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Abstract This paper analyzes the security of a novel
image encryption scheme with a permutation–diffusion
structure, which is based on Brownian motion and
PWLCM chaotic system. By applying chosen plain-
text, we demonstrate that a hacker can determine the
permutation vector and the diffusion sequence used,
respectively, in permutation and diffusion procedure,
which can be exploited to reveal the plain image. The
effectiveness of the proposed chosen plaintext attack is
supported by concise theoretical analyses and is veri-
fied by experimental results.
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1 Introduction

With the rapid developments of information technol-
ogy and popularization of digital products require
that multimedia data are transmitted over all kinds
of communication networks. Therefore, secure deliv-
ery of multimedia data becomes increasingly impor-
tant. A digital image is one of the most popular mul-
timedia formats, which is widely used in the politi-
cal, economic, defense, education, etc. However, tradi-
tional text encryption schemes fail to be competent for
images’ encryption due to the big differences between
textual and digital images. To meet a great demand for
secure image transmission over networks, a variety of
encryption schemes utilizing all kinds of nonlinear the-
ories, such as chaos [1–21], reversible cellular automata
[5] and other theories [10,21], have been proposed.

Since there exists the subtle similarity between
chaos and cryptography, it makes chaos an ideal tool
to design secure and efficient encryption schemes. For
image encryption, chaos-based approaches have shown
superior performance [1–5]. Chaotic systems are char-
acterized by sensitive dependence on initial condi-
tions and control parameters, pseudorandomness and
ergodicity, which meet the classic Shannon require-
ments of confusion and diffusion. Therefore, chaotic
systems have attracted much attention for cryptol-
ogy [6–15]. Unfortunately, some chaotic encryption
algorithms have been found to be insecure and/or
incomplete from the viewpoint of modern cryptology
[16–20]. In order to enhance the security level of chaos-
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based image cryptosystems, it is of vital significance to
evaluate the security of chaos-based image encryption
algorithm.

In Ref. [21], a novel image encryption algorithm was
introduced based on Brownian motion and piecewise
linear chaotic map (PWLCM). The main idea of this
algorithm is introducing Brownian motion to scram-
ble the image, and the sum of image data is used in
the image permutation process. However, this is not
enough to make the cryptosystem secure. The equiva-
lent secret keys can be revealed by using chosen plain-
text attacks.

The rest of this paper is organized as follows. Sec-
tion 2 describes briefly the image encryption algorithm
under study. Detailed cryptanalysis on the algorithm is
presented in Sect. 3. Section 4 provides the examples
and experimental results. The last section concludes
this paper.

2 Description of the original encryption scheme

Wang and Xu’s encryption scheme is composed of
two processes: pixel permutation and diffusion, which
will be introduced in the following subsections, respec-
tively.

2.1 Permutation

Wang and Xu take each pixel of the image as a dynamic
Brownian particle, using the Monte Carlo method to
simulate a Brownian motion, thus effectively scram-
bling the image. In the cryptosystem, two Logistic maps
are used to generate permutation sequences:

un+1 = 3.925× un × (1− un) (1)

vn+1 = 3.925× vn × (1− vn) (2)

where un , vn ∈ [0, 1] are the states of the Logistic sys-
tems. Because the control parameter is 3.925, the map
is chaotic.

Suppose the plaintext image P to be encrypted is
of size M × N . Convert the 2D image P into a one-
dimensional sequence [p1, p2, . . . , pM×N ] (from left
to right, up to down), where pi denotes the pixel value
of the plaintext image in the row floor (i/N ) column
mod (i, N ). To calculate the sum (s) of all pixels in
the image: s = p1 + p2 + · · · + pM×N . Given u01

and v01 in advance and such that u01 > 0.1, v01 > 0.1,

then s is used to generate the initial value (u0, v0) of the
Logistic maps of Eqs. (1) and (2) by using the following
formulas:

u0 = u01 −
(

s/1014 −
[
s/1014

]) /
102 (3)

v0 = v01 −
(

s/1014 −
[
s/1014

]) /
102 (4)

where [·] means the integer part of a number.
Use the initial values u0, v0 and the Logistic maps

to generate two sequences (u1, u2, . . . , uM×N ) and
(v1, v2, . . . , vM×N ). For any pixel i ∈ (1, 2, 3, . . . , M
× N ), use the following formulas to acquire the two
angles under polar coordinates:

αi = ui × π (5)

βi = vi × 2π (6)

Then, using formula (7) to obtain the x, y. components
of the current moving distance.

