of solutions
to the system (1.2) with σ ∈ R, k = 1 using by the
localization analysis in [10]. Also, Moon has obtained
some soliton wave solutions and peak solitary solutions
of the equation using by the small perturbations method
[11].

When (σ, A) = (1, 0), system (1.2) is become the
two-component Hunter–Saxton system:

{
uxxt + 2ux uxx + uuxxx − kρρx = 0,

ρt + (ρu)x = 0.
(1.3)

where k = ±1. This system is a special case of Green–
Naghdi system modeling the non-dissipative dark mat-
ter [13]. Many mathematical properties of this system
have been also studied further in many works [14–16].
In [17], the scholars have obtained a smooth periodic
solution traveling wave of the two-component Hunter–
Saxton equation and mentioned no bounded traveling
waves of Hunter–Saxton equation.

The aim of this paper is to study the bifurcations of
traveling solutions and exact traveling solutions of sys-
tem (1.2) by using the bifurcation method of dynamical
system.

Let u(x, t) = φ(x − ct) = φ(ξ), ρ(x, t) = ν(x −
ct) = ν(ξ), where c is the speed of waves. Then, the
second equation of system (1.2) was written as:

−cν′ + (φν)′ = 0,

where “′” is the derivative with respect to ξ . Integrating
this equation, we have

ν(ξ) = B

φ − c
. (1.4)

where B is an integral constant and B �= 0. Substitut-
ing (1.4) into the first equation of (1.2), then we have
the following ordinary equation of the first equation of
(1.2):

−cφ′′′ + 2σφ′φ′′ + σφφ′′′ − kνν′ + Aφ′ = 0.

Once integrating this equation, we obtain

(σφ−c)φ′′ =−1

2
σ(φ′)2− Aφ+ k B2

2(φ − c)2 + g

2
, (1.5)

where g
2 is an integral constant. Equation (1.5) is equiv-

alent to the two-dimensional planar system:

⎧
⎨

⎩

dφ

dξ
= y,

dy
dξ

= −σ y2(φ−c)2+(φ−c)2(g−2Aφ)+k B2

2(σφ−c)(φ−c)2 .
(1.6)

The system has the first integral:

H(φ, y) = y2(σφ−c)+Aφ2−gφ+ k B2

φ − c
= h. (1.7)

Without loss of generality, let the speed of waves
c > 0. On the singular straight lines φ = c and φ = c

σ
,

the second equation in (1.6) is discontinuous. Such sys-
tem (1.6) is called a singular traveling system [18–25].
In other words, φ′′ has not been defined on the straight
lines in the phase plane (φ, y). It derives that the dif-
ferential system (1.2) could exist some non-smooth
behavior or breaking properties of traveling wave
solution.

This paper is organized as follows. In Sect. 2, we
analyze the bifurcations of phase portraits of system
(1.6) with k = ±1. In Sect. 3, we give the paramet-
ric representations of the smooth solitary wave solu-
tions, peakon solutions, cuspon solutions and com-
pacton solutions of the (1.2). A short conclusion is
given in Sect. 4.

2 Phase portraits of the system (1.6)

Let A > 0 and c > 0. Making the transformation
dξ = (σφ − c)(φ − c)2dτ for φ �= c, c

σ
on the system

(1.6). Under this transformation, system (1.6) becomes
its regular system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dφ

dτ
= (φ − c)2(σφ − c)y,

dy
dτ

= − 1
2σ y2(φ − c)2

+ 1
2 [(φ − c)2(g − 2Aφ) + k B2].

(2.1)

System (2.1) has same first integral as system (1.6).
Consequently, expect for the singular straight line φ =
c and φ = c

σ
, the system (2.1) has the same topological

phase portraits as system (1.6). Clearly, two singular
straight lines φ = c and φ = c

σ
are two invariant

straight line solutions for system (2.1). Close to the
two straight lines, the system (2.1) and system (1.6)
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have different dynamics behaviors. The variable τ is a
fast variable while the variable ξ is a slow variable.

