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Abstract When a small initial defect occurs on the
races of a ball bearing such as spalls and pits caused
by fatigue, the defect will progress around the race in
the direction of the ball motion until catastrophic fail-
ure happens due to impacts between the ball and the
defect edges. Undesirable impulsive excitations can be
caused when the orbiting ball strikes the defect edges.
The impulse is depended on the shape and sizes of
the defect, which can be used to detect and diagnose
the defects in bearing systems. To understand charac-
teristics of an impulse caused by a localized surface
defect in a ball bearing, a new dynamic model is pro-
posed to investigate the vibration response of a ball
bearing due to a localized surface defect on its races,
which can consider effects of defect edge topographies.
Based on the defect edge topographies and the sizes of
the defect, a new contact model for modeling contact
relationships between the ball and the defect edges is
also developed according to Hertzian elastic contact
theory, which can be used to determine changes in the
excitations including the time-varying deflection exci-
tation and the time-varying contact stiffness excitation
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caused by the defect. The proposed model is applied to
investigate effects of the defect edge topographies on
the contact stiffnesses between the ball and the defect
edges, and the vibration response of a ball bearing with
a localized surface defect on its races. The results from
the proposed model are compared with the available
results from the previous models in the literature, which
reveals the superiority of the proposed model. It is also
shown that numerical results can provide some guid-
ance for the ball bearing defect diagnosis and detection.

Keywords Vibration response · Ball bearing ·
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topographies · Time-varying deflection
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List of symbols

B Defect width (mm)
Cr Internal radial clearance of the ball

bearing (mm)
c Damping coefficient (Ns/m)
D Pitch diameter (mm)
Di Inner race diameter (mm)
Do Outer race diameter (mm)
d Ball diameter (mm)
E1, E2 Elastic modulus associated with

each contact body (MPa)
ν1, ν2 Poisson’s ratio associated with each

contact body (MPa)
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Eeq Equivalent modulus of elasticity
(MPa)

e Elliptical eccentricity parameter
Fr Radial force applied on the ball (N)
H Defect depth (mm)
H1, H2, H3, H4 Time-varying deflection excitations

(mm)
j Ball number
K Total contact stiffness (N/mm)
Ke Time-varying contact stiffness bet-

ween the ball and races (N/mm)
Ki Contact stiffness between the ball

and inner race without defect (N/mm)
Ko Contact stiffness between the ball

and outer race without defect (N/mm)
Kp Contact stiffness between the ball

and smooth surface (N/mm)
Kts Total contact stiffness between the

ball and races with defect (N/mm)
Kt0 Contact stiffness between the ball

and races with first type defect
(N/mm)

k First and second kind of elliptical
integral

L Defect length (mm)
l Length of the small surfaces at the

defect edges (mm)
Nf Number of samples
nd Load-deflection exponent for the

first defect type
ns Numbers of the contact surfaces

between the ball and defect edges
Qx , Qy Components of external force app-

lying on the shaft (N)
R Radius of the ball (mm)
ro Radius of curvature of the outer

race (mm)
ri Radius of curvature of the inner

race (mm)
s Number of the contact surfaces
t Time (s)
x, y Displacement responses in X - and

Y -direction (mm)
Z Number of the ball
α Contact angle (◦)
γ Elevation angle of the small sur-

faces at defect edges (rad)
δdr Contact deformation between the

ball and defect (mm)

δhr Contact deformation between the
ball and healthy race (mm)

θ0 Initial angular offset of the defect
to the j th ball (rad)

θd Arc length of the defect in the tan-
gential direction (rad

θh Half of the arc length of the defect
(rad)

θd j Race contact angle (rad)
�θ Arc length caused by the defect

with different edge topographies
(rad)

λ j Loading zone parameter of the j th
ball

ε Second kind of elliptical integral
ξd Ratio of the defect length to its

width
ξbd Ratio of the ball size to the defect

minimum size
� ρ Curvature sum
ωc Speed of the cage (rad/s)
ωr Speed of the shaft (rad/s)

1 Introduction

Ball bearing is one of the key components in a variety
of industrial machineries due to their carrying capac-
ity and low-friction characteristics. Vibration perfor-
mances of these machineries are greatly influenced
by vibration characteristics of their internal bearings,
especially in the presence of various defects [1]. Hence,
ball bearing defect diagnosis and detection is one
of the important works in industrial maintenance.
Although many methods have been proposed for diag-
nosis and detection of the defects in rolling element
bearings, modeling and simulation method is an accu-
rate approach to predict the vibration response of ball
bearings [2], which can enhance understanding vibra-
tion characteristics of the bearing with various defects.

Many research works have been presented to inves-
tigate the vibration response of rolling element bear-
ings with a localized surface defect on their races or
rolling elements. Some of the previous works focus-
ing on modeling the force excitations produced by the
localized defects are listed in Refs. [3–12]. On the other
hand, some research works are interested in simulating
the deflection excitations caused by the localized sur-
face defects as shown in Refs. [2,13–24].
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Ball bearing due to a localized surface defect 1331

McFadden and Smith [3,4] used a series of repeated
force excitations to model the impulses generated by
single and multiple point defects. Tandon and Choud-
hury [5,6] used the finite width triangular, rectan-
gular, and half-sine force excitations to describe the
impulse generated by a localized surface defect. Kiral
and Karagulle [7,8] described a localized surface defect
model as a rectangular force excitation. Sassi et al. [9]
formulated the force excitation model for a localized
surface defect as sinusoidal and rectangular functions.