{
xi = r × sin(αi )× cos(βi )

yi = r × sin(αi )× sin(βi )
(7)

where r denotes the step length of movement, αi and
βi denote the direction of movement of the i th parti-
cle(pixel). In Ref. [21], r = 2. So, one movement of
all pixels are gotten, then iterate this movement for R
rounds. Last, the positions of all pixels are recorded by
an array l, and the position of the i th pixel is denoted
by l(i) = (l1(i), l2(i)); l1(i) contains the location of
the x component, and l2(i) contains the y component.

Then, start from the first pixel p1, establish a one-to-
one map between pi and pl(i) (i = 1, 2, 3, . . . , M×N )

from 1 to M × N , and swap their positions one by one.
For example, choose a pixel p3 (located at x=1, y=3),
swap the values of the pixel p3 with pl(3)(located at
x = l1 (3), y = l2 (3)), and thus the values of the
pixels p3 and pl(3) are both changed.

It is quite obvious that the new position of any-
one pixel after movement for R rounds is determined
only by u10, v10, s and R. Namely, there exists a per-
mutation vector T = {t (i), i = 1, 2, . . ., M × N },
such that the i th pixel in the original image corre-
sponds to the t (i)-th pixel in the permuted image. It
is important to note that t (i) is determined only by
u10, v10, s and R in Ref. [21]. In fact, the permutation
vector T = [t (1), t (2), . . ., t (M × N )] is equivalent
to u10, v10, s and R.
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Brownian motion and PWLCM chaotic system 1513

2.2 Diffusion

In the diffusion process, the authors use the piecewise
linear chaotic map, which is defined as:

xi =F(xi−1, η)=
⎧
⎨
⎩

xi−1/η, 0 < xi−1 <η

xi−1/η, η ≤ xi−1 <0.5
F(1− xi−1, η), 0.5 ≤ xi−1 <1

(8)

Diffusion operations are described by Eq. (9):
⎧⎨
⎩

yi = F(yi−1, η)

di = (yi × 1014) mod 256
ci = p′i ⊕ di ⊕ ci−1

(9)

where i ∈ {1, 2, 3, . . . , M × N }, c0 is a given value
provided as a key, F means the PWLCM map, y0 > 0.1
is the PWLCM map’s initial value (given in advance),
η is the parameter, p′i is the i th pixel of the permuted
image with the scanning order from left to right and
up to down, and ci is the encrypted value of p′i . In
Ref. [21], u0 = 0.2, v0 = 0.2, R = 100, y0 =
0.2, η = 0.3, c0 = 100.

It is important to note that di is determined only
by y0 and η in Ref. [21]. In fact, sequence D =
[d(1), d(2), . . ., d(M × N )] is the diffusion vector,
which is equivalent to y0 and η.

3 The cryptanalysis and attack

According to Kerchoff’s principle, when analyzing an
encryption algorithm, an assumption is that the crypt-
analyst knows exactly the design and working of the
cryptosystem. Namely, cryptanalyst knows everything
about the cryptosystem except for the secret keys. There
are numerous techniques to implement cryptanalysis;
four classic attacks are presented below, from the hard-
est type to the easiest:

1. Ciphertext only attack The opponent possesses only
the ciphertext.

2. Known plaintext attack The opponent possesses
both a piece of ciphertext and the corresponding
plaintext.

3. Chosen plaintext attack The opponent obtains tem-
porary access to the encryption machinery, hence
he or she can encrypt any plaintext and then obtain
the corresponding ciphertext, but with an unknown
key.

4. Chosen ciphertext attack The opponent obtains
temporary access to the decryption machinery,
hence he or she can decrypt any ciphertext and
then obtain the corresponding plaintext, but without
knowing the secret keys.

The encryption algorithm is considered to be inse-
cure if it is not able to resist the attacks men-
tioned above. In Wang and Xu’s encryption scheme,
the secret keys are (u0, v0, y0, η, R, c0). However,
we find that the permutation vector T is exactly
equivalent to the secret keys u10, v10, s and R, and
the diffusion vector D is exactly equivalent to the
secret keys y0 and η. Once we obtain the values of
these two vectors, the cipher image can be recov-
ered easily. Suppose the cipher image to be recov-
ered in 1D form is C = [c(1), c(2), . . ., c(M × N )],
the corresponding plaintext image in 1D form is
P = [p(1), p(2), . . ., p(M × N )], and the cor-
responding permuted image in 1D form is P′ =
[p′(1), p′(2), . . ., p′(M × N )], where M is the num-
ber of rows, and N is the number of columns. We use
A = [a(1), a(2), . . ., a(M × N )] to denote the chosen
plaintext image, and B = [b(1), b(2), . . ., b(M × N )]
to denote the ciphertext image corresponding to A. The
procedure of recovering C is divided into three stages,
which are described, respectively, in Sects. 3.1 to 3.3.