In order to find the equilibrium points of (2.1), we
have

f (φ) = 1

2
[(φ − c)2(g − 2Aφ) + k B2]. (2.2)

f
′
(φ) = (φ − c)(g − 3Aφ + Ac). (2.3)

f
′′
(φ) = −6Aφ + 4Ac + g. (2.4)

Apparently, f
′
(φ) has two zero at φ = φs1 = c, and

φ = φs2 = g+Ac
3A . So, we get f (c) = 1

2 k B2, f
′
(c) =

0, f
′′
(c) = −2Ac + g, f (0) = 1

2 (k B2 + gc2), and

f
′′
(φs2) = 2Ac − g.

In the φ-axis, equilibrium points E j (φ j , 0) of (2.1)
satisfy the function f (φ j ) = 0. Without loss of gen-
erality, assume c > 0. The intersections of the hyper-
bola y = − k B2

(φ−c)2 and the straight line function y =
g−2Aφ determine the real zero φ j ( j = 1, 2 or 1, 2, 3)

of the function f (φ). If B �= 0, there is no equilibrium
point of (2.1) on the straight line φ = c. If σ f ( c

σ
) > 0,

there are two equilibrium points S±( c
σ
,±Ys) of (2.1)

on the straight line φ = c
σ

, where Ys =
√

2 f ( c
σ

)

σ ( c
σ

−c)2 .

2.1 Type 1: The case of k = 1

Let k = 1, then f (c) = 1
2 B2 > 0. According to the

following conditions, let us analysis the numbers and
relative position of simple equilibrium points E j (φ j , 0)

of system (2.1) .
(1). The case of g > 0. We know that when 0 <

c <
g

2A , f
′′
(c) > 0, it has c < φs2, and when c >

g
2A , f

′′
(c) < 0, it has c > φs2.

(i) Assume that c >
g

2A > 0. If f (φs2) < 0, Eq. (2.1)
has three simple equilibrium points E j (φ j , 0), j =
1, 2, 3 and it satisfies φ1 < φs2 < φ2 < c < φ3. If
f (φs2) = 0, Eq. (2.1) has two simple equilibrium
points E j (φ j , 0), j = 1, 2 and it satisfies φ1,2 =
φs2 < c < φ3, where equilibrium point φs2 is
double root. If f (φs2) > 0, Eq. (2.1) only has one
equilibrium point E1(φ1, 0) satisfying φ1 > c.

(ii) Assume that 0 < c <
g

2A . We always get f (φs2) >

0, then Eq. (2.1) has only one simple equilibrium
point E1(φ1, 0) satisfying φ1 < φs2.

(2). The case of g < 0. In this case, we have c >

0 >
g

2A . This case is the same as the case c >
g

2A > 0
with g > 0.

(3). The case of g = 0. In this case, we have the
same conclusions as the case c >

g
2A > 0 with g > 0.

2.2 Type 2: The case of k = −1

Then, we have f (c) = − 1
2 B2 < 0 and the following

results.
(1). The case of g > 0. We know that when 0 <

c <
g

2A , f
′′
(c) > 0, it has c < φs2, and when c >

g
2A , f

′′
(c) < 0, it has c > φs2.

(i) Assume that c >
g

2A > 0. We always have
f (φs2) < 0,; then, Eq. (2.1) has only one simple
equilibrium point E1(φ1, 0) satisfying φ1 < φs2.

(ii) Assume that 0 < c <
g

2A . If f (φs2) > 0, Eq. (2.1)
has three simple equilibrium points E j (φ j , 0), j =
1, 2, 3 satisfying φ1 < c < φ2 < φs2 < φ3. If
f (φs2) = 0, Eq. (2.1) has two simple equilib-
rium points E j (φ j , 0), j = 1, 2 satisfying φ1 <

c < φ2,3 = φs2, where the equilibrium point
φs2 is double root. If f (φs2) < 0, Eq. (2.1) has
only one equilibrium point E1(φ1, 0) satisfying
φ1 < c.

(2). The case of g < 0. In this case, we have c >

0 >
g

2A . This case is the same as the case c >
g

2A > 0
with g > 0.

(3). The case of g = 0. This case has the same
conclusions as the case c >

g
2A > 0 with g > 0.

