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Abstract This paper aims at controlling chaos exhib-
ited in the semi-passive dynamic walking of a torso-
driven biped robot as it goes down an inclined surface.
Our control approach is based on the OGY method. The
proposed biped robot is a three-degrees-of-freedom
planar biped having an impulsive hybrid nonlinear
dynamics. For this walker, we use only one torque
between the stance leg and the torso in order to control
the torso at some desired position and then in order to
generate a semi-passive gait. The desired torso angle is
considered as the control parameter in our OGY-based
control approach. We develop a reduced simple impul-
sive hybrid linear model by linearizing the impulsive
hybrid nonlinear dynamics around a desired period-
1 hybrid limit cycle. This conducts to determine an
explicit expression of a constrained controlled Poincaré
map. A linearization of the controlled Poincaré map
around its fixed point permits to looking for the gain
matrix of the stabilizing control law. We show that
application of the developed OGY-based control para-
meter law has controlled the chaotic semi-passive gait.
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1 Introduction

In research on bipedal walking robots, passive dynamic
walking has shown to be a promising approach in appli-
cations where energy efficiency of walking is very
important. The passive dynamic walking is a walking
method for which the biped robot does not require any
exogenous source of energy [1–10]. However, it uses
only the effect of gravity to move down an inclined
surface. The most famous biped model that uses this
walking mode is the compass-like biped robot [2–4].
Furthermore, the passive dynamic walking approach
has been served as a starting point for designing mech-
anisms that require little energy, and also for designing
some controllers that improve stability and robustness
of the locomotion of biped robots [9,11]. Furthermore,
several approaches (such as [10,12,13]) explicitly use
the knowledge obtained in passive dynamic walking
for control. Actuated dynamic walking as opposite to
the passive dynamic walking is meant to make the
mechanism controllable while the mechanism itself
is constructed, so that the effects making the passive
dynamic walking possible would as much as possible
contribute to an energy efficient bipedal locomotion.
From this point, the semi-passive dynamic walking of
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biped robots is also an approach that contributes to an
energy efficiency. In this walking method, the biped
robot uses some actuators at its joints as it goes down a
sloped ground. Recently, we used this walking type for
a torso-driven biped robot: a compass-gait biped robot
for which we added a torso as an upper body [14–16].
We used a unique torque between the torso and the
stance leg in order to control the torso at some desired
position. Thus, the swing leg was completely passive.

Mathematical walking models of biped robots have
been known that are described by an impulsive hybrid
nonlinear dynamics [17]. Because of such impulsive
hybrid feature, the gait model of biped robots can dis-
play very interesting and attractive behaviors, namely
chaos and bifurcations. It is known so far that pas-
sive dynamic walking of biped robots displays chaos
and period-doubling bifurcations [18,19]. Iqbal et al.
[7] provide an overview of previous literature on the
chaotic behavior of passive dynamic biped robots. We
showed recently that the passive dynamic walking of
a compass-gait model and the semi-passive dynamic
walking of a torso-driven biped model exhibit, besides
chaos and period-doubling bifurcations, additional and
complex nonlinear phenomena such as cyclic-fold
bifurcations, intermittency, interior and boundary cri-
sis [14–16,20,21]. Thus, the control of these undesired
phenomena will be tremendously needed.

Since the publication of the seminal paper of the
pioneering work of Ott et al. [22], controlling chaos
has become more interesting in research and practical
applications. Basic methods of controlling chaos may
be found in [23–27]. One of these methods is the Ott et
al. (OGY) method. In the seminal paper [22], two key
ideas were introduced for the OGY method: (i) to use
the discrete system model based on linearization of the
controlled Poincaré map for controller design, and (ii)
to use the recurrence property of chaotic motions and
apply control action only at an instant when the motion
returns to the neighborhood of a desired state of the
orbit. In fact, two crucial features of a chaotic system
make it a candidate for OGY control approach. First,
this method relies on the presence within the chaotic
attractor of an infinite number of unstable periodic
orbits. Secondly, the OGY method requires an accessi-
ble system control parameter through which an applied
control input changes the location of the unstable fixed
point (or systematically the unstable limit cycle for a
continuous dynamics) and hence its stabilization. Then,
by making small time-dependent perturbations to the

control parameter of the system, it is possible to stabi-
lize one of the unstable periodic orbits. Efficiency of
this method has been confirmed by numerous simula-
tions as well as physical experiments.

In literature, we believe that few works have focused
on chaos control for walking dynamics of biped robots
[7,28–33]. Suzuki and Furuta [28] used the OGY
method for the stabilization of the passive dynamic
walking of a compass-gait biped robot. They used the
least square method for the determination of a lin-
ear discrete model of the Poincaré map. They chose
the torque at the hip of the compass-gait biped as the
adjustable control parameter. Recently, in [34], we used
the OGY-based control approach in order to control
chaos exhibited in the passive dynamic walking of the
compass-gait biped robot. We used the hip torque as the
controller input in the OGY control law. We resorted
to a linearization of the impulsive hybrid nonlinear
dynamics of the compass-gait model around a desired
limit cycle in order to develop an analytical expression
of the controlled Poincaré map.

The first step in designing the OGY control is the
development of the controlled Poincaré map. However,
the impulsive hybrid nonlinear dynamics of the semi-
passive dynamic walking of the torso-driven biped
robot complicates this task. Therefore, in order to solve
this problem, our intuition is to transform the nonlinear
model into a linear one. Nevertheless, validity of the
linear model may become questionable if the system
trajectory involves states that are too far away from the
operating point. Thus, in order to have a linear model
fairly close to the nonlinear one, our main objective is
to linearize, for a desired set of parameters, the nonlin-
ear model around a desired period-1 hybrid limit cycle
within a chaotic attractor. In this paper, the linearization
method was adopted by us in [34]. We will show that
this strategy gives us a reduced simple impulsive hybrid
linear model that will be found to generate almost the
same characteristics of the impulsive hybrid nonlinear
dynamics. Hence, using the developed linear model, we
will determine an explicit expression of a constrained
controlled Poincaré map. Its fixed point will be then
numerically identified. The desired torso angle of the
biped robot will be used as the control parameter in
the Poincaré map. In addition, we will linearize the
constrained controlled Poincaré map. Besides, we will
build the gain matrix of the OGY control that stabilize
the linearized Poincaré map and hence that stabilize
the fixed point of the constrained Poincaré map. We
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OGY-based control of chaos in a semi-passive torso-driven biped robot 1365

will show finally that implementation of the developed
OGY-based parameter (desired torso angle) control will
stabilize the semi-passive gait of the torso-driven biped
robot and then will control chaos.

In fact, in [34], as noted before, we have controlled
the passive dynamic walking of the compass-gait biped
robot. This subject is achieved by introducing a con-
troller (a torque input) at the hip of the biped robot.
Hence, the utility of the passive dynamic walking is
found to be lost because the compass-gait biped robot
is found to be under a control input. Then, an exter-
nal energy was needed for the compass robot. How-
ever, the torso-driven biped robot is the compass-gait
biped robot with an upper body (a torso). Moreover,
we used a PD controller in order to stabilize the torso
at some desired position [14–16]. Thus, we obtained
a semi-passive dynamic walking that can be either
chaotic or periodic. Then, in order to control the unsta-
ble semi-passive gait, we will not employ an addi-
tional control input. However, we will use the desired
torso angle as the available control parameter, and
hence, we will use the torso as a mechanical mech-
anism to control the semi-passive chaotic gait. As a
result, we will not need to a supplementary exter-
nal energy to control the bipedal locomotion. Accord-
ingly, our main contribution in this work is the control
of semi-passive bipedal locomotion without an addi-
tional control input and with a maximum energy effi-
ciency, which is an important criterion in bipedal robots
[17].

The layout of the rest of the paper is as follows.
In Sect. 2, we present the concept of the OGY control
method. In Sect. 3, we provide the impulsive hybrid
nonlinear dynamics of the semi-passive dynamic walk-
ing of the torso-driven biped robot. The semi-passive
controller for the biped robot and the problem formu-
lation are given also in this section. Section 4 describes
our method adopted for the linearization of the impul-
sive hybrid nonlinear dynamics around a desired hybrid
limit cycle and the development of an impulsive hybrid
linear model. In Sect. 5, we determine the analyti-
cal expression of a constrained controlled Poincaré
map. The linearization of the constrained controlled
Poincaré map around the fixed point of the Poincaré
map and its stabilization are presented in Sect. 6. The
subject of chaos control using the impulsive hybrid
nonlinear dynamics is addressed in Sect. 7. Finally, in
Sect. 8, some conclusions and future works are pre-
sented.

2 Concept of the OGY-based control

The OGY method is based mainly on the linearization
of the Poincaré Map. The essential of the OGY-based
control method is as follows [24].

Let consider a controlled (nonlinear) system with
the following differential equation:

ẋ = f (x, u) (1)

where x ∈ �n and u ∈ �. We stress that the variable
u can be either the changeable system parameter or the
standard input control.

We consider the desired trajectory x∗ (t) solution of
(1) for u = u∗. For the system (1), we construct the
so-called Poincaré section PS :

PS = {
x ∈ �n : s(x) = 0, sx f (x, u∗) �= 0

}
(2)

with sx = ∂s(x)
∂x .

Next, we consider the map x �−→ P (x, u) with
P (x, u) is the point of the first return to the Poincaré
section PS of the solution of the system (1) with con-
stant input u that begins from the point x. The map
x �−→ P (x, u) is called the controllable Poincaré
map.

Iteration of this map conducts to the following dis-
crete system:

xk+1 = P(xk, uk) (3)

where xk = x(tk), tk is the time instant of the kth inter-
section with the Poincaré section PS , and uk is the value
of control u(t) over the interval between tk and tk+1.