3.1 Recover the diffusion vector D and the
sum value s

In order to recover the diffusion vector D and the sum
value s, we need only one pair of plaintext–ciphertext
as long as all the pixels in the plaintext image have the
same value. Our chosen plaintext attacks are described
in detail below.

Step 1. Choose a plaintext image A = [0,0,…,0]
and obtain its corresponding ciphertext image B =
[b(1), b(2), . . ., b(M × N )] by using Wang and Xu’s
encryption machinery. Suppose the sequences D are
denoted as D = [d(1), d(2), . . ., d(M × N )], which is
unrelated to the plaintext image. Because all the pix-
els in the permuted image A′ are still zero, namely
a′(i) = 0, i = 1, 2, . . ., M × N . According to Eq. (9),
we obtain the following results:{

d(i) = b(i)⊕ b(i − 1), i > 1
d(1) = c0 ⊕ b(1)

(10)

Step 2. By using Eqs. (9) and (10), we can obtain
p′(i) corresponding to C as:
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Fig. 1 The forms of the nk
chosen plaintext arrays

{
p′(i) = c(i)⊕ c(i − 1)⊕ d(i), i > 1
p′(1) = c(1)⊕ c0 ⊕ d(1) = c(1)⊕ b(1)

(11)

Step 3. Because the sum (s) of all pixels in the image
P is equal to that of all pixels in the image P′, we can
get the sum (s) of all pixels in the image P : s =
p′(1)+ p′(2)+ · · · + p′(M × N ).

3.2 Recover the permutation vector T

We use L to denote the pixel number of image C,
namely L = M×N . To decode the permutation vector
T, the chosen plaintext arrays must meet some condi-
tions. There are two cases to be considered.

Case 1: If sL = 1+ 2+ · · · + L ≤ s.
In this case, we chose the plaintext array AA, which

has the following form: AA = {1, 2, . . ., L − 2,

L − 1, L + s − sL}, such that the sum of AA is s
and the elements’ values are different from each other.
Once we get its corresponding ciphertext array BB =
{bb(1), bb(2), . . ., bb(L)} by using Wang and Xu’s
encryption machinery, we can obtain the transform vec-
tor T by using the following operations:

Step 1. Use the decoded D sequence in Eq. (10) to
obtain the permuted array AA′ = {aa′(1), aa′(2), . . .,

aa′(L)} from BB, and the fomula is as follows:
{

aa′(i) = bb(i)⊕ bb(i − 1)⊕ d(i), i > 1
aa′(1) = bb(1)⊕ d(1)⊕ c0 = bb(1)⊕ b(1)

(12)

Step 2. Comparing aa(i) and aa′( j), i = 1, 2, . . ., L;
j = 1, 2, . . ., L . If aa(i) = aa′( j), one can obtain
t (i) : t (i) = j . Repeat the comparing operation, until
all t (i) for i ∈ {1, 2, . . ., L} are obtained.

Case 2: If sL = 1+ 2+ · · · + L > s.

In this case, more than one chosen plaintext arrays
are need.

Step 1. We will find a maximum integer k in the rang
[L−1, 2] such that s−sk > k and mod(L , k+1) = 0,
where sk = 1 + 2 + · · · + k = k × (k + 1)/2. Let
nk = L/(k + 1).

Step 2. We chose nk pairs of plaintext–ciphertext
arrays to decode T = [t (1), t (2), . . ., t (L)]. The forms
of the nk chosen plaintext arrays are shown in Fig. 1,
n = 1, 2, . . ., nk .

From Fig. 1, one can see that every chosen plaintext
array [a(1), a(2), . . ., a(L)]has (k+1) elements whose
values greater than zero and each element is different
from others. The other (L−k−1) elements are all zero.
The sum of elements’ values in each chosen plaintext
array is s. For each chosen plaintext array, one can
get its corresponding ciphertext array by using Wang
and Xu’s encryption machinery. Then, one can do the
following operations:

Firstly, using the decoded D sequence in Eq. (10) to
decode the permuted array corresponding to the chosen
plaintext array, the formula is similar to Eq. (12).