Let M(φ j , y j ) is the coefficient matrix of the system
(2.1) at an equilibrium point E j (φ j , y j ), and J (φ j , y j )

is its Jacobian determinant. By the theory of planar
dynamical system, we know that if J < 0, then the
equilibrium point is a saddle point; if J > 0 and
T r(M(φ j , y j )) = 0, the equilibrium point is a cen-
ter point; if J > 0 and (T r(M(φ j , y j )))

2 − 4J > 0,

the equilibrium point is a node; if J = 0 and the index
of equilibrium point is zero, then the equilibrium is a
cusp; if J = 0 and the index of equilibrium point is not
zero, then the equilibrium is a high-order equilibrium
point.

We get

J (φ j , 0 = det M(φ j , 0)

= −(φi − c)2(σφi − c) f ′(φi ). (2.5)

J
( c

σ
,±Ys

)
= det M

( c

σ
,±Ys

)

= −σ 2Y 2
s

( c

σ
− c

)4
. (2.6)
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Let hi = H(φ j , 0), hs = H( c
σ
,±Ys), where H is

given by (1.7). For a given speed of wave c > 0, assume
that the two condition holds as following:

(1) k = 1, g > 0, A > 0, c >
g

2A . For given

A and g, f
′′
(c) < 0, f

′′
(φs2) > 0, f (c) > 0

and f (φs2) < 0. The points c and φs2 are a
maximum point and minimum point of the func-
tion f (φ), respectively. Three simple equilibrium
points E j (φ j , 0), j = 1, 2, 3, are satisfied φ1 <

φs2 < φ2 < c < φ3.
(2) k = −1, g > 0, A > 0, 0 < c <

g
2A . For given

A and g, f
′′
(c) > 0, f

′′
(φs2) < 0, f (c) < 0

and f (φs2) > 0. The points c and φs2 are a
minimum point and maximum point of the func-
tion f (φ), respectively. Three equilibrium points
E j (φ j , 0), j = 1, 2, 3, are satisfied φ1 < c <

φ2 < φs2 < φ3.

And the every φ j is not depend on the parameter σ.

Assume σ �= 0. We make σ increase from σ < 1
to σ ≥ 1. Make the singular line φ = c

σ
move from

right to left in the (φ, y)-phase plane. By the qualita-
tive analysis, we obtain the different topological phase
portraits Eq. (2.1) shown in Figs. 1a–o and 2a–l, respec-
tively.

3 Single peak solitary wave and compacton
solutions

3.1 Single peak solitary wave solutions of system
(1.2)

In this section, we study classification of single peak
solitary wave solutions of Eq. (1.2) by using the phase
portraits given in the Sect. 2. To study single peak soli-
tary wave solutions, we impose the boundary condition

lim
ξ→±∞ φ = p, (3.1)

where p is a constant. In fact, the constant p is equal
to the horizontal coordinate of saddle point E(ϕe, 0).
Substituting the boundary condition (3.1) into (1.7),
then the ODE (1.7) becomes

(φ′)2 = A(φ − p)2(q − φ)

(φ − c)(σφ − c)
, (3.2)

where

q = k B2 + c(Ap − g)(p − c)

Ap(c − p)
. (3.3)

Definition 3.1 A function φ(ξ) is said to be a single
peak solitary wave solution of the Eq. (1.2) if φ(ξ)

satisfies the following conditions:

(C1) φ(ξ) is continuous on R and has a unique peak
point ξ0, where φ(ξ) attains its global maximum
or minimum value;

(C2) φ(ξ) ∈ C3(R − {ξ0}) satisfies (1.5) on R − {ξ0};
(C3) φ(ξ) satisfies the boundary condition (3.1).

Definition 3.2 A wave function φ is called smooth
solitary wave solution if φ is smooth locally on either
side of ξ0 and limξ↑ξ0 φ′(ξ) = limξ↓ξ0 φ′(ξ) = 0.

Definition 3.3 A wave function φ is called peakon
if φ is smooth locally on either side of ξ0 and
limξ↑ξ0 φ′(ξ) = − limξ↓ξ0 φ′(ξ) = a, a �= 0, a �=
±∞.