Thus, the first step in designing the OGY control
law lies in the determination of the expression of this
controlled Poincaré map (3). The second step consists
in the identification of the fixed point x∗ of the Poincaré
map for u = u∗ solution of the following function:

P (x∗, u∗) − x∗ = 0 (4)

The next step lies in the linearization of the con-
trolled Poincaré map in order to replace the original
system (1) by the following linearized discrete system:

δxk+1 = A δxk + B δuk (5)
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where δxk = xk − x∗, δuk = uk − u∗, and

A = ∂

∂xk
P (x∗, u∗) , B = ∂

∂uk
P(x∗, u∗).

The forth step in designing the OGY controller lies
in the search for the gain K of the stabilizing control
law:

δuk = K δxk (6)

for the linear discrete system (5).
Finally, we apply the OGY-based controller

uk = u∗ + K (xk − x∗) (7)

to the initial system (1).
It is noteworthy that the main key in designing

the OGY control for the (nonlinear) system (1) is the
determination of an explicit expression of the con-
trolled Poincaré map (3). In this work, we will use this
OGY method to control chaos exhibited in the impul-
sive hybrid nonlinear dynamics of the semi-passive
dynamic walking of the torso-driven biped robot.

3 Semi-passive dynamic walking of the
torso-driven biped robot

This section gives the walking dynamics of the semi-
passive torso-driven biped robot as it goes down an
inclined plane and its walking patterns as some bifur-
cation parameter varies.

3.1 The semi-passive torso-driven biped robot model

A schematic representation of the torso-driven biped
robot is provided in Fig. 1 [14–16]. The significant para-
meters in the dynamics description are given in Table 1.
This planar biped robot is in fact a compass-gait biped
model [21,34] for which we added a torso as an upper
body. This biped robot is a subclass of rigid mechani-
cal systems subject to unilateral constraints. It has only
three degrees of freedom. The torso-driven biped robot
is composed of two identical legs: a swing leg and a
stance leg, a frictionless hip and a torso. Each leg has a
lumped mass m concentrated at a distance b from the
hip that has a mass m H . The torso has a point mass mT

located at a distance r from the hip joint. The torso is
employed to drive the biped robot on the walking sur-
face of slope ϕ. The configuration of the biped walker is

Fig. 1 Schematic of the semi-passive torso-driven biped robot
on a slope ϕ

Table 1 Specification of simulation parameters for the torso-
driven biped robot model

Symbol Description Value

a Lower leg segment 0.5 m

b Upper leg segment 0.5 m

l Leg segment: l = a + b 1 m

r Torso segment 0.5 m

m Mass of leg 5 kg

m H Mass of hip 15 kg

mT Mass of torso 10 kg

g Gravitational constant 9.8 m/s2

essentially determined by the stance angle θs , the non-
supporting (swing) angle θns and the torso angle θt .
Positive angles are calculated in the counterclockwise
direction relative to the indicated vertical lines.

It is well known that the passive compass-gait biped
robot is powered only by gravity without any actuation,
and with an adequate initial configuration, it walks pas-
sively and indefinitely down an inclined surface. Then,
in order to have the passive form of the bipedal walk
for he torso-driven biped robot, we have used only a
control law u between the torso and the stance leg. The
main role of this control law is to stabilize the torso
at some desired position, while the swing leg is main-
tained unactuated and its motion is completely passive.
Accordingly, depending on the initial configuration,
the dynamic walking of the torso-driven biped robot
is defined as semi-passive.
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3.2 Impulsive hybrid nonlinear dynamics

The model of the semi-passive dynamic walking of
the torso-driven biped robot consists of a continuous
dynamics of the swing phase and algebraic equations
of the impulsive impact phase. The continuous dynam-
ics and the algebraic equations form a complex system
defined as an impulsive hybrid nonlinear dynamics.

3.2.1 Modeling hypotheses

For the design of the semi-passive dynamic walking of
the torso-driven biped robot, we have considered some
assumptions:

– The biped robot is planar, whose movement is con-
strained in the sagittal plane,

– The biped robot consists of straight rigid segments,
and it is without knees and feet,

– The dynamic walking of the biped robot consists of
two alternating phases: a swing phase and a very
instantaneous impact phase,

– The stance leg acts as a pivot during the swing phase,
– The swing leg undergoes neither slipping nor rebo-

und at the impact,
– The bipedal locomotion is from left to right, so

that the swing leg moves behind the stance leg and
touches the ground at the impact phase in front of
the stance leg.

– After impact, the stance leg leaves the ground with-
out any interaction with the walking surface,

– The reaction force due to the impact can be modeled
as an impulse. The impulsive force has as a result dis-
continuous changes in the angular velocities of the
biped robot, while the position states remain contin-
uous.

– The contact of the swing leg with the inclined surface
is modeled as a contact between two rigid bodies.

Furthermore, we stress that when the two legs are
overlapped during the swing stage, the scuffing prob-
lem of the swing leg with the ground is neglected in
simulation.

3.2.2 Continuous dynamics of the swing phase

The continuous dynamics of the torso-driven biped
robot as it goes down an inclined plane translates the
bipedal motion during the swing phase. It describes the
situation when the stance leg is fixed on the ground as a
pivot and the swing leg swings forward while walking
down the slope. Then, the continuous dynamics will be
represented by a set of nonlinear differential equations.

Let θ = [
θns θs θt

]T
be the vector of gener-

alized coordinates of the torso-driven biped robot.
Then, under certain assumptions noted before, the
swing motion can be described by the following Euler–
Lagrange system:

J (θ)θ̈ + H(θ , θ̇) + G(θ) = Bu as long as θ ∈ Ω,

(8)

where J is the inertia matrix, H includes Coriolis and
centrifugal terms, G includes gravity forces, and B is
the input matrix. These matrices are defined like so:

J (θ) =
⎡

⎣
mb2 −mlb cos(θs − θns) 0

−mlb cos(θs − θns) ma2 + (m + m H + mT )l2 mT rl cos(θs − θt )

0 mT rl cos(θs − θt ) mT r2

⎤

⎦ ,

H(θ , θ̇) =
⎡

⎣
mlbθ̇2

s sin(θs − θns)

−mlbθ̇2
ns sin(θs − θns) + mT rl θ̇2

t sin(θs − θt )

−mT rl θ̇2
s sin(θs − θt )

⎤

⎦ ,

G(θ) = g

⎡

⎣
mb sin(θns)

−(ma + (m + m H + mT )l) sin(θs)

−mT r sin(θt )

⎤

⎦ , and B =
⎡

⎣
0
1

−1

⎤

⎦ .

While going down the inclined plane, the torso-
driven biped robot is in fact subject to only one natural
unilateral constraint defined by expression (9). This
expression corresponds to the distance between the tip
of the swing leg and the ground. It represents the situ-
ation that the swing leg is always above the ground.

Ω =
{
θ ∈ �3 : L1(θ) = l (cos(θs + ϕ)

− cos(θns + ϕ)) > 0
}

. (9)

123



1368 H. Gritli et al.

In fact, depending on the initial conditions, the geo-
metric and inertial properties of the biped robot and the
inclination of the ground ϕ, a contact of the swing leg
with the walking surface can occur just at the begin-
ning of the swing phase and when the two legs are
overlapped (scuffing problem). Then, in our numerical
simulations, these two situations are neglected during
the swing phase. In fact, in order to avoid the scuffing
problem for a real biped robot, we can use a prismatic
joint at each leg as in [2,10]. Thus, we will assume that
the natural unilateral constraint (9) will be satisfied dur-
ing the swing phase.

3.2.3 Algebraic equations of the impact phase

The instantaneous contact of the swing leg with the
walking surface induces impulsive transitions in the
vector of angular velocities θ̇ of the torso-driven biped
robot. These impulsive effects are translated by some
defined algebraic equations. At the impact, a switching

of the swing leg and the stance one occurs: that is, the
swing leg becomes the stance one and vice versa. The
impact phase occurs when the three following condi-
tions are well satisfied:

1. the swing leg reaches the ground,
2. the swing leg is moving downward,
3. the swing leg is in front of the stance leg.

In fact, the third condition is added in order to avoid
the scuffing problem. These three impact constraints
can be translated by the following set which describes
the expression of the impact surface Γ :

Γ =

⎧
⎪⎪⎨

⎪⎪⎩

L1(θ) = l (cos(θs + ϕ) − cos(θns + ϕ)) = 0
L2(θ , θ̇) = l

(
sin(θns + ϕ)θ̇ns

− sin(θs + ϕ)θ̇s
)

< 0
L3(θ) = l (sin(θns) − sin(θs)) > 0

⎫
⎪⎪⎬

⎪⎪⎭
.

(10)

We note that: L2(θ , θ̇) = dL1(θ)
dt = ∂L1(θ)

∂θ
θ̇ .

Algebraic equations modeling positions and veloc-
ities transitions at the impact with the walking surface
are expressed by [14,16]:

{
θ+ = Reθ

−

θ̇
+ = Seθ̇

− (11)

where subscribes + and − denote just after and just
before the impact phase, respectively. The impulsive
impact (11) is described by the renaming matrix Re

and the reset matrix Se. These two matrices are defined
by:

Re =
⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ ,

Se = Re − ReM−1
e N e

(
D−1

e + N T
e M−1

e N e

)−1 Qe,

where

Me = J − CeD−1
e CT

e , N e = QT
e − CeD−1

e , De = (2m + m H + mT )I2,

Ce =
⎡

⎣
mb cos(θns) mb sin(θns)

− (ma + (m + m H + mT ) l) cos(θs) − (ma + (m + m H + mT ) l) sin(θs)

−mT r cos(θt ) −mT r sin(θt )

⎤

⎦ ,

Qe =
[

l cos(θns) −l cos(θs) 0
l sin(θns) −l sin(θs) 0

]
, and I2 is the identity matrix of dimension 2.