References [2,13–15,17–21] defined a localized
surface defect model as a deflection excitation using
rectangular function. Rafsanjani et al. [2] defined a
localized surface defect model as a deflection excitation
using a rectangular function. In their model, the defect
depth is used to define the amplitude of the deflection
excitation. References [13–17,19–21] also used the
rectangular deflection excitation model to describe the
impulse generated by a localized surface defect. Patil
et al. [16] formulated a localized surface defect model
as a half-sine deflection excitation wave. Pate et al. [18]
also described a localized surface defect model as a rec-
tangular deflection excitation function. In their model,
the geometric relationship between the rolling element
and the defect is considered. References [10] and [11]
analyzed the contact pressure between the rolling ele-
ment and the defect, but they only considered the con-
stant equivalent contact stiffness between the rolling
element and the defect. However, the contact stiffness
between the rolling element and the defect varies with
the contact position between the rolling element and the
defect when the rolling element passes over the defect
according to the analysis in Refs. [22–24]. Liu et al.
[22] used a finite element method and an experimental
method to study effects of the shapes of a localized sur-
face defect on the vibration waveforms of a ball bear-
ing with a localized surface defect on its outer race. In
another work [23], they proposed a new localized sur-
face defect model considering the time-varying deflec-
tion excitation caused by a localized surface defect for
a ball bearing with a localized surface defect on its
races. Relationships between the time-varying deflec-
tion excitations and the shape and sizes of the defect
are considered in their defect model. Moreover, Shao et
al. [24] proposed a new method to formulate the time-
varying deflection excitation and the time-varying con-
tact stiffness excitation caused by a localized surface
defect on the races of a cylindrical roller bearing. In
practical, when a small initial spall occurs on the race

of the ball bearing, the spall will progress around the
race in the direction of the ball motion until catastrophic
failure happens due to impacts between the ball and
the defect edges [25]. However, in the above works,
effects of the defect edge topographies on the vibration
response of the ball bearing were not considered.

Several studies have been conducted on studying
the spall growth and the spall growth rate of an ini-
tial spall on the races of the rolling element bearings
based on the experimental and modeling methods. For
instance, Lundburg and Palmgren [26] initially dis-
cussed the spall growth phenomenon of the rolling
bearings. Kotzalas and Harris [27] studied the spall
growth on the surfaces of the balls and races of a ball
bearing, and they extended the prediction methods of
bearing life in Ref. [28] to predict the remaining useful
life of the bearing. Xu and Sadeghi [29] proposed a new
analytical model to investigate the effect of a dent on
the spall initiation and growth in the lubricated contact.
Hoeprich [30] studied the randomness inherent to the
spall growth and its unknown governing mechanisms
based on the spall growth experiments on tapered roller
bearings. Rosada et al. [31], Arakere et al. [32], and
Forster et al. [33] also proposed a series of experimen-
tal and modeling methods to study the spall growth of
the bearing materials in their three-part analysis series,
which studied three stages of the spall growth of the
bearing materials. Branch et al. [34,35] presented a
finite element modeling method to investigate three
stages of the spall growth in Refs. [31–33]. Li et al. [36]
presented an empirical method to predict spall growth
rates of a tapered roller bearing. The above works on the
spall growth are focused on the contact stress, fatigue,
material microstructure, and plasticity at the edges of
the spall defect. Effects of the spall edge topographies
on the impulse for the ball bearing were not discussed.
Hence, it is helpful to investigate the impulse caused
by the spall with different edge topographies for the
ball bearing defect diagnosis and detection at its early
stage.

The main objective of the present study is to inves-
tigate effects of defect edge topographies on the time-
varying contact stiffnesses between the ball and the
defect edges according to Hertzian elastic contact the-
ory, and the vibration response of the ball bearing with
a localized surface defect on its races. The profiles of
the propagated defect edges are assumed to be small
smooth plane surfaces partly based on the assumptions
in Refs. [34] and [35]. The elevation angles and the
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Fig. 1 Schematic of a
localized surface defect on
the race of a ball bearing: a
contact positions between
the ball and the defect, and
b defect location

a b

d c

Direction of ball motion

B

L

Center line of raceway

(a) (b)

lengths of the small surfaces at the edges of the defect
are used to determine the defect edge topographies. The
defect model is formulated partly based on the studies
in Refs. [22] and [23], which can consider the time-
varying defection excitation and the time-varying con-
tact stiffness excitation caused by the defect with dif-
ferent edge topographies. Relationships between the
excitations and the shape and sizes of the defect are
established. The time-varying deflection excitation is
utilized to describe the additional deflection in the
radial and tangential directions caused by the defect,
which is an extended model of the radial deflection
model in Ref. [23]. The time-varying contact stiffness
is used to describe contact deformations at the defect
edges when the ball is in contact with the defect edges.
The dynamic model of the ball bearing is considered
as a two-degree-of-freedom lumped parameter model.
It includes effects of the time-varying compliance of
the bearing, the damping, the time-varying deflection
excitation in the radial and tangential directions, and
the time-varying contact stiffness excitation caused by
the defect. A fourth-order Runge–Kutta numerical inte-
gration method with a fixed time step is adopted to cal-
culate the vibration response of the ball bearing with
a localized surface defect on its races. Effects of the
defect edge topographies on the time-varying contact
stiffnesses between the ball and the defect edges, and
the vibration response of the ball bearing are investi-
gated. Numerical results from the proposed model are
compared with the available results from the previous
models in the literature, which reveals the superiority
of the proposed model. It is expected that by apply-
ing the proposed method, the relationship between the
vibration response of the ball bearing and the defect
edge topographies can be obtained, and some guidance
for the fault diagnosis and defection of ball bearings
can be provided.