Definition 3.4 A wave function φ is called cuspon
if φ is smooth locally on either side of ξ0 and
limξ↑ξ0 φ′(ξ) = − limξ↓ξ0 φ′(ξ) = ±∞.

Without any loss of generality, we choose the peak
point ξ0 as vanishing, ξ0 = 0.

Theorem 3.1 Assume that u(x, t) = φ(ξ) = ϕ(x −
ct) is a single peak solitary wave solution of the
Eq. (1.2) at the peak point ξ0 = 0, then φ(0) = c
or ϕ(0) = c

σ
or φ(0) = q.

Proof If φ(0) �= c and φ(0) �= c
σ

, then φ(ξ) �= c
and φ(ξ) �= c

σ
for any ξ ∈ R since φ(ξ) ∈ C3(R −

{0}). Differentiating both sides of Eq. (3.2) yields φ ∈
C∞(R).

If φ(0) �= c and φ(0) �= c
σ

, then φ ∈ C∞(R). By
the definition of single peak solitary wave solution, we
have φ′(0) = 0. However, by Eq. (3.2), we must have
φ(0) = q. This completes the proof of Theorem 3.1.

Now, we give the following theorem on the classifi-
cation of single peak solitary wave solutions of (1.2).
The idea is inspired by the study of the traveling waves
of the Camassa–Holm Eq. [26]. ��
Theorem 3.2 Assume that u(x, t) = ϕ(x − ct) is a
single peak solitary wave solution of the Eq. (1.2) at
the peak point ξ0 = 0, then we have the following
solution classification:
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Fig. 1 The phase portraits
of system (2.1) with k = 1.
a h1 < h2 < h3 < hs , φ3 <
c
σ
, σ < 1.

b h1 < h2 < h3 = hs , c <
c
σ

= φ3, σ < 1.

c h1 < h2 < h3 < hs , c <
c
σ

< φ3, σ < 1.

d h1 < h2 < h3, c = c
σ

<

φ3, σ = 1.

e hs < h1 < h2 < h3, φ2 <
c
σ

< c, σ > 1.

f h1 = hs < h2 < h3, φ2 <
c
σ

< c, σ > 1.

g h1 < hs < h2 < h3, φ2 <
c
σ

< c, σ > 1.

h h1 < hs = h2 < h3, φ2 =
c
σ

< c, σ > 1.

i h1 < hs < h2 < h3, φ1 <
c
σ

< φ2, σ > 1.

j hs = h1 < h2 < h3, 0 <
c
σ

< φ1, σ > 1.

k h1 < hs < h2 < h3, 0 <
c
σ

< φ1, σ > 1.

l h1 < h2 = hs < h3, 0 <
c
σ

< φ1, σ > 1.

m h1 < h2 < hs < h3, 0 <
c
σ

< φ1, σ > 1.

n h1 < h2 < hs < h3,
c
σ

<

0, σ < 0. o h1 < h2 <

h3 = hs ,
c
σ

< 0, σ < 0.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)
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Fig. 2 The phase portraits
of system (2.1) with
k = −1. a h3 < hs = h2 <

h1, φ3 < c
σ
, σ < 1.

b h3 < hs < h2 < h1, φ3 <
c
σ
, σ < 1. c h3 = hs <

h2 < h1, φ3 = c
σ
, σ < 1.

d h3 < hs < h2 < h1, φ2 <
c
σ

< φ3, σ < 1.

e h3 < hs = h2 < h1, φ2 =
c
σ

< φ3, σ < 1.

f h3 = hs < h2 < h1, c <
c
σ

< φ2, σ < 1.

g h3 < hs < h2 < h1, c <
c
σ

< φ2, σ < 1.

h h3 < h2 < h1, φ1 < c =
c
σ

< φ2, σ = 1.

i h3 < h2 < h1 < hs , φ1 <
c
σ

< c, σ > 1.

j h3 < h2 < h1 = hs , 0 <
c
σ

= φ1, σ > 1.

k h3 < h2 < h1 < hs , 0 <
c
σ

< φ1, σ > 1.

l h3 < h2 < h1 < hs ,
c
σ

<

0 < φ1, σ < 0.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(i) if φ(0) = q, φ(0) �= c and φ(0) �= c
σ

, then φ(ξ) ∈
C∞(R), and φ is a smooth solitary wave solution.