3.2.4 Semi-passive control law

Our main goal was to achieve an efficient semi-passive
dynamic walking of the torso-driven biped robot while
walking down an inclined surface by controlling the
torso at some desired position (desired torso angle θd

t ).
We then apply an output feedback control for the torso,
so that it will be stabilized at the desired position. Thus,
θt is the control output. The second-order derivative
with respect to time becomes:

θ̈t = CM(θ , θ̇) + CN (θ)u, (12)
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where C= [0 0 1
]
,M(θ , θ̇)= − J (θ)−1

(H(θ , θ̇)

+G(θ)
)
, and N (θ) = J (θ)−1B.

The control input, u, for achieving θt −→ θd
t can

be determined as

{
u = (CN (θ))−1 (v − CM(θ , θ̇)

)

v = −Kd θ̇t + Kp(θ
d
t − θt )

(13)

where Kp and Kd are two scalar gains of the control
law u.

Hence, expression of u in (13) describes the semi-
passive control law that will be applied to the torso-
driven biped robot as it goes down the inclined sur-
face in order to control the torso at the desired position
θd

t and accordingly to obtain a semi-passive dynamic
walking.

3.2.5 Complete model of the semi-passive dynamic
walking

Expressions (8)–(11) and (13) form the nonlinear
impulsive hybrid dynamics of the semi-passive dynamic
walking of the torso-driven biped robot. The differen-
tial equation in (8) can be rewritten like so:

θ̈ = M(θ, θ̇) + N (θ)u. (14)

Furthermore, expression of v in (13) can be rewritten
as v = −C (Kpθ + Kd θ̇

)+ Kpθ
d
t . Then, substituting

(13) into (14) yields:

θ̈ =
(

I3−N (θ)C
CN (θ)

)
M(θ , θ̇)− N θ)C

CN (θ)

(Kpθ + Kd θ̇
)

+ N (θ)

CN (θ)
Kpθ

d
t , (15)

where I3 is the identity matrix of dimension 3.

Let x =
[
θT θ̇

T
]T

be the state vector. Thus,

the semi-passive impulsive hybrid nonlinear dynamics
defined by (15), (9)–(11) is reformulated as follows:

{
ẋ = F (x, θd

t ) = f (x) + g(x)θd
t as long as x ∈ Ω

x+ = h
(
x−) whenever x− ∈ Γ

(16)

where

{
Ω = {

x ∈ �6 : L1 (x) > 0
}

Γ = {
x ∈ �6 : L1 (x) = 0, L2 (x) < 0, L3 (x) > 0

}

(17)

and x+ denotes the value of x just after the impact, and
x− denotes the value of x just before the impact.

In (16), f (x) =
⎡

⎢
⎣

θ̇(
I3 − N(θ)C

CN(θ)

)
M(θ , θ̇)

−N(θ)C
CN(θ)

(Kpθ + Kd θ̇
)

⎤

⎥
⎦ and

g(x)=
[

03×1
N(θ)

CN(θ)
Kp

]

, and h (x)=
[ Re 03×3

03×3 Se

]
x.

The solution of the impulsive hybrid nonlinear
dynamics defined by (16) and (17) of the torso-driven
biped robot can be expressed in terms of flow as:

x(t) = φ (t, x0) , (18)

where x0 = φ (t0, x0) is the initial condition of the
semi-passive gait.

In fact, the nonlinear dynamics (16) is expressed
in function of the desired torso angle θd

t because it
will be used next as the adjustable control parameter
for the OGY-like method in order to control chaos in
the semi-passive dynamic walking of the torso-driven
biped robot.

3.3 Semi-passive walking dynamics
of the torso-driven biped robot

We showed in [14–16] that the semi-passive dynamic
walking of the torso-driven biped robot exhibits dif-
ferent nonlinear phenomena such as bifurcations and
chaos as some bifurcation parameter varies. Figure 2
reveals the semi-passive walking patterns for two bifur-
cation parameters, namely the slope angle ϕ (Fig. 2a)
and the desired torso angle θd

t (Fig. 2b). The first bifur-
cation diagram was plotted for θd

t = 0◦, whereas the
second one (Fig. 2b) was plotted for ϕ = 5◦. These
two bifurcation diagrams show two distinct attractors:
A1 depicted in blue and A2 plotted in red. The for-
mer reveals the scenario of period-doubling route to
chaos. The first period-doubling bifurcation is indi-
cated as PDB. This PDB creates a period-1 unstable
periodic orbit or a period-1 unstable limit cycle (dashed
green line indicated by p1-UPO). However, the latter
attractor A2 shows the new walking dynamics reveal-
ing a scenario of a period-three route to chaos gener-
ated by means of a cyclic-fold bifurcation (marked by
CFB) [16,21]. At this bifurcation, two period-3 peri-
odic orbits, one stable and another unstable (dashed
pink line indicated by p3-UPO), meet and annihilate
with each other.
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(a) (b)

Fig. 2 Bifurcation diagrams: variation of the step period as a function of the slope angle ϕ (a) and as a function of the desired torso
angle θd

t (b)

We emphasize that stability of a limit cycle (or a
periodic orbit) of the semi-passive gait is investigated
by means of the Poincaré map’s concept. Thus, the
analysis of the limit cycle is reduced to the study of its
fixed point (i.e., the fixed point of the Poincaré map).
Furthermore, stability of the fixed point is investigated
by analyzing the eigenvalues of the Jacobian matrix
of the Poincaré map or systematically the monodromy
matrix [35,36]. In [16], we have employed this method-
ology to study the stability of the hybrid limit cycle
of the impulsive hybrid nonlinear dynamics of biped
robots.

Furthermore, we emphasize that, in order to detect
the period-one unstable periodic orbits (p1-UPO) and
the other periodic ones, we used the shooting method
and the iterative Newton–Raphson scheme [35]. In
[16,21], we used the shooting method and the itera-
tive Davidchak–Lai method in order to detect the p3-
UPO (the dashed pink line) for the compass-gait model.
The difference between these two methods is indicated
in [21]. Then, firstly, we need to detect one unstable
fixed point of the limit cycle (UPO) for some speci-
fied bifurcation parameter. Let the first detected unsta-
ble fixed point be near the period-doubling (or cyclic-
fold) bifurcation. Then, using this old fixed point, we
increase slightly and gradually the value of the bifurca-
tion parameter and we look for the new unstable fixed
point using the Newton–Raphson method, and so on.
Finally, we join the identified unstable fixed points to
form the dashed curves.

Figure 3 shows a stable period-1 hybrid limit cycle
of the torso-driven biped robot for two defined para-
meters: ϕ = 3◦ and θd

t = 0◦. In fact, Fig. 3a reveals
the limit cycle of the two legs, whereas Fig. 3b shows
the limit cycle of the torso. The hybrid limit cycle of
the two legs is composed of two parts: the blue part
reveals the passive gait of the swing leg, and the pink
part presents the semi-passive gait of the stance leg. In
fact, the period-1 hybrid limit cycle of the torso-driven
biped robot reveals a stable period-1 semi-passive gait.
Solid squares indicate the impact point of the swing leg
with the walking surface. However, solid circles show
the initial conditions of the two legs and the torso just
after the impact phase.

We showed in [14] that the torso and then the desired
torso angle θd

t can be used to control the semi-passive
gait of the biped robot.

3.4 Problem formulation

We emphasize that in the all semi-passive walking
dynamics shown in Fig. 2, only the period-1 stable and
unstable periodic orbits reveal a symmetric gait of the
torso-driven biped robot. The other gaits and in par-
ticular the chaotic gaits are asymmetric. In fact, for a
symmetric gait, any two consecutive steps are indis-
tinguishable, that is, all gait descriptors and then all
spatiotemporal variables exactly repeat themselves in
each step. Hence, the main objective in robotics is to
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(a) (b)

Fig. 3 Period-1 hybrid limit cycle of the semi-passive dynamic walking of the torso-driven biped robot for a slope angle ϕ = 3◦ and a
desired torso angle θd

t = 0◦

control biped robots in order to obtain a stable sym-
metric gait with remarkably human-like motion. Fur-
thermore, it is absolutely necessary to control biped
robots with a maximum energetic efficiency, which is
the main motivation behind the design and the use of the
passive dynamic walking. Thus, the design of an active
dynamic walking of a biped robot should be based on an
approach that emphasizes the passive dynamics of the
two legs and that particularly avoids the use of high-
gain control. In [34], we showed that the use of the
OGY-based control method for the compass-gait biped
robot to control chaos increases the energy efficiency
of the bipedal locomotion and the control gain is very
small.

In the present work, we interested in the use of the
OGY-based control approach to control chaos exhib-
ited in the semi-passive dynamic walking of the torso-
driven biped robot in order to obtain a stable sym-
metric gait with a maximum energy efficiency. For
the biped robot, we will not employ an additional
torque to control the semi-passive dynamic walking.
But we will use the OGY-based control approach, and
we will use the desired torso angle as an accessible
changeable control parameter. As mentioned before,
the control of a chaotic gait lies on the control of
an unstable period-1 limit cycle embedded into the
chaotic attractor. Accordingly, the control of chaos
based on the OGY approach requires the identifica-
tion of such unstable period-1 limit cycle and its sta-
bilization by designing a specific controller. However,

the stabilization of the unstable limit cycle based on
the OGY method requires chiefly the determination
of an explicit expression of the controlled Poincaré
map. However, the impulsive hybrid nonlinear dynam-
ics, (16) and (17), of the semi-passive dynamic walking
of the torso-driven biped robot complicates this task.
Then, in order to obtain an analytical expression of
the controlled Poincaré map, we will adopt the method
used by us in [34] in order to transform the nonlin-
ear model into a linear one. This transformation was
achieved by linearizing the nonlinear model around
a desired period-1 hybrid limit cycle. As a result, we
obtained a reduced impulsive hybrid linear dynamics.
The next section describes the method adopted for the
linearization.