2 Problem formulation

When a localized surface defect occurs on the races of
a ball bearing, as shown in Fig. 1, the ball will strike
the defect edges when the ball passes over the defect.
The periodic impacts arising from the balls against the
defect edges will change the topographies of the defect
edges due to the plastic deformations at the defect
edges. The shapes of the line edges of the defect will
be changed according to the analysis in Refs. [34] and
[35]. The propagated defect edges are assumed as small
smooth plane surfaces in this paper. For instance, a
line edge ab of the defect at its initial stage is changed
into a small plane surface a′b′e f as shown in Fig. 2.
Figure 2b, c shows the different stages of the small
plane surface at the defect edge. Here, it is assumed
that the small plane surfaces at the defect edges have
same sizes. The changes in the defect edge topogra-
phies will affect the contact relationships between the
ball and the defect edges. For a healthy race, the contact
type between a ball and the race is a ball–ball contact
type as shown in Fig. 1a. For a defective race with
line defect edges, as shown in Fig. 1a, the contact type
between the ball and the defective race becomes a ball–
line contact type, which has been discussed in Refs.
[22] and [23]. However, when the defect edge topogra-
phies are changed due to the impacts between the ball
and the defect edges, as shown in Fig. 1a, the contact
type between the ball and the defect edges become a
ball–plane contact type. It depends on three parameters
as follows: (1) the ratio of the defect length to its width,
which is defined as ξd = L/B, where L is the defect
length, and B is the defect width; (2) the ratio of the
ball size to the defect minimum size, which is defined
as ξbd = d/ min(L , B), where d is the ball diameter;
and (3) the elevation angle γ (0 < γ < π/2) of the
small plane surface as shown in Fig. 2b, c.
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Fig. 2 Schematic of the contact type between a ball and one defect edge (enlarged view): a line edge, b very small surface edge, and c
small surface edge
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Fig. 3 Schematic of the contact type between a ball and the small surfaces at defect edges with different topographies: a case 1, b case
2, c case 3, and d case 4

Figure 3 shows effects of the defect edge topogra-
phies on the contact types between the ball and the
different defect cases. The elevation angle γ and the
length l of the small surfaces at the defect edges are
used to determine the contact types between the ball and
the defects. It is assumed that l is larger than Hertzian
contact radius in this paper.

For case 1, γ ≥ arcsin
(

0.5 min (L , B)/
√

R2 + l2
)

+ arctan (l/R) and ξbd > 1, where R is the radius of
the ball, as shown in Fig. 3a. The ball is only in contact
with the line edges of the defect in considering a case
of an early defect stage. For this case, the contact type
between the ball and the defect is a ball–line contact
type when the ball passes over the defect. It is the early
stage of the plastic deformations at the defect edges
caused by the periodic impacts arising from the balls
against the defect edges for a small localized surface
defect.

For case 2, min (L , B) / (2R) < γ ≤ arcsin
(

0.5

min (L , B) /
√

R2 + l2
)

+ arctan (l/R) and ξbd > 1,

as shown in Fig. 3b, the contact type between the ball
and the defect depends on the defect parameters ξd and
ξbd. The contact type between the ball and the begin-
ning edge of the defect is the ball–line contact type, as
well as that between the ball and the ending edge of the
defect. It is a ball–plane contact type when the ball is
in contact with the small surfaces between the points A
and D. It is the middle stage of the plastic deformations
at the defect edges caused by the periodic impacts aris-
ing from the balls against the defect edges for a small
localized surface defect.

For case 3, γ ≤ arcsin(min(L , B)/(2R)) and ξbd >

1, as shown in Fig. 3c, the contact type between the ball
and the defect is a ball–plane contact type when the ball
is in contact with the surfaces between points A and B,
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Direction of ball motion
Direction of ball motion Direction of ball motion Direction of ball motion Direction of ball motion

(a) (b) (c) (d) (e)

Fig. 4 Schematics of the different localized surface defects: a
a small crack, b a small defect with the defect length smaller
than its width, c a small defect with the defect length similar to

its width, d a small defect with the defect length larger than its
width, and e a large defect compared to the ball diameter

and between points C and D. It is a ball–line contact
type when the ball makes contact with the beginning
edge, the edges at points B and C, and the ending edge of
the defect. This case denotes the large plastic deforma-
tions at the defect edges. It is the late stage of the plastic
deformation at the defect edge caused by the periodic
impacts arising from the balls against the defect edges
for a small localized surface defect.