(ii) if φ(0) = c = q, then φ is a peakon solution and

φ(ξ) − c = λ1|ξ | + O(|ξ |2), ξ → 0,

φ′(ξ) = λ1 sgn(ξ) + O(|ξ |), ξ → 0,

where λ1 = ± |p−c|√A√|c(σ−1)| .

(iii) if φ(0) = c
σ

= q, then φ is a peakon solution and

φ(ξ) − c

σ
= λ2|ξ | + O(|ξ |2), ξ → 0,

φ′(ξ) = λ2 sgn(ξ) + O(|ξ |), ξ → 0,
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where λ2 = ± |p− c
σ

|√A√|c(σ−1)| .
(iv) if φ(0) = c �= q, then φ is a cuspon solution and

φ has the following asymptotic behavior

φ(ξ) − c = λ3 |ξ |2/3 + O(|ξ |4/3), ξ → 0,

φ′(ξ) = 2

3
λ3|ξ |−1/3sgn(ξ) + O(|ξ |1/3), ξ →0,

where λ3 = ±
(

9(c−p)2|A(q−c)|
4|c(σ−1)|

)1/3
.

(v) if φ(0) = c
σ

�= q, then φ is a cuspon solution and
φ has the following asymptotic behavior

φ(ξ) − c

σ
= λ4 |ξ |2/3 + O(|ξ |4/3), ξ → 0,

φ′(ξ) = 2

3
λ4|ξ |−1/3sgn(ξ) + O(|ξ |1/3), ξ → 0,

where λ4 = ±
(

9( c
σ

−p)2|A(q− c
σ

)|
4|c(σ−1)|

)1/3
.

Proof (i) From the process of proofing of Theorem
3.1, we know that if φ(0) �= c and φ(0) �= c

σ
,

then φ ∈ C∞(R) and φ is a smooth solitary wave
solution.

(ii) If φ(0) = c = q, then from Eq. (3.2), we obtain

φ′ = ±|φ − p|√A√|σφ − c| . (3.4)

Let l1(φ) =
√|σφ−c|
|φ−p|√A

, then l1(c) =
√|c(σ−1)|
|c−p|√A

and

∫

l1(φ)dφ = ±
∫

dξ. (3.5)

Inserting l1(φ) = l1(c)+O(|φ−c|) into (3.5) and
using the initial condition φ(0) = c, we obtain

l1(c)(φ − c)(1 + O(|φ − c))−1 = ±|ξ |. (3.6)

Since

1

1 + O(φ − c)
= 1 + O(φ − c), (3.7)

we get

|φ − c| = 1

l1(c)
|ξ |(1 + O(φ − c)), (3.8)

which implies |φ − c| = O(|ξ |). Therefore, we
have

φ(ξ) = c + λ1|ξ | + O(|ξ |2), ξ → 0, (3.9)

and

φ′(ξ) = λ1 sgn(ξ) + O(|ξ |), ξ → 0, (3.10)

where λ1 = ± |p−c|√A√|c(σ−1)|
(iii) Similar to the proof of (ii), we ignore it in this

paper.
(iv) If φ(0) = c �= q, then by the definition of single

peak solitary wave solution, we have p �= c. From
Eq. (3.2), we obtain

φ′ = ±|φ − p|√|A(q − φ)|√|(φ − c)(σφ − c)| . (3.11)

Let l2(φ) =
√|σφ−c|

|φ−p|√|A(q−φ)| , then l2(c) =
√|c(σ−1)|

|c−p|√|A(q−c)| , and

∫

l2(φ)
√|φ − c|dφ = ±

∫

dξ. (3.12)

Inserting l2(φ) = l2(c) + O(|φ − c|) into (3.12)
and using the initial condition φ(0) = c, we obtain

2l2(c)

3
|φ − c|3/2(1 + O(|φ − c|)) = |ξ |, (3.13)

thus

φ−c = ±
( 3

2l2(c)

)2/3|ξ |2/3(1 + O(|φ − c|))−2/3

= ±
( 3

2l2(c)

)2/3|ξ |2/3(1 + O(|φ − c|)),
(3.14)

which implies φ − c = O(|ξ |2/3). Therefore, we
have

φ(ξ) = c ±
( 3

2l2(c)

)2/3|ξ |2/3 + O(|ξ |4/3)

= c + λ3|ξ |2/3 + O(|ξ |4/3), ξ → 0,

λ3 = ±
( 3

2l2(c)

)2/3

= ±
(9(c − p)2|A(q − c)|

4|c(σ − 1)|
)1/3

,

and

φ′(ξ) = 2/3λ3|ξ |−1/3sgn(ξ) + O(|ξ |1/3), ξ → 0.