4 Determination of the reduced impulsive hybrid
linear model

Our main objective was to develop a linear model of
the semi-passive dynamic walking of the torso-driven
biped robot. This linear model must absolutely generate
almost the same gait descriptors of the nonlinear model
defined by (16) and (17) for some set of parameters.
Then, in order to accomplish our goal, we must resort to
a linearization of the nonlinear model around a desired
hybrid limit cycle for some desired parameters [34]. We
stress that for each set of parameters, there is always a
limit cycle that can be either stable or unstable. Thus,
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Fig. 4 Subdivision of the
desired flow φd (t, x0) of
the semi-passive symmetric
gait of the torso-driven
biped robot for a desired set
of parameters λd = {

ϕ, θd
t

}

and particularly, there exists an unstable period-1 limit
cycle for a chaotic semi-passive gait.

4.1 Linearization of the nonlinear model

Let λd = {
ϕ, θd

t

}
be the desired set of parameters of

the semi-passive gait. Then, for some defined λd , we
have a desired period-1 limit cycle Λd (like the period-
1 limit cycle in Fig. 3) and hence a desired trajectory
(flow) φd (t, x0) for only one walking step. Thus, Λd

will be characterized also by the desired step period or
the desired impact instant τd . Then, the desired flow
will be defined in the interval

[
0 τd

]
. Figure 4 shows

the desired flow of the semi-passive gait of the biped
robot for t ∈ [0 τd

]
.

To build a linear model that generates a flow very
close to the flow φ (t, x0) of the nonlinear model, we
have resorted to a linearization of this nonlinear model
around the desired period-1 limit cycle Λd (of the
desired flow φd (t, x0)). Thus, this linearization lies
in the determination of n different elementary linear
model Mi , for i = 1, 2, . . . , n, around different points
χ i of the desired flow φd (t, x0). Each linear submodel
Mi will be valid only for some defined time inter-
val. Then, we will subdivide the desired time inter-
val

[
0 τd

]
into n subintervals

[
t(i−1) ti

]
, where, for

i = 1, 2, . . . , n, the instant ti is defined as:

ti = i

n
τd . (19)

We note that x (t0) = φd (t0, x0) and x (tn) =
φd (τd , x0). Therefore, each elementary linear model
Mi will be valid only in

[
t(i−1) ti

]
. A judicious choice

of the point χ i is to be at the instant in the middle of
the subinterval

[
t(i−1) ti

]
. Thus, the point χ i will be

defined by χ i = x
(

ti +t(i−1)

2

)
= x

( 2i−1
2n τd

)
. Figure 4

shows the subdivision of the desired flow φd (t, x0)

of the symmetric semi-passive gait of the torso-driven
biped robot.

Let consider the nonlinear differential equation in
(16) of the continuous dynamics. An elementary lin-
earized model Mi around the point χ i is defined, for
all i = 1, 2, . . . , n, by:

ẋ = Ai x + bi for t(i−1) ≤ t ≤ ti , (20)

with Ai = ∂
∂x F(χ i , θ

d
t ), and bi = F (

χ i , θ
d
t

)− Aiχ i .
As F(x, θd

t ) = f (x) + g(x)θd
t , it follows that:

∂F(x,θd
t )

∂x = ∂ f (x)
∂x + ∂ g(x)

∂x θd
t = f x(x) + gx(x)θd

t ,

with f x(x) = ∂ f (x)
∂x , and gx(x) = ∂ g(x)

∂x . Then, Ai =
f x(χ i )+ gx(χ i )θ

d
t , and bi = (

f (χ i ) − f x(χ i )χ i
)+

(
g(χ i ) − gx(χ i )χ i

)
θd

t . For simplicity, posing: Âi =
f x(χ i ), Ãi = gx(χ i ), b̂i = f (χ i ) − f x(χ i )χ i , and
b̃i = g(χ i ) − gx(χ i )χ i . Therefore, we obtain:

{
Ai = Âi + Ãiθ

d
t

bi = b̂i + b̃iθ
d
t

(21)

From expression (20), we note that tn = τd is the
impact instant of the linear submodel Mn and then of
the complete linear model. Furthermore, since the lin-
ear model to be determined must be fairly close to the
nonlinear model, then the impact instants of the two
models are absolutely almost equal. In fact, we empha-
size that for a stable period-1 limit cycle, and from the
same initial condition (fixed point), the impact instant
of the approximated linear model is very close to the
desired impact instant τd , but they are not equal. How-
ever, for the case of an unstable period-1 limit cycle, the
semi-passive gait will diverge progressively and will
converge hence to another set that can be either peri-
odic or chaotic. As a result, the impact instants of the
linear (and so the nonlinear model) are completely dif-
ferent to τd . Next, we will consider τ to be the impact
instant of the linear model instead of tn .

123



OGY-based control of chaos in a semi-passive torso-driven biped robot 1373

We stress that in order to determine a linear
model and hence an explicit expression of the con-
trolled Poincaré map, only the instants ti , for i =
1, 2, . . . , (n − 1), are well fixed and well defined by
expression (19). Accordingly, we will obtain (n − 1)

fixed linear submodels, and the last linear submodel
Mn will be defined in the time subinterval

[
t(n−1) τ

]
.

Then, for any initial condition and for any set of para-
meters and so for any kind of semi-passive gait (sym-
metric or asymmetric), it is absolutely necessary that
the impact instant of the linear model τ must be supe-
rior to the last fixed instant tn−1, i.e., τ > t(n−1).

As a result, based on expression (19) and the
imposed condition τ > t(n−1), we can deduce the con-
straint on the total number n of elementary linear mod-
els Mi :

n <
τd

τd − τ
. (22)

Therefore, the complete linear model that should be
close enough to the impulsive hybrid nonlinear model
(16)–(17) is given by the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = A1x + b1, for t0 ≤ t ≤ t1
.
.
.

ẋ = Ai x + bi , for t(i−1) ≤ t ≤ ti
.
.
.

ẋ = An x + bn, for t(n−1) ≤ t ≤ τ

as long as x ∈ Ω

x+ = h(x−) whenever x− ∈ Γ

(23)

where Ω and Γ are defined in (17).
We emphasize that in the system (23), the impact

instant τ must be calculated numerically using only the
last elementary linear model Mn . In addition, we stress
that each initial condition x

(
t(i−1)

)
, for i = 2, . . . , n

of the submodel Mi is the final state of the submodel
M(i−1). Then, it is remarkable to note that the different
submodels are linked by these initial conditions. Fur-
thermore, We note that the initial condition x0 = x (t0)
of the first elementary linear model M1 is the state vec-
tor just after the impact surface Γ .

4.2 Reduced impulsive hybrid linear model

Solution of the differential equation of a linear sub-
model Mi defined by (20) is expressed by:

x (t) = eAi(t−t(i−1))x
(
t(i−1)

)

+
(

eAi(t−t(i−1)) − I6

)
A−1

i bi . (24)

where I6 is the identity matrix of dimension 6.
Let xi be the final state of each elementary linear

model Mi : i.e., xi = x (ti ), for i = 1, 2, . . . , (n − 1)

where ti is defined by (19). Then, using expression
(24), each final state xi , for i = 1, 2, . . . , (n − 1), is
described by:

xi = e
τd
n Ai x(i−1) +

(
e

τd
n Ai − I6

)
A−1

i bi , (25)

It is evident that the initial condition x0 is that just
after the impact. Then, for all i = 1, 2, . . . , (n − 1), we
have xi ∈ Ω . Thus, we can write: x0 = x+

0 = h
(
x−

0

)
.

As noted before that the initial condition x
(
t(i−1)

)
, for

i = 2, . . . , n, of the submodel Mi is the final state of
the submodel M(i−1), and relying on expression (25), it
is easy to establish the relation between the initial state
x(n−1) of the last linear submodel Mn and the initial
condition x−

0 of the submodel M1:

x(n−1) = G1

(
x−

0 , θd
t

)

= J 1

(
θd

t

)
h
(
x−

0

)+ H1

(
θd

t

)
, (26)

where J 1
(
θd

t

) = ∏n−1
i=1 e

τd
n Ai and H1

(
θd

t

) = ∑n−1
i=1(∏n−1

j=i+1 e
τd
n A j

) (
e

τd
n Ai − I6

)
A−1

i bi .

According to expressions in (21), we have: Ai ≡
Ai
(
θd

t

)
and bi ≡ bi

(
θd

t

)
. In addition, it is important

to note that:
∏n−1

i=1 e
τd
n Ai = e

τd
n A(n−1) × · · · × e

τd
n A2 ×

e
τd
n A1 .
We note that in (26), the state vector x(n−1) is the

initial condition for the linear model Mn . Then, issue
from an initial condition taken just before impact x−

0
and at the instant t0 = 0s, we get through expres-
sion (26) the state vector x(n−1) evaluated at the instant
t(n−1) = n−1

n τd . Thus, through this linear model Mn ,
we will obtain the condition just before impact at the
impact instant τ . Then, we stress that relation (26)
induces the transition of the state vector at the instant
t0 to that at the instant t(n−1). Therefore, the algebraic
equation (26) reveals an impulsive transition phase of
the state vector.

Then, the complete linear model (23) can be rewrit-
ten in the following reduced form:

{
ẋ = An x + bn, ∀ t ∈ [t(n−1) τ

]
, as long as x ∈ Ω

x+ = G1
(
x−, θd

t

)
whenever x− ∈ Γ

,

(27)
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where x+ = x(n−1) denotes the condition just after
the transition, and x− = x−

0 denotes the condition just
before the transition. It is important to indicate that the
condition x+ belongs to the set Ω .