Secondly, comparing each elements in the chosen
plaintext array with elements in the permuted array,
one can determine (k + 1) elements in T sequence.
For example, if the chosen plaintext array is the first
one, one can determine t (1), t (2), . . ., t (k + 1); if the
chosen plaintext array is the second one, one can deter-
mine t (k + 2), t (k + 3), . . ., t (2k + 2); . . .; if the cho-
sen plaintext array is the last one, one can determine
t (L − k), t (L − k + 1), . . ., t (L).

After all nk pairs of plaintext–ciphertext arrays being
performed, one can obtain the whole permutation vec-
tor T.
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3.3 Recover the plain image P

In Sect. 3.1, we obtained the whole random key
sequence D = [d(1), d(2), . . ., d(L)], which is only
related to the secret keys y0,η and independent of the
image to be encrypted. In Sect. 3.2, we also obtained the
whole permutation sequence T=[t (1), t (2), . . ., t (L)],
which is only related to the secret keys u10, v10, s and
R. Therefore, we can break any other ciphertext image
C = [c(1), c(2), . . ., c(L)] as long as C has the same
parameters y0, η, u10, v10, s and R. The decryption
process to recover P from C is as follows:

Step 1 Let i ← 1.
Step 2 Do the reversed permutation operation to

obtain p(i) from p′( j) by using the following formula:

p (i) = p′ (t (i)) (13)

Step 3 Let i ← i + 1.
Step 4 Repeat Step 2 to Step 3 until i reaches L .

Then, all p(i) of the plaintext are obtained.

4 Examples and experimental results

In this section, we demonstrate the process of attack
with two simple examples and give some experimental
results of recovered images.

4.1 Case 1

In this case, suppose the 3×3 cipher image to be recov-
ered in 1D form is C = [207, 214, 12, 217, 79, 181,

212, 218, 136], M = 3, N = 3, and L = M × N = 9.
The aim is to recover the plaintext P corresponding
to C.

4.1.1 Recover the diffusion vector D and the
sum value s

Step 1. We chose a plaintext array A=[0, 0, 0, 0, 0, 0,
0, 0, 0], and if obtain its corresponding ciphertext array
B=[207, 178, 16, 216, 156, 84, 51, 50, 97} by using
Wang and Xu’s encryption machinery. According to
Wang and Xu’s scheme, all the pixels in the permuted
array A′ are still zero. According to Eq. (10), we obtain
the following results:

[d (2) , d (3) , d (4) , d (5) , d (6) , d (7) , d (8) , d (9)]

= [125, 162, 200, 68, 200, 103, 1, 83] , (14a)

d (1)⊕ c0 = 207; (14b)

Step 2. By using Eq. (11), we can obtain p′(i) cor-
responding to C as:
[

p′ (1) , p′ (2) , p′ (3) , p′ (4) , p′ (5) , p′ (6) ,

p′ (7) , p′ (8) , p′ (9)
]

= [0, 100, 120, 29, 210, 50, 6, 15, 1] . (15)

Step 3. Because the values of elements are not
changed in the permutation process, we can get the
sum s of elements’ values in the array P : s =
p′(1)+ p′(2)+ · · · + p′(L) = 531.

4.1.2 Recover the permutation vector T

Because sL = 1 + 2 + · · · + 9 = 9 × (9 + 1)/2 =
45 ≤ s = 531, the chosen plaintext array AA should
have the following form: AA=[1, 2, 3, 4, 5, 6, 7, 8,
495], such that the sum of AA is 531 and the elements’
values are different from each other. Suppose we obtain
its corresponding ciphertext array BB=[204, 181, 17,
222, 159, 95, 57, 471, 390] by using Wang and Xu’s
encryption machinery. Then, by using the decoded D
sequence in Eq. (14), we can obtain the permuted image
AA′ = {aa′(1), aa′(2), . . ., aa′(L)} from BB, and the
results are as follows:

AA′ = [3, 4, 6, 7, 5, 8, 1, 495, 2] (16)

Comparing AA and AA′ for all elements: a(1) = a′(7),

a(2) = a′(9), a(3) = a′(1), a(4) = a′(2), a(5) =
a′(5), a(6) = a′(3), a(7) = a′(4), a(8) = a′(6), a(9)

= a′(8). Therefore, T is as follows:

T = [7, 9, 1, 2, 5, 3, 4, 6, 8] (17)

4.1.3 Recover the plain image P

According to Eqs. (15) and (17), do the reversed permu-
tation operation to obtain p(i) from p′(t (i)) by using
sequence T : p(i) = p′(t (i)). Therefore, P is recov-
ered as follows:

P = [6, 1, 0, 100, 210, 120, 29, 50, 15] (18)

4.2 Case 2

In this case, suppose the 3×3 cipher image to be recov-
ered in 1D form is C = [196, 179, 18, 219, 157, 93, 62,

58, 105]; M = 3, N = 3, and L = M × N = 9. The
aim is to recover the plaintext P corresponding to C.
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4.2.1 Recover the diffusion vector D and the
sum value s

Step 1. We chose a plaintext array A=[0, 0, 0, 0, 0,
0, 0, 0, 0]. Suppose its corresponding ciphertext array
obtained by using Wang and Xu’s encryption machin-
ery is B=[207, 178, 16, 216, 156, 84, 51, 50, 97].
According to Wang and Xu’s scheme, all the pixels
in the permuted array A′ are still zero. According to
Eq. (10), we obtain the following results:

[d (2) , d (3) , d (4) , d (5) , d (6) , d (7) , d (8) , d (9)]

= [125, 162, 200, 68, 200, 103, 1, 83] , (19a)

d (1)⊕ c0 = 207; (19b)

Step 2. By using Eqs. (9) and (19), we can obtain
p′(i) corresponding to C as:
[

p′ (1) , p′ (2) , p′ (3) , p′ (4) , p′ (5) , p′ (6) ,

p′ (7) , p′ (8) , p′ (9)
]

= [11, 10, 3, 1, 2, 8, 4, 5, 0] . (20)

Step 3. Because the values of elements are not
changed in the permutation process, we can get the
sum s of elements’ values in array P : s = p′(1) +
p′(2)+ · · · + p′(9) = 44.

4.2.2 Recover the permutation vector T

Because L = M × N = 3 × 3 = 9, sL = 1 + 2 +
· · · + 9 = 9× (9+ 1)/2 = 45 > s = 44.

Step 1. We find the maximum integer k = 2 in the
rang [L − 1, 2] such that sk = 1 + 2 = 3, s − sk =
41 > k, and mod(L , k+1) = 0. nk = L/(k+1) = 3.
In this case, 3 chosen plaintext images are need.

Step 2. We chose the first plaintext array as A =
[1, 2, s−s2, 0, 0, 0, 0, 0, 0]=[1, 2, 41, 0, 0, 0, 0, 0, 0].
Suppose its corresponding ciphertext array obtained by
using Wang and Xu’s encryption machinery is B=[ 207,
178, 17, 217, 180, 126, 25, 24, 75]. According to (19a)
and (19b), by using Eq. (9), we can obtain A′ corre-
sponding to B as:

A′ = [a′(1), a′(2), a′(3), a′(4), a′(5), a′(6),

a′(7), a′(8), a′(9)] = [0, 0, 1, 0, 41, 2, 0, 0, 0].
By comparing A and A′, a(1) = a′(3), a(2) =
a′(6), a(3) = a′(5); therefore, we can determine
t (1) = 3, t (2) = 6, t (3) = 5.

Step 3. We chose the second plaintext array as A =
[0, 0, 0, 1, 2, s−s2, 0, 0, 0]=[0, 0, 0, 1, 2, 41, 0, 0, 0].

Suppose its corresponding ciphertext array obtained by
using Wang and Xu’s encryption machinery is B = [205,
177, 19, 219, 159, 87, 25, 24, 75]. According to (19a)
and (19b), by using Eq. (9), we can obtain A′ corre-
sponding to B as:

A′ = [a′(1), a′(2), a′(3), a′(4), a′(5), a′(6),

a′(7), a′(8), a′(9)] = [2, 1, 0, 0, 0, 0, 41, 0, 0].
By comparing A and A′, a(4) = a′(2), a(5) =

a′(1), a(6) = a′(7); therefore, we can determine
t (4) = 2, t (5) = 1, t (6) = 7.