For case 4, ξbd ≤ 1, or hmax < H , as shown in
Figs. 1a and 3d, the contact type between the ball and
the defect is a ball–line contact type at the points A,
B, C, and D; it is the ball–plane contact type when the
ball is in contact with the surface between the points
A and B, the bottom surface, and the surface between
the points C and D of the defect. It is used to describe
the plastic deformations at the defect edges caused by
the periodic impacts arising from the balls against the
defect edges for a large localized surface defect.

For cases 2 and 3, as shown in Fig. 3b, c, the numbers
of the contact surfaces are determined by the defect
sizes. Here, five different defect types are discussed
according to the defect parameters ξd and ξbd.

Figure 4a depicts the first defect type, which denotes
a very small defect such as a point defect and a small
crack. Thus, effects of the edge topographies of the first
defect type can be ignored.

Figure 4b plots the second defect type with the length
of the defect smaller than its width. The ball only strikes
the edges 1 and 4 when the ball passes over the defect,
and the numbers of the contact surfaces are 1, 2, and 1,
respectively.

For the third defect type with the length of the defect
similar to its width, as shown in Fig. 4c, the ball strikes
all defect edges 1–4 when the ball passes over the
defect, and the numbers of the contact surfaces are 1,
3, 4, 3, and 1, respectively.

Figure 4d gives the fourth defect type with the length
of the defect larger than its width. The ball also strikes
all defect edges 1–4, and the numbers of the contact
surfaces are 1, 3, 2, 3, and 1, respectively.

The fifth defect type is presented in Fig. 4e, the ball
strikes the edge 1, the bottom surface of the defect, and
the edge 4 when the ball passes over the defect. There
is only one contact surface during the entire contact
process.

3 Dynamic model of a ball bearing with a localized
surface defect

3.1 Localized surface defect model

When a localized surface defect occurs on the races of
a ball bearing, an excitation will be generated, which
includes the time-varying deflection excitation and the
time-varying contact stiffness excitation [23]. Refer-
ence [23] presents a time-varying deflection excitation
model to describe the additional deflections caused by
the defect. In their model, only the radial contact deflec-
tions at the defect edges are considered, which are cal-
culated by a static finite element method. However, the
time-varying contact stiffness excitation between the
ball and the defect is ignored. In this paper, the time-
varying deflection excitation, the time-varying con-
tact stiffness excitation, and the defect edge topogra-
phies are considered in the proposed model. The con-
tact stiffnesses between the ball and the defect edges
are calculated according to Hertzian elastic contact
theory.

For a healthy ball bearing, as shown in Fig. 1a, the
total contact stiffness K between a ball and the races
can be calculated by [37]
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K = 1[
1

K 1/n
i

+ 1
K 1/n

o

]n (1)

where n is the load-deflection exponent, n = 1.5 for
a ball bearing; Ki and Ko are the contact stiffnesses
between the ball and the inner race, and that between
the ball and the outer race, respectively. For a healthy
ball bearing, the contact stiffness Kh between the ball
and the race can be calculated by [23,37]

Kh =
(

π2e2 E2
eqε

4.5k3
∑

ρ

)0.5

(2)

in which
∑

ρ is the curvature sum; Eeq is the equiva-
lent modulus of elasticity; k and ε denote the first and
second kind of elliptical integral, respectively; and e is
the elliptical eccentricity parameter.

∑
ρ, Eeq, k, ε,

and e can be calculated by the methods presented in
Refs. [23] and [37].

When a localized surface defect occurs on the inner
race or the outer race of the ball bearing, as shown
in Fig. 1a, the contact type between the ball and the
defect is no longer a ball–ball contact type since the
lined edges of the defect become small surfaces due
to the impacts between the ball and the defect edges.
Therefore, the contact stiffnesses between the ball and
the defect edges cannot be calculated by Eq. (2). In
this paper, the small surfaces at the defect edges are
assumed as small smooth surfaces as shown in Fig. 1a.
As a result, the contact between the ball and one edge
of the defect can be considered as a ball–plane contact
type. The contact stiffness Kp between the ball and the
smooth surface can be calculated by Hertzian elastic
contact theory, which is given by [38]

Kp = 4R
1
2

3

(
1−ν2

1
E1

+ 1−ν2
2

E2

) (3)

where R is the radius of the ball; E1, E2 are the elas-
tic modulus associated with each contact body; and
ν1, ν2 are the Poisson’s ratio associated with each con-
tact body.

When the ball makes contact with the small surfaces
at the defect edges, the new total contact stiffness Kt

between the ball and the races with a localized surface
defect cannot be calculated by Eq. (1). Here, a new cal-
culation method is proposed to calculate the new total
contact stiffness Kt for a ball bearing with a localized
surface defect on its races.

A

B
γγ

p1δ

drδ

D

C
γ

p2δ
hrδ

Fig. 5 Contact deflections between the ball and the small surface
at the defect edges

As shown in Fig. 5, the total contact deformation
δtr between the healthy and the defective races can be
calculated by

δtr = δhr + δdr =
(

Fr

Kh

)2/3

+
(

Fr cos γ

ns Kp

)2/3

cos γ, ns =1, 2, 3, and 4 (4)

where δhr is the contact deformation between the ball
and the healthy race, δdr is the contact deformation
between the ball and the defect, Fr is the radial force
applied on the ball, and ns is the numbers of the contact
surfaces between the ball and the defect edges. Then,
the total contact stiffness Kts between the ball and the
races can be calculated by

Kts = 1[(
1

Kh

)2/3 +
(

(cos γ )5/2

ns Kp

)2/3
]3/2 ,

ns = 1, 2, 3, and 4 (5)

where the subscript s denotes the numbers of the con-
tact surfaces.