Making a variable change: t ≡ t − t(n−1). Then, the
system (27) is equivalent to:

{
ẋ = An x + bn, ∀ t ∈ [0 τ̂

]
, as long as x ∈ Ω

x+ = G1
(
x−, θd

t

)
whenever x− ∈ Γ

. (28)

Here, τ̂ is the new impact instant of the linear model
(28) and is related to the impact instant τ by the fol-
lowing relation:

τ = τ̂ + t(n−1). (29)

In conclusion, we emphasize that the impulsive
hybrid nonlinear dynamics (16) is transformed to an
impulsive hybrid linear dynamics (28) having a simple
reduced form.

4.3 Comparison of the two models

To compare the impulsive hybrid linear model (28)
with the impulsive hybrid nonlinear one (16), we
have numerically calculated the corresponding impact
instant by choosing different sets of parameters λd ={
ϕ, θd

t

}
. However, it is crucial to calculate the value of

n relying on relation (22) in order to know how many
submodels Mi we need to obtain a linear model that
generates almost the same characteristics of the non-
linear model. Thus, we will consider three cases of the
semi-passive gait of the torso-driven biped robot.

4.3.1 Case 1: Stable period-1 semi-passive gait

First, it is obvious from Fig. 2a that for ϕ = 3◦ and
θd

t = 0◦, the semi-passive dynamic walking of the
torso-driven biped robot is symmetric, and then, we
have a period-1 stable limit cycle with a desired impact
instant τd = 0.798 s. As this period-1 limit cycle is
stable, then emanated from any initial condition, the
semi-passive gait will converge always to it, and hence,
the impact instant of the nonlinear model takes exactly
this value of τd . Moreover, the linearization of the non-
linear model is realized around such period-1 stable
hybrid limit cycle. In addition, as the impact instant τ

[or equivalently τ̂ through relation (29)] of the approx-
imated linear model (28) should be (very) close to that
of the nonlinear model, then the impact instant τ will be

almost equal to τd . In fact, this will depend on the num-
ber n of points selected from the desired period-1 stable
limit cycle. Indeed, in order to obtain τ very close to τd ,
the linearization must be realized around an important
number n of points of the desired limit cycle of the non-
linear model. As n increases, the error between τ and
τd will decrease. As a result, for n −→ +∞, we will
obtain certainly τ ∼= τd . However, we stress that these
two impact instants will not be identical. As a result, a
very high value of n will give us a linear model very
similar to the nonlinear one. In fact, we must choose a
reasonable number n, for example 20. This will give us
a very convincing result.

4.3.2 Case 2: Stable period-2 semi-passive gait

Furthermore, we have chosen another set of parame-
ters λd by taking: ϕ = 4.5◦ and θd

t = 0◦. It is evi-
dent, from Fig. 2a, that for the two parameters, the
semi-passive gait is periodic of period 2. Thus, we
have a period-2 stable limit cycle and then a period-
1 unstable limit cycle depicted with the dashed green
line. For the period-2 limit cycle, we have two dis-
tinct impact instants: 0.7729 and 0.8461 s. The desired
impact instant of the period-1 unstable limit cycle is cal-
culated to be about τd = 0.8172 s. Hence, a lineariza-
tion around this desired period-1 unstable limit cycle
will give us a linear model that should generate almost
the period-2 stable limit cycle. Thus, the impact instant
τ of the linear model should give us almost the same two
impact instants (0.7729 and 0.8461 s). According to the
constraint (22) and taking τ as the minimum possible
impact instant (that is 0.7729 s), we obtain n < 18.447.
Hence, the optimal value of n is 18. Figure 5a shows the
chronological series of the impact instant (step period)
of the nonlinear model (depicted in blue) and the linear
model (plotted in pink). We stress that the starting point
of the semi-passive gait of the biped robot is the same
for the two models. It is evident that the impact instant
of the linear model is fairly close to that of the non-
linear model. In addition, the behavior of the gait for
the linear model is also periodic of period 2. Figure 5c
shows the modulus of the impact instant error between
the two models. It is obvious that the error is very small
about 3 ms.

4.3.3 Case 3: Chaotic semi-passive gait

In addition, we have simulated the linear model for a
chaotic semi-passive gait for ϕ = 5◦ and θd

t = 0◦.We
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Fig. 5 Evolution of step period (impact instant) of the two models: the nonlinear model and the linear one, for θd
t = 0◦ and for two

different slopes: a ϕ = 4.5◦, b ϕ = 5◦. c, d reveal the error between the impact instants of the two models

have identified numerically the desired period-1 unsta-
ble limit cycle embedded into the chaotic attractor,
and we have calculated its desired impact instant:
τd = 0.8233 s. Observing Fig. 2a, the minimal value
of the impact instant of the nonlinear model for ϕ = 5◦
is about 0.71 s, and then, the approximated minimal
value of τ is 0.71 s. Thus, based on relation (22), the
optimal value of n is 7. Figure 5b reveals the impact
instants of the two models. It is obvious that the lin-
ear model exhibits also a chaotic behavior. Neverthe-
less, the impact instant of the linear model is not fairly
close to that of the nonlinear model compared with the
period-2 gait (Fig. 5a). Figure 5d shows that the maxi-
mum value of the error between the impact instants of
the two models is about 60ms, and the average error is

calculated to be about 16 ms for these 30 steps and is
calculated to be about 17.5 ms for 500 steps. However,
we can consider that we have almost the same behavior.

Hence, the reduced impulsive hybrid linear dynam-
ics (28) generates almost the same impact instant and
in general the same gait descriptors of the impulsive
hybrid nonlinear model (16) where the behavior of the
semi-passive gait of the biped robot is preserved. Thus,
the linear model is found to be close enough to the
nonlinear one.

5 Determination of the controlled Poincaré map

Recall that the essential key in the OGY-based control
approach (Sect. 2) is the determination of the analytical
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expression of the controlled Poincaré map. Then, we
consider first the Poincaré section Γ defined in (16). Let
x−

0 be a departure point for the impulsive hybrid lin-
ear model (28) for a desired torso angle θd

t . It is evident
that this point belongs to Γ . Thus, using algebraic equa-
tion in (28) and from x−

0 , we obtain a new state vector
x+

0 ∈ Ω . Then, using the linear differential equation,
we can find numerically the new state x−

1 ∈ Γ and the
corresponding impact instant τ̂0. Relying on expression
(24), solution of the linear differential equation in (28)
is given by:

x−
1 = eτ̂0 An x+

0 +
(

eτ̂0 An − I6

)
A−1

n bn (30)

where x+
0 = G1

(
x−

0 , θd
t

)
.

Expression (30) can be reformulated as follows:

x−
1 = G2

(
x+

0 , τ̂0, θ
d
t

)

= J 2

(
τ̂0, θ

d
t

)
x+

0 + H2

(
τ̂0, θ

d
t

)
, (31)

where J 2
(
τ̂0, θ

d
t

) = eτ̂0 An , and H2
(
τ̂0, θ

d
t

) =(J 2
(
τ̂0, θ

d
t

)− I6
)

A−1
n bn . We note, from (21), that:

An ≡ An
(
θd

t

)
and bn ≡ bn

(
θd

t

)
.

Then, from the state x−
0 , we obtain the new state x−

1
and then a first step. In similar way, from x−

1 , we obtain
another new sate x−

2 and hence a second step, and so
on. In the next, we will use the following notations:

– x−
k is the initial state just before the impact for the

kth step,
– τ̂k is the impact instant of the kth step,
– θd

tk is the control parameter (the desired torso angle)
applied for the kth step, that is, it is maintained con-
stant between τ̂k−1 and τ̂k ,

– x−
k+1 is the initial state for the (k + 1)th step.

Then, using expression (31), we deduce the follow-
ing generalized relations:

{
x−

k+1 = G2
(
x+

k , τ̂k, θ
d
tk

)

x+
k = G1

(
x−

k , θd
tk

) , (32)

whereG1
(
x−

k , θd
tk

) = J 1
(
θd

tk

)
h
(
x−

k

)+H1
(
θd

tk

)
, and

G2
(
x+

k , τ̂k, θ
d
tk

) = J 2
(
τ̂k, θ

d
tk

)
x+

k + H2
(
τ̂k, θ

d
tk

)
.

We emphasize that the state vector x−
k+1 belongs

to the impact surface Γ defined in (17). Then, relying
on expressions in (32) and the three constraints of the
impact surface Γ , we deduce the analytical expression
of a constrained controlled Poincaré map:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x−
k+1 = P (

x−
k , τ̂k, θ

d
tk

)

such that⎧
⎨

⎩

L1
(P (

x−
k , τ̂k, θ

d
tk

)) = 0
L2
(P (

x−
k , τ̂k, θ

d
tk

))
< 0

L3
(P (

x−
k , τ̂k, θ

d
tk

))
> 0

,

(33)

with P (
x−

k , τ̂k, θ
d
tk

) = J 0
(
τ̂k, θ

d
tk

)
h
(
x−

k

) + H0(
τ̂k, θ

d
tk

)
, where J 0

(
τ̂k, θ

d
tk

) = J 2
(
τ̂k, θ

d
tk

)J 1
(
θd

tk

)
,

andH0
(
τ̂k, θ

d
tk

)=J 2
(
τ̂k, θ

d
tk

)H1
(
θd

tk

)+H2
(
τ̂k, θ

d
tk

)
.

In [34], we provided an algorithm for the numerical
simulation of such constrained Poincaré map.