(3.15)
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(v) Similar to the proof of (iv), we ignore it in this
paper. This completes the proof of Theorem 3.2.
By virtue of Theorem 3.1, any single peak solitary
wave solution of the Eq. (1.2) must satisfy the
following initial and boundary values problem

⎧
⎪⎨

⎪⎩

(φ′)2 = A(φ−p)2(q−φ)
(φ−c)(σφ−c) := F(φ),

φ(0) ∈ {c, c
σ
, q},

lim|ξ |→∞ φ(ξ) = p.

(3.16)

��
Theorem 3.3 When φ approaches the double zero p of
F(φ) so that F ′(p) = 0, F ′′(p) �= 0, then the solution
φ satisfies

φ(ξ)− p ∼ a exp(−|ξ |√|F ′′(p)|), ξ → ±∞ (3.17)

for some constant a, thus φ → p exponentially as
ξ → ±∞.

Proof Because p is a double zero of F(φ), we have

φ2
ξ = (φ − p)2 F ′′(p)+ O((φ − p)3), φ → p. (3.18)

Furthermore, we get

dξ

dφ
= 1

√
(φ − p)2 F ′′(p) + O((φ − p)3)

. (3.19)

Since
√

(φ − p)2 F ′′(p) + O((φ − p)3)

= |φ − p|(√|F ′′(p)| + O(φ − p)) (3.20)

and

1
√|F ′′(p)| + O(φ − p)

= 1
√|F ′′(p)| + O(φ − p),

(3.21)

we get

dξ

dφ
= 1

|φ − p|√F ′′(p)
+ O(1). (3.22)

Integration gives Eq. (3.17). This completes the proof
of Theorem 3.3. ��

Fig. 3 The profile of smooth solitary wave of φ(ξ) of system
(1.2)

Below, we will present some implicit formulas for the
single peak solitary wave solutions for some specific
cases.

Type 1: Smooth solitary wave solutions of system
(1.2)

At first, suppose σ = 1. There exists smooth solitary
wave solutions of system (1.2), which corresponds to
the homoclinic orbits defined by H(φ, y) = h1 in the
Fig. 1d. From (3.2), we have

1√
A

∫ q
φ

c−φ

(φ−p)
√

q−φ
dφ

= 1√
A

∫ q
φ

( −1√
q−φ

+ c−p
(φ−p)

√
q−φ

)dφ.
(3.23)

So, we have the parametric representation of solitary
wave solution of (1.2) as following:

φ(χ) = q − (q − p) tanh2(
√

q−p
2(c−p)

χ),

ξ(χ) = χ − 2
√

q − φ(χ).
(3.24)

The profile of smooth solitary wave is shown in Fig. 3.
Type 2: Peakon solutions of system (1.2)
Corresponding to the heteroclinic loop defined by

H(φ, y) = hs = h1 in the Fig. 1f, we have a peakon
solution. Let φ(0) = c

σ
, along with the heteroclinic
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Fig. 4 The profile of peakon of φ(ξ) of system (1.2)

orbits E3S+ and E3S− to do integration, we have

ξ =
√

σ
A

∫ c
σ

φ

√
( c

σ
−φ)(c−φ)

(φ−p)2( c
σ

−φ)
dφ

=
√

σ
A

∫ c
σ

φ [ −1√
c−φ

+ c−p
(φ−p)

√
c−φ

]dφ,

(3.25)

and its parametric representation of solution as follow-
ing:

φ(χ) = c − (c − p) tanh2(
χ

2
√

c−p
),

ξ(χ) =
√

σ
A [χ − 2

√
c − φ(χ)