For the first type of a small defect such as a point
defect and a small crack, as the descriptions in Fig. 4,
the contact stiffness between the ball and the defect can
be considered as a constant Kd1 [23]. The total defor-
mation between the healthy and the defective races is
calculated by

δtr = δhr + δdr =
(

Fr

Kh

)2/3

+
(

Fr

Kd1

)1/nd

(6)

where nd denotes the load-deflection exponent for the
first defect type, and it depends on the shape and sizes
of the defect. Since the sizes of the first defect type
are very small, nd can be assumed to be 1.5 for the
first defect type. The total contact stiffness Kt0 between
the ball and the races with the first type defect can be
obtained by a polynomial fitting method according to
the load-deflection relationship listed in Eq. (6).
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For the first defect type, the contact stiffness Ke

between the ball and the races can be defined as

Ke =
⎧
⎨
⎩

Kt0
∣∣mod (θd j , 2π) − θ0 − θe − 0.5�θ

∣∣
≤ θe + 0.5�θ

K otherwise
(7)

where the operator mod() denotes the modulus after the
division arithmetic operation, θe is half of the arc length
of the defect in the tangential direction; Kt0 is the total
contact stiffness between the ball and the races when a
first type defect occurs on the surface of the inner race
or the outer race; �θ is the arc length of the propagated
surface at the defect edges in the tangential direction,
which is given by

�θ =
⎧⎨
⎩

arcsin
(

2l cos γ
Di

)
defect on inner race

arcsin
(

2l cos γ
Do

)
defect on outer race

(8)

where Di and Do are the diameter of the inner race and
the outer race, respectively; and θ0 is the initial angular
offset of the defect to the j th ball, which is given by

θ0 =
{

2π
Z ( j − 1) + βi defect on inner race

2π
Z ( j − 1) + βo defect on outer race

(9)

where Z is the number of the ball, βi and βo are the
initial angular offsets of the defect of the first ball when
the defect occurs on the inner race and the outer race,
respectively; j denotes the j th ball, j is 1 to Z , and θd j

is the race contact angle, which is given by

θd j =

⎧⎪⎪⎨
⎪⎪⎩

2π
Z ( j − 1) + (ωc − ωr) t + βi

for an inner race contact angle
2π
Z ( j − 1) + ωct + βo

for an outer race contact angle

(10)

where ωc is the rotational speed of the cage, ωr is the
rotational speed of the rotor. For the second defect type,
the contact stiffness Ke can be described by

Ke =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kt1 θ0 − �θ ≤ mod (θd j, 2π)

< 0.5θd and 0.5θd < mod (θd j, 2π)

≤ θd + �θ

Kt2 mod (θd j, 2π) = 0.5θd

K otherwise

(11)

where Kt1 is the total contact stiffness between the ball
and the races when the number of the contact surface
is 1, Kt2 is the total contact stiffness between the ball
and the races when the number of the contact surfaces
is 2, θd is the angular position of the defect as follows

θd =
⎧
⎨
⎩

θ0 + arcsin
(

L+2l cos γ
Di

)
defect on inner race

θ0 + arcsin
(

L+2l cos γ
Do

)
defect on outer race

(12)

For the third defect type, the contact stiffness Ke can
be written as

Ke =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Kt1 θ0 ≤ mod (θd j , 2π) ≤ θ0 and θd

≤ mod (θd j , 2π) ≤ θd

Kt3 θ0 < mod (θd j , 2π)<0.5θd and 0.5θd

< mod (θd j , 2π) < 0.5θd

Kt4 mod (θd j , 2π) = 0.5θd

K otherwise

(13)

where Kt3 is the total contact stiffness between the ball
and the races when the number of the contact surfaces
is 3, Kt4 is the total contact stiffness between the ball
and the races when the number of the contact surfaces
is 4. For the fourth defect type, the contact stiffness Ke

can be given by

Ke =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Kt1 θ0−�θ ≤ mod (θd j, 2π) ≤ θ0 and θd

≤ mod (θd j, 2π) ≤ θd + �θ

Kt3 θ0 < mod (θd j, 2π) ≤ θ1 and θ2

≤ mod (θd j, 2π) < θd

Kt2 θ1 < mod (θd j, 2π) < θ2

K otherwise

(14)

where θ1 is defined by

θ1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ0 + arcsin
(

0.5(B+2l cos γ )
Di

)

defect on inner race

θ0 + arcsin
(

0.5(B+2l cos γ )
Do

)

defect on outer race

(15)

and θ2 is written as

θ2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θd − arcsin
(

0.5(B+2l cos γ )
Di

)

defect on inner race

θd − arcsin
(

0.5(B+2l cos γ )
Do

)

defect on outer race

(16)