6 Stabilization of the fixed point of the constrained
controlled Poincaré map

As noted in Sect. 2, the OGY method is based essen-
tially on the linearization of the controlled Poincaré
map around its fixed point. Thus, we interest first in
determining the fixed point x−∗ of the constrained con-
trolled Poincaré map (33). This fixed point corresponds
in fact to the initial condition just before the impact
and then the fixed point of a limit cycle. For exam-
ple, in Fig. 3, the fixed point of the presented hybrid
limit cycle is that depicted in green solid squares. Our
objective was to determine the fixed point of only the
period-1 limit cycle. Thus, we consider a desired con-
trol parameter (desired torso angle) θd

t∗ for which we
have a desired period-1 limit cycle of the semi-passive
gait of the torso-driven biped robot. Then, for this θd

t∗,
it corresponds a desired impact instant τ̂∗. “Appendix
1” provides the method to find the fixed point x−∗ and
the desired impact instant τ̂∗ [34].

After the identification of the fixed point of the con-
strained controlled Poincaré map, we aim at determin-
ing the linearized controlled Poincaré map. Recall that
our control parameter is the desired torso angle θd

t .
First, let us consider the following notations: Δx−

k+1 =
x−

k+1 − x−∗ ,Δx−
k = x−

k − x−∗ , and Δθd
tk = θd

tk − θd
t∗.

Relying on expression (33), the linearized controlled
Poincaré map is defined by:

Δx−
k+1 = DP x−

k

(
x−∗ , τ̂∗, θd

t∗
)

Δx−
k

+DPθd
tk

(
x−∗ , τ̂∗, θd

t∗
)

Δθd
tk, (34)

with DP x−
k

is the Jacobean matrix of the constrained

controlled Poincaré map with respect to x−
k , and DPθd

tk
is the derivative of the constrained controlled Poincaré
map with respect to the control parameter θd

tk . “Appen-
dix 2” provides expressions of these two matrices.
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We emphasize that in order to study the stability
of the fixed point x−∗ of the constrained controlled
Poincaré map, we should analyze the eigenvalues of
the input matrix DP x−

k

(
x−∗ , τ̂∗, θd

t∗
)
.

According to Sect. 2, the stabilization of the dis-
crete linear system (34) is tantamount to looking for
the matrix gain K of the controller:

θd
tk = θd

t∗ + K (
x−

k − x−∗
)
. (35)

In [34], we showed that the research for such matrix
gain K is subject to the resolution of a linear matrix
inequality (see “Appendix 5”). This control law will sta-
bilize the fixed point x−∗ of the constrained controlled
Poincaré map (33).

Finally, application of the control law (35) in the
impulsive hybrid nonlinear dynamics of the semi-
passive dynamic walking of the torso-driven biped
robot (16) and (17) will ensure then the stabilization
of the desired period-1 unstable limit cycle within the
chaotic attractor and hence to control chaos. The next
section is dedicated to verify the effectiveness of our
OGY-based approach to control chaos.

Recall that the control input u defined by expression
in (13) is used only in order to control the torso at
some desired angle θd

t and hence in order to obtain a
semi-passive gait that can be either periodic or chaotic
(as shown by bifurcation diagrams in Fig. 2). It is not
introduced in this work in order to control chaos or to
stabilize the bipedal locomotion. It is employed only

to control the position of the torso of the biped robot at
the desired torso angle θd

t , and this parameter will be
used in our control approach as an accessible control
parameter to stabilize the bipedal locomotion. Thus, the
control parameter θd

t will vary step by step according
to expression (35). Therefore, the semi-passive control
input u takes the following expression:

⎧
⎨

⎩

u = (CN (θ))−1 (v − CM(θ, θ̇)
)

v = −Kd θ̇t + Kp(θ
d
tk − θt )

θd
tk = θd

t∗ + K (
x−

k − x−∗
) (36)

We emphasize that, as the control input u depends on
the control parameter θd

t , the value of the control law u
will change compared to that of the uncontrolled semi-
passive gait. However, as the OGY control method is
based on small time-dependent parameter perturbation,
then we stress that a very small change of the control
law u will occur.

7 Chaos control of the impulsive hybrid nonlinear
dynamics

For the control of chaos in the semi-passive gait of
the torso-driven biped robot, we have chosen the slope
angle ϕ = 5◦ and the desired torso angle θd

t = 0◦.
Figure 6 shows the corresponding chaotic attractor for
these two desired parameters. The desired unstable

Fig. 6 Chaotic attractor of the semi-passive dynamic walking
of the torso-driven biped robot for ϕ = 5◦ and θd

t = 0◦. a
Chaotic attractor of the two legs. b Chaotic attractor of the torso.

The green attractor is the corresponding period-1 unstable limit
cycle of the chaotic attractor. (Color figure online)
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Fig. 7 Controlled step period (a) and controlled desired torso angle (b) with respect to the step number for ϕ = 5◦ and θd
t = 0◦

period-1 limit cycle that is embedded into the chaotic
attractor is depicted in green.

Relying on “Appendix 1”, we have identified the fol-
lowing unstable fixed point of the period-1 limit cycle:

x−∗ =
[

16.2217 −26.2217 −0.0510
−118.8231 −95.8690 0.2238

]T

,where

the impact instant is: τ̂∗ = 0.1172 s. Based on relations
(19) and (29) and as n = 7 for the chosen set of parame-
ters (see the Sect. 4.3.3), then we have: τ = 0.8229 s.
In fact, the fixed point x−∗ is that of the period-1 unsta-
ble limit cycle of the developed impulsive hybrid linear
model. As the linear model is fairly close to the non-
linear one, then this identified unstable fixed point is
considered as the unstable fixed point of the period-
1 unstable limit cycle of the nonlinear model. The
impact instant of the period-1 unstable limit cycle of
the nonlinear model is calculated to be about 0.8233 s.
It is evident that the value of this impact instant is
fairly close to the instant impact of the linear model
τ .

In addition, we have calculated numerically the fixed
point using the impulsive hybrid nonlinear model (16),
and we have found:

x̂−
∗ =

[
16.2116 −26.2116 −0.0510

−119.2408 −95.8831 0.2234

]T

.

It is remarkable that the two fixed points of the two
models are almost identical. Then, the fixed point deter-
mined using the impulsive hybrid linear model will be
considered as the fixed point of the nonlinear model.

Relying on “Appendix 5”, resolution of the LMI (66)
gives the gain matrix K:

K =
[

3.0856 −0.8886 0.6341
−0.0294 0.5546 0.1736

]
.

Application of the OGY-based controller (35) to the
impulsive hybrid nonlinear dynamics has controlled
the chaotic semi-passive gait of the torso-driven biped
robot. Figure 7 shows both the variation of the step
period (impact instant) and the desired torso angle θd

tk
with respect to the step number k. Here, the departure
point of the controlled semi-passive gait is chosen to
be different to the fixed point x−∗ .

It is obvious that after about 20 walking steps, the
step period converges to a constant value 0.8232 s and
hence, chaos is well controlled. In addition, we empha-
size that this value is almost identical to the impact
instant of the nonlinear model (0.8233 s). Furthermore,
from Fig. 7b, we can deduce that the torso will vibrate
centering around the perpendicular direction, that is,
θd

t∗ = 0◦, before it stabilizes at some controlled posi-
tion about −0.0583◦. Accordingly, chaos is well con-
trolled by a tiny deviation in forward of the torso.

Figure 8 shows the temporal evolution of the semi-
passive control input u of the torso-driven biped robot
defined by expression (36) for two cases: the uncon-
trolled case (Fig. 8a) and the controlled one (Fig. 8b).
In the former case, chaos is not controlled by means of
our designed control parameter (35). In others words,
the uncontrolled case is when the desired torso angle θd

t
is maintained constant (θd

t = 0◦), and hence, the semi-
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Fig. 8 Semi-passive control input u with respect to time: a Uncontrolled gait, b Controlled gait

Fig. 9 Controlled step period (a) and controlled desired torso angle (b) with respect to the step number for ϕ = 6◦ and θd
t = 0◦. Here,

we show the effect of the slope angle on the control performance of the torso-driven biped robot

passive gait is completely chaotic. This irregular behav-
ior is displayed in Fig. 8a where the first (solid pink cir-
cle) and last (solid green circle) points in the control law
u during each walking step are completely dispersed.
However, for the controlled case, the desired torso angle
θd

t varies according to the law (35). Thus, the semi-
passive control input u obeys to the law (36). As dis-
played in Fig. 8b, after an irregular transient about 10s,
the control input u becomes 1-periodic. This reveals
hence that the semi-passive gait of the torso-driven
biped robot is controlled and then becomes 1-periodic.

Accordingly, we have controlled chaos in the semi-
passive gait of the torso-driven biped robot by set-
ting a changeable control parameter. This objective is

achieved without introducing new torques in the biped
robot. This reveals the energy efficiency brought by the
OGY-based control approach for the bipedal locomo-
tion.

In order to investigate the effect of parameters on the
control performance, we have changed the slope angle
ϕ of the walking surface to 6◦. We recall that for this
parameter, there is no steady gaits as shown in Fig. 2a.
The biped robot was found to fall down for any initial
condition. In this range of slopes, only unstable gaits
exist. Then, using the same control gain K for the same
desired torso angle θd

t = 0◦, we have simulated the
impulsive hybrid nonlinear model of the torso-driven
biped robot. Figure 9 shows the numerical results. It
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is obvious that the unstable semi-passive gait is well
controlled.

Compared with the results in Fig. 7, we emphasize
that the semi-passive gait is controlled after only 10
steps. Moreover, the step period converges to the value
0.8341 s. This value is found to be superior to that cal-
culated for the slope ϕ = 5◦ (about 0.8232 s). Fur-
thermore, it is evident that the torso will deviate to the
forward position (for negative values of θd

t ) and it sta-
bilizes at the position −1.1285◦.