Step 4. We chose the third plaintext array as A =
[0, 0, 0, 0, 0, 0, 1, 2, s−s2]=[0, 0, 0, 0, 0, 0, 1, 2, 41],
Suppose its corresponding ciphertext array obtained by
using Wang and Xu’s encryption machinery is B = [207,
178, 16, 241, 181, 125, 26, 25, 75]. According to (19a)
and (19b), by using Eq. (9), we can obtain A′ corre-
sponding to B as:

A′ = [a′(1), a′(2), a′(3), a′(4), a′(5), a′(6),

a′(7), a′(8), a′(9)] = [0, 0, 0, 41, 0, 0, 0, 2, 1].
By comparing A and A′, a(7) = a′(9), a(8) =

a′(8), a(9) = a′(4); therefore, we can determine
t (7) = 9, t (8) = 8, t (9) = 4.

To sum up, we obtain the whole T as follows:

T = [3, 6, 5, 2, 1, 7, 9, 8, 4] (21)

4.2.3 Recover the plain image P

According to Eqs. (20) and (21), do the reversed per-
mutation operation to obtain P from P′ by using the
permutation sequence T : p(i) = p′(t (i)). Therefore,
P is recovered as follows:

P = [3, 8, 2, 10, 11, 4, 0, 5, 1] (22)

4.3 Results of some experiments

To verify the real performance of the above analy-
sis, some experiments are carried out on three plain
images of size 256 × 256: Lena, Cameraman, and a
chosen plaintext matrix with all elements are zero A
= [0, 0, …, 0]. The secret keys are u0 = 0.2, v0 =
0.2, R = 100, y0 = 0.2, η = 0.3, c0 = 100.
The encryption results of the three images by using
Wang and Xu’s encryption machinery are shown in
Fig. 2a–c, respectively. According to the chosen plain-
text image A and its corresponding ciphertext image,
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Fig. 2 Three encrypted images with the same keys. a The
encrypted Lena, b the encrypted Cameraman, c the encrypted
zeros matrix

we obtain the random key code matrix D = [d(1) ⊕
c0, d(2), . . ., d(256); d(257), d(258), . . ., d(512);
. . .; . . ., d(256×256)], which is shown in Fig. 3a. Fur-
ther, the permutation vector T corresponding to plain
images Lena and Cameraman are decoded, respec-
tively. Then, the equivalent diffusion vector D and per-
mutation vector T are used to decrypt the cipher images
shown in Fig. 2a, b. The recovered results are shown
in Fig. 3b, c, which coincide with the original plain
images, respectively.

When the plaintext is of size M×N , the attack com-
plexity is O(n×M× N ), where n denotes the number
of chosen plaintexts. In the worst case, the maximum

Fig. 3 The recovered Key vector D and plain images. a Key
vector, D, b recovered Lena, c recovered Cameraman

of chosen plaintexts is nk = M × N/(k + 1), where k
is an integer in the rang [2, M×N −1]. The time com-
plexity of Wang’s encryption algorithm is O(M × N ).
We tested the time complexity of our breaking method
and Wang’s encryption algorithm on a personal com-
puter using MATLAB compiler. The average time to
encrypt the image Lena in size 256 × 256 by using
Wang’s encryption algorithm is 3.53 s, and the average
time to break the encrypted Lena by using our break-
ing algorithm is 86.44 s. The computer used for the test
possesses two 2.60 GHz Intel Celeron processors with
2 GB RAM memory and 500 GB hard disk capacity,
running on 32 bit Windows 7 and MATLAB R2013a.
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5 Conclusion

In this paper, we have analyzed an image encryption
scheme in detail, which is based on Brownian motion
and PWLCM chaotic system. It is found that the equiva-
lent keys can be recovered correctly with several chosen
plain images, hence this encryption algorithm cannot
resist chosen plaintext attacks. Both theoretical analy-
sis and experimental results are presented to support the
proposed attack. As a conclusion, the image encryption
algorithm under study is not recommended in applica-
tions requiring a high level of security.

Our breaking method can be general to a certain
extent for one type of encryption algorithm. If the
permutation and diffusion keys of a encryption algo-
rithm are independent of the plain images, its equiva-
lent secret keys can be revealed by using our method.

Wang and Xu’s algorithm has some excellent ben-
efits, but two fatal flaws presented in Sect. 2 make it
feasible to choose plaintext attack. One flaw is that both
the permutation vector T and the diffusion vector D are
unrelated to the plaintext image; another flaw is that the
permutation vector T and the diffusion vector D were
separated and independent. To avoid the chosen plain-
text attack mentioned above, we should do one of the
two things: (1) vary the permutation vector T or the
diffusion vector D with different plaintext images and
(2) make the permutation vector T and the diffusion
vector D to establish relations.
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