For the fifth defect type, the contact stiffness Ke can be
given by

Ke =

⎧⎪⎪⎨
⎪⎪⎩

Kt1 θ0−�θ ≤ mod (θd j, 2π)<θ f 1 and θ f 2

< mod (θd j, 2π) ≤ θd+�θ

Kt5 θ f 1 ≤ mod (θd j, 2π) ≤ θ f 2

K otherwise

(17)

where Kt5 is the contact stiffness between the ball and
the bottom surface of the defect, it can be considered
as the contact between a ball and a flat smooth surface,
and it can be determined by

Kt5 = 1[(
1

Kh

)2/3 +
(

1
Kp

)2/3
]3/2 (18)
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and θ f 1 is defined by

θ f 1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

arcsin

(√
(0.5d)2−(0.5d−H)2

Di

)
+ l cos γ

defect on inner race

arcsin

(√
(0.5d)2−(0.5d−H)2

Do

)
+ l cos γ

defect on outer race

(19)

where d is the diameter of the ball, H is the defect
depth, and θ f 2 is given by

θ f 2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θd − arcsin

(√
(0.5d)2−(0.5d−H)2

Di

)
− l cos γ

defect on inner race

θd − arcsin

(√
(0.5d)2−(0.5d−H)2

Do

)
− l cos γ

defect on outer race

(20)

On the other hand, there is an additional deflection due
to effects of the presence of the defect with different
edge topographies. As shown in Fig. 3, the additional
deflection depends on the ratio of the defect length to its
width, the ratio of the ball size to the defect minimum
size, and the elevation angles of the small surfaces at the
defect edges. According to the descriptions in Fig. 3, the
maximum of the addition deflection can be obtained.
For case 1

hmax 1 = 0.5d − ((0.5d)2 − (0.5 min (L , B)

+ l cos γ )2)0.5 (21)

For case 2

hmax 2 = 0.5d − ((0.5d)2 − (0.5 min (L , B))2)0.5

+ (0.5 min (L , B)

+ l cos γ − 0.5d sin γ ) tan γ (22)

For case 3

hmax 3 = 0.5d − ((0.5d)2

− (0.5 min (L , B))2)0.5 + l sin γ (23)

For case 4

hmax 4 = H (24)

Then, the time-varying deflection excitation H ′ is given
by a piecewise response function, including both the
half-sine and the rectangular functions [23], which is
defined by

H ′ =

⎧
⎪⎪⎨
⎪⎪⎩

H1 ξbd >> 1
H2 ξbd > 1 and ξd ≤ 1
H3 ξbd > 1 and ξd > 1
H4 ξd ≤ 1

(25)

where H1, H2, H3, and H4 are the time-varying deflec-
tion excitations caused by the first through fifth defect
types, respectively, which have been given in Ref. [23].
H1 is given by

H1 =
⎧⎨
⎩

H |mod(θd j, 2π) − θ0 − θe − 0.5�θ |
≤ θe + 0.5�θ

0 otherwise
(26)

H2 is defined by

H2 =

⎧⎪⎨
⎪⎩

hmax 2 sin
(

0.5π
�θ2

(mod(θd j, 2π) − θ0)
)

θ0

≤ mod (θd j, 2π) ≤ θ0 + �θ2

0 otherwise

(27)

�θ2 is given by

�θ2 =
⎧
⎨
⎩

arcsin
(

L+2l cos γ
Do

)
defect on outer race

arcsin
(

L+2l cos γ
Di

)
defect on inner race

(28)

H3 is defined by

H3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

hmax 3 sin
(

0.25π
�θ1

( mod (θd j, 2π)− θ0)
)

θ0

≤ mod (θd j, 2π) ≤ θ1

hmax 3 θ1 < mod (θd j, 2π) < θ3

hmax 3 sin
(

0.25π
�θ3

(mod (θd j, 2π)− θ0)
)

θ3

≤ mod (θd j, 2π) ≤ θd

0 otherwise

(29)

�θ1 and �θ3 are given by

�θ1 = �θ3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arcsin
(

0.5B+l cos γ
Do

)

defect on outer race

arcsin
(

0.5B+l cos γ
Di

)

defect on inner race

(30)

H4 is defined by

H4 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

hmax 4 sin (0.25π/�θ4 ( mod (θd j, 2π) − θ0)) θ0
≤ mod (θd j, 2π) < θ f 1

hmax 4 θ f 1 ≤ mod (θd j, 2π) ≤ θ f 2
hmax 4 sin (0.25π/�θ4 ( mod (θd j, 2π) − θ0)) θ f 2

< mod (θd j, 2π) ≤ θd
0 otherwise

(31)

�θ4 is given by

�θ4 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

arcsin

(√
(0.5d)2−(0.5d−H+l sin γ )2+l cos γ

Do

)

defect on outer race

arcsin

(√
(0.5d)2−(0.5d−H+l sin γ )2+l cos γ

Di

)

defect on inner race

(32)
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Inner race 
defect

Outer race 
defect

Fig. 6 A lumped spring-mass system of a ball bearing with a
localized defect on the races

3.2 Dynamic model of ball bearing

To investigate the vibration characteristics of the ball
bearing with a localized surface defect on its races, the
contact between the ball and the races is considered as
a lumped spring-mass system as shown in Fig. 6. This
model was first developed by Sunnersjo [39]. However,
in the Sunnersjo’s model, the bearing is only modeled
as a lumped spring-mass system; effects of the damp-
ing and the defect are ignored. The model is only used
to study the vibration response of a rolling element
bearing system due to the time-varying compliance.
In this paper, the Sunnersjo’s model is extended to
include effects of the damping, the time-varying com-
pliance property of the bearing system, and a local-
ized surface defect with different edge topographies
on its races. The proposed model can also consider
the radial and the tangential deflections at the defect
edges, the time-varying deflection excitation and the
time-varying contact stiffness excitation caused by the
defect, and effects of the different defect edge topogra-
phies.