+ 2
√

c − c
σ

− 2
√

c − p tanh−1
√

c− c
σ

c−p ].
(3.26)

The profile of peakon is shown in Fig. 4.
Type 3: Cuspon solutions of system (1.2)
If H(φ, y) = h = h1, the equilibrium point

E1(φ1, 0) is a saddle point. We note that lu and ls are the
unstable and stable manifold of saddle point E1(φ1, 0)

and close to the singular straight line φ = c
σ

(see
Fig. 1g). Let φ(0) = c

σ
, we have

√
σ
A

∫ c
σ

φ

√
(c−φ)( c

σ
−φ)

(φ−p)(
√

q−φ)
dφ,

=
√

σ
A

∫ c
σ

φ [ φ√
F1(φ)

+ A11√
F1(φ)

+ A12
(φ−p)

√
F1(φ)

]dφ,

(3.27)

Fig. 5 The profile of cuspon of φ(ξ) of system (1.2)

where F1(φ) = (c − φ)(q − φ)( c
σ

− φ), A11 = p −
c(1 + 1

σ
), A12 = c2

σ
+ p[p − (c + c

σ
)].

Integrating above equation, we have the parametric
representation of the cuspon solutions as following:

φ(χ) = q − q− c
σ

1−sn2(χ,k)
,

ξ(χ) =
√

σ
A g[(A11 + q + A12

q−p )χ

−(q − c
σ
)�(arcsin(sn(χ, k)), 1, k)

+ (q− c
σ

)A12

( c
σ

−p)(q−p)
�(arcsin(sn(χ, k)), α2

3, k)],

(3.28)

where g = 2√
c− c

σ

, k2 = c−q
c− c

σ
and α2

3 = q−p
c
σ

−p ,�(· · ·)
is the elliptic integral of the third kind. sn(χ, k) is
the Jacobian elliptic function. The profile of cuspon
is shown in Fig. 5.

3.2 Compacton solutions of system (1.2)

If H(φ, y) = hs = h2, we have the homoclinic orbits
which is tangent to the singular straight line φ = c

σ
at

point E3(φ3, 0)(see Fig. 2e). From H(φ, y) = hs, y =
φ′(ξ), given by (1.7), we have

(φ′)2 = A(φM − φ)(φ − c
σ
)2

(φ − c)(σφ − c)
. (3.29)
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h = hs = h2

Fig. 6 The profile of compacton of φ(ξ) of system (1.2)

Solving Eq. (3.29), we get the following exact paramet-
ric representations of compacton solutions of system
(1.2)

φ(χ) = φM − (φM − c
σ
)sn2(χ, k),

ξ(χ) = g
√

σ
A (φM − c

σ
)E(arcsin(sn(χ, k)), k)

(3.30)

for ξ ∈ [−ξl , ξl ], and φ(ξ) ≡ c
σ

for ξ ∈ (−∞,−ξl) ∪
(ξl ,+∞), where g = 2√

φM − c
σ

, k2 = φM − c
σ

φM −c , ξl =
g
√

σ
A (φM − c

σ
)E(π

2 , k), E(· ·) is the elliptic integral

of the second kind. The profile of compacton is shown
in Fig. 6.

4 Conclusion

In this paper, we study the generalized two-component
Hunter–Saxton system. By using the method of dynam-
ical system, we have analyzed the numbers and rela-
tive position of the equilibrium points. Furthermore,
we obtain the parametric representations of single peak
solitary wave and compacton solutions for the general-
ized two-component Hunter–Saxton system. Asymp-
totic analysis and numerical simulations are provided

for smooth solitary wave, peakon, cuspon and com-
pacton solutions of the generalized two-component
Hunter–Saxton system.

It is a very interesting topic to find how many peri-
odic traveling waves exist under some perturbation, and
when the solitary wave still exists with one or two peri-
odic traveling waves. This phenomenon was considered
in [27]. The first-order Melnikov function was used to
find the isolated zeros of the Melnikov function. The
Melnikov method is the essential way to answer the
above questions. For the Hunter–Saxton system under
perturbation, the existences of isolated periodic travel-
ing wave solutions deserve to study.
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