8 Conclusion and future works

In this paper, we realized the control of chaos exhib-
ited in the semi-passive dynamics walking of the torso-
driven biped robot relying on the OGY-based control
approach. The desired torso angle of the biped robot
was chosen to be the control parameter. Our main key
in the chaos control strategy was the development of
a reduced impulsive hybrid linear dynamics from the
impulsive hybrid nonlinear model of the semi-passive
gait. Such result was obtained by linearizing the non-
linear model around a desired period-1 hybrid limit
cycle for some desired set of parameters. This lineariza-
tion procedure has allowed us to determine an explicit
expression of a constrained controlled Poincaré map
and then to identify its fixed point. Furthermore, a lin-
earization of the constrained controlled Poincaré map
around the fixed point was developed. Finally, applica-
tion of the developed OGY-based control in the impul-
sive hybrid nonlinear dynamics of the torso-driven
biped robot has demonstrated the control of chaos.

Our OGY-based control approach can be applied for
any set of parameters where the semi-passive gait of
the torso-driven biped robot can be either chaotic or
periodic and asymmetric. In addition, we propose to
analyze by means of bifurcation diagrams the effect
of the parameters (such as the slope angle, the desired
torso angle, the normalized length and the normalized
mass) of the biped robot on the control performance.
This will permit us to look for a unique gain of the con-
trol law in order to obtain some degree of robustness.
Furthermore, it will be better to develop an adaptive
control approach to control the semi-passive gait as the
slope angle varies. These points will be developed as
our future works.

In fact, in bipedal robotics, control of a complete
biped robot with hands, head, knees and feet is the

main objective. Then, it is nice and helpful to design
a biped model that approaches to the complete biped
robot. In the control process of bipedal locomotion via
a biped model, the torso plays as (substitutes) the upper
body and the analysis of the dynamic walking of the
biped robot is restricted to the study of the dynamics
of the two legs and the torso. In our torso-driven biped
model, the two legs are without knees and feet. Hence,
we suggest, as future works, to investigate and control
complex models of biped robots having knees and/or
feet with different shapes.

The linearization of the Poincaré map is the basis
of the OGY control method. In our work, we have
determined the hybrid linear model in order to find
an explicit expression of the Poincaré map. However,
authors in [22] used a nonlinear dynamics and used also
the concept of the Poincaré map to design the controller.
They linearized also the Poincaré map around the fixed
point. The difference between our work and the one in
[22] is that authors in [22] imagined that the dynami-
cal equations describing the system are not known, but
that experimental time series of some scalar-dependent
variable can be measured. It has been demonstrated
that, from such experimentally determined sequences
(time series), a large number of distinct unstable peri-
odic orbits (and so a period-one UPO) on a chaotic
attractor can be determined. Then, it will be very inter-
est to control unstable bipedal locomotion of biped
robots without a description of the dynamical equa-
tions. In fact, it will be a very good work because it is
very difficult to derive the dynamic model of a complete
biped robot with multiple degrees of freedom. Then, we
can use the technique developed in [22] and references
therein in order to stabilize the dynamic walking of
biped robots.

Appendix 1

In this appendix, we determine expressions that give
numerically the fixed point x−∗ of the constrained con-
trolled Poincaré map (33). According to [34], the fixed
point x−∗ must verify:

⎧
⎪⎪⎨

⎪⎪⎩

L0
(
x−∗ , τ̂∗, θd

t∗
) = P (

x−∗ , τ̂∗, θd
t∗
)− x−∗ = 0

L1
(P (

x−∗ , τ̂∗, θd
t∗
)) = 0

L2
(P (

x−∗ , τ̂∗, θd
t∗
))

< 0
L3
(P (

x−∗ , τ̂∗, θd
t∗
))

> 0

.

(37)
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The two inequalities in (37) can be transformed to
equalities as follows:

{
L̂2
(
x−∗ , τ̂∗, θd

t∗, μ∗
) = L2

(P (
x−∗ , τ̂∗, θd

t∗
))+ μ2∗ = 0

L̂3
(
x−∗ , τ̂∗, θd

t∗, η∗
) = L3

(P (
x−∗ , τ̂∗, θd

t∗
))− η2∗ = 0

.

(38)

where μ∗ and η∗ are two scalar variables.
As the state vector x−∗ is of dimension 6, and L1, L̂2

and L̂3 are scalar functions, then we have nine equa-
tions and nine unknown variables, namely x−∗ , τ̂∗, μ∗
and η∗. Hence, we can solve such constraints using
the well-known Newton–Raphson method. Posing
L̂1
(
x−∗ , τ̂∗, θd

t∗
) = L1

(P (
x−∗ , τ̂∗, θd

t∗
))

. Therefore,
the fixed point x−∗ is the solution of:

L∗ (z∗) =

⎡

⎢
⎢
⎣

L0
(
x−∗ , τ̂∗, θd

t∗
)

L̂1
(
x−∗ , τ̂∗, θd

t∗
)

L̂2
(
x−∗ , τ̂∗, θd

t∗, μ∗
)

L̂3
(
x−∗ , τ̂∗, θd

t∗, η∗
)

⎤

⎥
⎥
⎦ = 0, (39)

with z∗ =

⎡

⎢
⎢
⎣

x−∗
τ̂∗
μ∗
η∗

⎤

⎥
⎥
⎦ ∈ �9×1, and L∗ ∈ �9×1.

Appendix 2

This second appendix gives expressions of the state
matrix DP x−

k
and the input matrix DPθd

tk
of the lin-

earized controlled Poincaré map (34) [34]. These two
matrices are defined as follows:

DP x−
k

(
x−

k , τ̂k, θ
d
tk

)

= ∂P (
x−

k , τ̂k, θ
d
tk

)

∂x−
k

+ ∂P (
x−

k , τ̂k, θ
d
tk

)

∂τ̂k

∂τ̂k

∂x−
k

,

(40)

DPθd
tk

(
x−

k , τ̂k, θ
d
tk

)

= ∂P (
x−

k , τ̂k, θ
d
tk

)

∂θd
tk

+ ∂P (
x−

k , τ̂k, θ
d
tk

)

∂τ̂k

∂τ̂k

∂θd
tk

.

(41)

In fact, determination of the matrices
∂P(

x−
k ,τ̂k ,θ

d
tk

)

∂x−
k

,

∂P(
x−

k ,τ̂k ,θ
d
tk

)

∂θd
tk

and
∂P(

x−
k ,τ̂k ,θ

d
tk

)

∂τ̂k
is quite simple (see

“Appendix 3”). However, determination of expression
of the two quantities ∂τ̂k

∂x−
k

and ∂τ̂k

∂θd
tk

requires the first

impact constraint in (33): that isL1
(P (

x−
k , τ̂k, θ

d
tk

)) =
0. Then, the derivative of this function with respect to
x−

k yields:

∂L1
(P (

x−
k , τ̂k, θ

d
tk

))

∂x−
k

+ ∂L1
(P (

x−
k , τ̂k, θ

d
tk

))

∂τ̂k
X

∂τ̂k

∂x−
k

= 0, (42)

∂L1
(P (

x−
k , τ̂k, θ

d
tk

))

∂θd
tk

+ ∂L1
(P (

x−
k , τ̂k, θ

d
tk

))

∂τ̂k
X

∂τ̂k

∂θd
tk

= 0. (43)

Relying on “Appendix 4” [expressions (63) and
(64)], and using (42) and (43), we obtain expressions
of the two quantities ∂τ̂k

∂x−
k

and ∂τ̂k

∂θd
tk

like so:

∂τ̂k

∂x−
k

= −
∂L1

(P(
x−

k ,τ̂k ,θ
d
tk

))

∂P(
x−

k ,τ̂k ,θ
d
tk

)
∂P(

x−
k ,τ̂k ,θ

d
tk

)

∂x−
k

L2
(P (

x−
k , τ̂k, θ

d
tk

)) , (44)

∂τ̂k

∂θd
tk

= −
∂L1

(P(
x−

k ,τ̂k ,θ
d
tk

))

∂P(
x−

k ,τ̂k ,θ
d
tk

)
∂P(

x−
k ,τ̂k ,θ

d
tk

)

∂θd
tk

L2
(P (

x−
k , τ̂k, θ

d
tk

)) . (45)

We note that:
∂L1

(P(
x−

k ,τ̂k ,θ
d
tk

))

∂P(
x−

k ,τ̂k ,θ
d
tk

) = ∂L1
(
x−

k+1

)

∂x−
k+1

. Then,

based on expression of L1 in (10), it follows that:
∂L1

(P(
x−

k ,τ̂k ,θ
d
tk

))

∂P(
x−

k ,τ̂k ,θ
d
tk

) = l (sin(θns + ϕ) − sin(θs + ϕ)).