The governing equations of motion of the two-
degree-of-freedom bearing system are written as

mẍ + cẋ + Ke

Z∑
j=1

λ jδ
1.5
j cos θd j = Qx (33)

mÿ + cẏ + Ke

Z∑
j=1

λ jδ
1.5
j sin θd j = Qy (34)

where m is the total mass of the inner race and the
shaft, c is the damping coefficient, Qx and Qy are the
components of external force applying on the shaft, x
and y are the displacement responses in the X - and Y -

Table 1 Parameters of a deep-groove ball bearing used in the
simulation

Parameters Value

Damping coefficient (c) 300.000 Ns/m

Inner race diameter (Di) 49.912 mm

Outer race diameter (Do) 80.088 mm

Pitch diameter (D) 65.000 mm

Ball diameter (d) 15.081 mm

Radius of curvature of the outer race (ro) 8.010 mm

Radius of curvature of the inner race (ri) 7.665 mm

Number of balls (Z ) 8.000

Contact angle (α) 0.000 ◦

Internal radial clearance (Cr) 1.000µm

direction, and λ j is the loading zone parameter of the
j th ball written as

λ j =
{

1 δ j > 0
0 δ j ≤ 0

(35)

The total contact deformation of the j th ball at any
angle δ j is given by

δ j = x cos θ j + y sin θ j − Cr − H ′ (36)

where Cr is the internal radial clearance of the ball
bearing, H ′ is the time-varying deflection excitation
function corresponding to each defect as shown in Eq.
(25), H1 describes the first defect type, H2 is applied to
describe the second and third defect types, H3 depicts
the fourth defect type, and H4 describes the fifth defect
type.

4 Results and discussion

A fourth-order Runge–Kutta method with a constant
time step is applied to calculate the numerical solu-
tion from the governing equations of the two-degree-
of-freedom model of a ball bearing derived in Sect. 3.
The design parameters of a deep-groove ball bearing
in Ref. [23], as shown in Table 1, are used. The total
mass of the inner race and the shaft is 0.6 kg, and the
simulated operating condition is that the shaft rotates at
2,000 rpm and the external radial load of 20 N is applied
to the shaft in the X -direction. In order to reduce the
calculation time and obtain enough points to describe
the impulse waveforms caused by the localized surface
defects with different edge topographies, the time step
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Table 2 Size and depth of
defects studied in this
numerical analysis

Type of the
defects

Length
(L) (mm)

Width
(B) (mm)

Depth
(H ) (mm)

Ratio of the length
to width (ξd)

1 0.10 0.10 0.25 1.00

2 0.10 0.40 0.25 0.25

3 0.40 0.10 0.25 4.00

4 0.60 20.00 0.001 0.03

Fig. 7 Total contact stiffness between the healthy race and the
defective race of the ball bearing: a defect on the inner race and b
defect on the outer race (line with circle one contact surface; line

with triangle two contact surfaces; line with square three contact
surfaces; and line with asterisk four contact surfaces)

for the numerical investigation in this paper is assumed
as the time required for 0.0092 ◦ of rotation. For the
shaft speed of 2,000 rpm, the time step utilized in this
numerical solution is �t = 2 × 10−6 s. The initial dis-
placements used for the inner race and the shaft are
x0 = 10−6 m and y0 = 10−6 m, and the initial veloci-
ties in the X - and Y -directions are zero. The sizes and
depth of the three different defect cases of interest are
listed in Table 2. According to the descriptions in Fig. 3
and the parameters of the ball bearing and the defects
in Tables 1 and 2, the value of the elevation angle γ

of the small plane surface at the defect edge can be
from 0.001 rad to 1.571 rad, which is calculated by the
method in Fig. 3.

4.1 Effects of the defect edge topographies on the
contact stiffness between the ball and the defect

Figure 7a, b shows the total contact stiffnesses between
the healthy outer race and the defective inner race, and
those between the healthy inner race and the defec-
tive outer race, respectively. As shown in Fig. 7, the
total contact stiffnesses between the healthy race and

the defective race of the ball bearing increase with the
numbers of contact surfaces between a ball and the
edges of the defect. It is also shown that the total con-
tact stiffnesses increase as the elevation angle γ of the
small surface at the edges of the defect increases. Note
that the contact stiffness between the ball and the races
of the bearing varies with the contact position between
the ball and the defect when the ball passes over the
defect due to the changes in the numbers of the contact
surfaces between the ball and the defect edges.