Substituting the two expressions (44) and (45) into
(40) and (41), respectively, expressions of the state
matrix and the input matrix of the discrete linear system
(34) are given as follows:

DP x−
k

(
x−

k , τ̂k, θ
d
tk

)

=
⎡

⎢
⎣I6 −

∂P(
x−

k ,τ̂k ,θ
d
tk

)

∂τ̂k

∂L1
(P(

x−
k ,τ̂k ,θ

d
tk

))

∂P(
x−

k ,τ̂k ,θ
d
tk

)

L2
(P (

x−
k , τ̂k, θ

d
tk

))

⎤

⎥
⎦

∂P (
x−

k , τ̂k, θ
d
tk

)

∂x−
k

, (46)

DPθd
tk

(
x−

k , τ̂k, θ
d
tk

)

=
⎡

⎢
⎣I6 −

∂P(
x−

k ,τ̂k ,θ
d
tk

)

∂τ̂k

∂L1
(P(

x−
k ,τ̂k ,θ

d
tk

))

∂P(
x−

k ,τ̂k ,θ
d
tk

)

L2
(P (

x−
k , τ̂k, θ

d
tk

))

⎤

⎥
⎦

× ∂P (
x−

k , τ̂k, θ
d
tk

)

∂θd
tk

. (47)
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Appendix 3

In this third appendix, we define expressions of the

matrices
∂P(

x−
k ,τ̂k ,θ

d
tk

)

∂x−
k

,
∂P(

x−
k ,τ̂k ,θ

d
tk

)

∂θd
tk

and
∂P(

x−
k ,τ̂k ,θ

d
tk

)

∂τ̂k

in (40) and (41).
First, we recall that:

P
(

x−
k , τ̂k, θ

d
tk

)
= J 0

(
τ̂k, θ

d
tk

)
h
(
x−

k

)

+H0

(
τ̂k, θ

d
tk

)
, (48)

where

J 0

(
τ̂k, θ

d
tk

)
= J 2

(
τ̂k, θ

d
tk

)
J 1

(
θd

tk

)
, (49)

and

H0

(
τ̂k, θ

d
tk

)
= J 2

(
τ̂k, θ

d
tk

)
H1

(
θd

tk

)

+H2

(
τ̂k, θ

d
tk

)
. (50)

Moreover, we recall that:

J 1

(
θd

tk

)
=

n−1∏

i=1

e
τd
n Ai , (51)

H1

(
θd

tk

)
=

n−1∑

i=1

⎛

⎝
n−1∏

j=i+1

e
τd
n A j

⎞

⎠

×
(

e
τd
n Ai − I6

)
A−1

i bi , (52)

J 2

(
τ̂k, θ

d
tk

)
= eτ̂k An , (53)

H2

(
τ̂k, θ

d
tk

)
=
(
J 2

(
τ̂k, θ

d
tk

)
− I6

)
A−1

n bn, (54)

where, according to (21) and for i = 1, 2, . . . , n, we
have:

{
Ai = Âi + Ãiθ

d
tk

bi = b̂i + b̃iθ
d
tk

(55)

Then, we deduce the following expressions:

• ∂P(
x−

k ,τ̂k ,θ
d
tk

)

∂x−
k

= J 0
(
τ̂k, θ

d
tk

) ∂h
(
x−

k

)

∂x−
k

,

• ∂P(
x−

k ,τ̂k ,θ
d
tk

)

∂τ̂k
= ∂J 0

(
τ̂k ,θ

d
tk

)

∂τ̂k
h
(
x−

k

)+ ∂H0
(
τ̂k ,θ

d
tk

)

∂τ̂k
,

• ∂P(
x−

k ,τ̂k ,θ
d
tk

)

∂θd
tk

= ∂J 0
(
τ̂k ,θ

d
tk

)

∂θd
tk

h
(
x−

k

)+ ∂H0
(
τ̂k ,θ

d
tk

)

∂θd
tk

,

• ∂J 0
(
τ̂k ,θ

d
tk

)

∂τ̂k
= ∂J 2

(
τ̂k ,θ

d
tk

)

∂τ̂k
J 1

(
θd

tk

)
,

• ∂H0
(
τ̂k ,θ

d
tk

)

∂τ̂k
= ∂J 2

(
τ̂k ,θ

d
tk

)

∂τ̂k
H1

(
θd

tk

)+ ∂H2
(
τ̂k ,θ

d
tk

)

∂τ̂k
,

• ∂J 2
(
τ̂k ,θ

d
tk

)

∂τ̂k
= AnJ 2

(
τ̂k, θ

d
tk

)
,

• ∂H2
(
τ̂k ,θ

d
tk

)

∂τ̂k
= ∂J 2

(
τ̂k ,θ

d
tk

)

∂τ̂k
A−1

n bn = AnJ 2
(
τ̂k, θ

d
tk

)
X

A−1
n bn = J 2

(
τ̂k, θ

d
tk

)
bn ,

• ∂J 0
(
τ̂k ,θ

d
tk

)

∂θd
tk

= ∂J 2
(
τ̂k ,θ

d
tk

)

∂θd
tk

J 1
(
θd

tk

)+J 2
(
τ̂k, θ

d
tk

)
X

∂J 1
(
θd

tk

)

∂θd
tk

,

• ∂H0
(
τ̂k ,θ

d
tk

)

∂θd
tk

= ∂J 2
(
τ̂k ,θ

d
tk

)

∂θd
tk

H1
(
θd

tk

)+J 2
(
τ̂k, θ

d
tk

)
X

∂H1
(
θd

tk

)

∂θd
tk

+ ∂H2
(
τ̂k ,θ

d
tk

)

∂θd
tk

,

• ∂J 1
(
θd

tk

)

∂θd
tk

= τd
n

∑n−1
i=1

(∏n−1
j=i+1 e

τd
n A j

)
Ãi X

(∏i
l=1 e

τd
n Al

)
,

• ∂J 2
(
τ̂k ,θ

d
tk

)

∂θd
tk

= τ̂k ÃnJ 2
(
τ̂k, θ

d
tk

)
,

•

∂H1
(
θd

tk

)

∂θd
tk

= τd
n

∑n−1
i=1

[∑n−1
j=i+1

(∏n−1
p= j+1 e

τd
n Ap

)

Ã j

(∏ j
q=1 e

τd
n Aq

)] (
e

τd
n Ai − I6

)
A−1

i bi

+ τd
n

∑n−1
i=1

[(∏n−1
j=i+1 e

τd
n A j

)
Ãi e

τd
n Ai A−1

i bi

]

− ∑n−1
i=1

[(∏n−1
j=i+1 e

τd
n A j

) (
e

τd
n Ai − I6

)

A−1
i Ãi A−1

i bi

]
+ ∑n−1

i=1

[(∏n−1
j=i+1 e

τd
n A j

)

(
e

τd
n Ai − I6

)
A−1

i b̃i

]

,

• ∂H2
(
τ̂k ,θ

d
tk

)

∂θd
tk

= ∂J 2
(
τ̂k ,θ

d
tk

)

∂θd
tk

A−1
n bn − (J 2

(
τ̂k, θ

d
tk

)

−I6) A−1
n

(
Ãn A−1

n bn + b̃n

)
.

Appendix 4

In this appendix, we demonstrate that
∂L1

(P(
x−

k ,τ̂k ,θ
d
tk

))

∂τ̂k

= L2
(P (

x−
k , τ̂k, θ

d
tk

))
.

First, the derivative of the function L1

(
P
(

x−
k ,

τ̂k, θ
d
tk

))
with respect to τ̂k yields:

∂L1
(P (

x−
k , τ̂k, θ

d
tk

))

∂τ̂k

= ∂L1
(P (

x−
k , τ̂k, θ

d
tk

))

∂P (
x−

k , τ̂k, θ
d
tk

)
∂P (

x−
k , τ̂k, θ

d
tk

)

∂τ̂k
. (56)

Furthermore, according to “Appendix 3”, and as
AnJ 2

(
τ̂k, θ

d
tk

) = J 2
(
τ̂k, θ

d
tk

)
An , and taking into

account thatG1
(
x−

k , θd
tk

)=J 1
(
θd

tk

)
h
(
x−

k

)+H1
(
θd

tk

)
,

it follows that:

∂P (
x−

k , τ̂k, θ
d
tk

)

∂τ̂k

= J 2

(
τ̂k, θ

d
tk

) [
AnG1

(
x−

k , θd
tk

)
+ bn

]
, (57)
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In addition, multiplying the first expression of the con-
strained controlled Poincaré map in (33) by the matrix
An , and as AnH2

(
τ̂k, θ

d
tk

) = (J 2
(
τ̂k, θ

d
tk

)− I6
)

bn ,
we can prove that:

AnP
(

x−
k , τ̂k, θ

d
tk

)
+ bn

= J 2

(
τ̂k, θ

d
tk

) [
AnG1

(
x−

k , θd
tk

)
+ bn

]
. (58)

Hence, according to (57) and (58), we deduce that:

∂P (
x−

k , τ̂k, θ
d
tk

)

∂τ̂k
= AnP

(
x−

k , τ̂k, θ
d
tk

)
+ bn . (59)

Since x−
k+1 = P (

x−
k , τ̂k, θ

d
tk

)
, then we obtain:

∂P (
x−

k , τ̂k, θ
d
tk

)

∂τ̂k
= An x−

k+1 + bn . (60)

As a result, it states that:

∂P (
x−

k , τ̂k, θ
d
tk

)

∂τ̂k
= ẋ−

k+1. (61)

Hence, expression (56) is equivalent to:

∂L1
(P (

x−
k , τ̂k, θ

d
tk

))

∂τ̂k
= ∂L1

(
x−

k+1

)

∂x−
k+1

ẋ−
k+1. (62)

In fact, relying on (10), we have L2 (x) = ∂L1(x)
∂x ẋ,

then L2
(
x−

k+1

) = ∂L1
(
x−

k+1

)

∂x−
k+1

ẋ−
k+1. Hence, expression

(62) is reformulated as follows:

∂L1
(P (

x−
k , τ̂k, θ

d
tk

))

∂τ̂k
= L2

(
P
(

x−
k , τ̂k, θ

d
tk

))
.

(63)

Finally, we stress that:

L2

(
P
(

x−
k , τ̂k, θ

d
tk

))
< 0. (64)

Appendix 5

To achieve stabilization of the linearized controlled
Poincaré map (34) by means of the control law (35),
we define the following classical candidate Lyapunov
function [34]:

V
(
Δx−

k

) = Δx−
k

T SΔx−
k , (65)

with S is a positive definite symmetric matrix.
Hence, the research for the matrix gain K lies in

solving the following linear matrix inequality (LMI):
⎡

⎣
S DP∗

x−
k
S + DP∗

θd
tk
R

(
DP∗

x−
k
S + DP∗

θd
tk
R
)T S

⎤

⎦ > 0,

(66)

with DP∗
x−

k
= DP x−

k

(
x−∗ , τ̂∗, θd

t∗
)
,DP∗

θd
tk

= DPθd
tk(

x−∗ , τ̂∗, θd
t∗
)
, and R = KS.

In this LMI, the two unknown matrices are S and
R. The gain K of the control law (35) is then expressed
by:

K = RS−1. (67)
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