To verify the proposed method, one ball and the
healthy outer race, and one ball and the outer race with
a plane surface are modeled using the finite element
(FE) analysis method. The contact FE model of the
ball and the healthy outer race (ball–ball contact as
shown in Fig. 1a), and that of the ball and the outer
race with a plane surface (ball–plane contact as shown
in Fig. 2b, c) are modeled using three-dimensional solid
elements and three-dimensional node-to-surface con-
tact elements that include the elastic Coulomb fric-
tional effect according to the FE modeling method in
Ref. [24]. The mesh size in the contact area of the FE
model is 0.05 mm. The bottom surface of the outer race
is fixed. An external radial load is applied at the cen-
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Table 3 Comparison of
radial contact deformations
between the ball and the
healthy race from Hertzian
contact theory and the FE
analysis method for
different radial loads

Radial load (N) Hertzian contact theory
(×10−7 m)

FE analysis method
(×10−7 m)

Difference
(%)

62.50 15.59 15.33 1.66

125.00 24.75 24.30 1.80

187.50 32.43 32.19 0.72

250.00 39.28 39.31 0.08

312.50 45.58 46.00 0.92

Table 4 Comparison of
radial contact deformations
between the ball and the
small surface at the defect
edge from Hertzian contact
theory and the FE analysis
method for different radial
loads

Radial load (N) Hertzian contact theory
(×10−7 m)

FE analysis method
(×10−7 m)

Difference
(%)

62.50 28.24 27.93 1.10

125.00 44.83 44.20 1.41

187.50 58.75 57.94 1.38

250.00 71.17 70.44 1.03

312.50 82.58 81.53 1.27

Table 5 Comparison of radial contact deformations between the ball–ball contact and the ball–plane contact from Hertzian contact
theory and the FE analysis method for different radial loads

Radial load (N) Hertzian contact theory (×10−7 m) FE analysis method (×10−7 m)

Ball–ball contact, δhr Ball–plane contact, δdr Ball–ball contact, δhr Ball–plane contact, δdr

62.50 15.59 28.24 15.33 27.93

125.00 24.75 44.83 24.30 44.20

187.50 32.43 58.75 32.19 57.94

250.00 39.28 71.17 39.31 70.44

312.50 45.58 82.58 46.00 81.53

ter of the top surface of the half ball. The displace-
ments of nodes on the top surface of the half ball in
the Y -direction are coupled to apply a uniformly dis-
tributed load there. The radial contact deformations
from the FE model with the healthy outer race for
different radial loads are compared with those from
Hertzian contact theory, as shown in Table 3. For the
contact FE model of the ball and the healthy outer race
(ball–ball contact), the differences between the results
from the Hertzian contact theory and the FE analy-
sis method are less than 2 %. The radial contact defor-
mations from the FE model with a plane surface for
different radial loads are compared with those from
Hertzian contact theory, as shown in Table 4. For the
contact FE model of the ball and the plane surface (ball–
plane contact), the differences between the results from

Hertzian contact theory and the FE analysis method
are also less than 2 %. Table 5 shows the comparison
of radial contact deformations between the ball–ball
contact and the ball–plane contact from Hertzian con-
tact theory and the FE analysis method for different
radial loads. It is found that the results of the ball–
ball contact and those of the ball–plane contact from
Hertzian contact theory, and those from the FE analy-
sis method are very different. Table 5 also shows that
the radial contact deformations of the ball–ball contact
are less than those of the ball–plane contact. There-
fore, when the ball first reaches the defect edge, the
contact stiffness between the ball and the race will be
changed when the ball is in contact with the small
surface at the defect edge, which will also cause an
impulse.
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Fig. 8 Schematics of the
defect size used in vibration
response comparisons
applying different defect
models: a front view of the
ball bearing and b top view
of the ball bearing

R

O1

a
b c

q

c p

O4

b′ c′

L

Direction of ball moction

Previous models

Proposed model

l
γ

H

(a) (b)

Fig. 9 Comparisons of
vibration response in the
X -direction of the ball
bearing with a defect on its
outer race using different
defect models: a
acceleration response from
the four different models
from 0.117 to 0.137 s, b
frequency spectra of
acceleration response from
the four different models, c
closed-up plot of a, and d
closed-up plot of b. (line
with circle Rafsanjani et
al.’s model; line with
asterisk Patel et al.’s model;
line with inverse triangle
time-varying deflection
model; line with square the
proposed model)

4.2 Effects of defect edge topographies on vibration
response of the ball bearing

4.2.1 Vibration response comparisons applying
different defect models

To verify the proposed model, the time- and frequency-
domain vibration response of the inner race of the ball
bearing from different defect models is compared. The
first defect case on the surface of the outer race of the
bearing is investigated. The sizes of the first defect case
are given in Table 2. The initial angular position of the
defect is assumed to be zero degree. The elevation angle
γ and the length l of the small surfaces at defect edge

are assumed to be 0.4 rad and 0.02 mm. The differ-
ent defect models include Rafsanjani et al.’s model [2],
Patel et al.’s model [18], time-varying deflection exci-
tation model [23], and the proposed model consider-
ing both the time-varying deflection excitation and the
time-varying contact stiffness excitation. For these four
different defect models, the surface areas are assumed
to be same, which means the length L and width B of
the defect are same, as shown in Fig. 8.

Figure 9a–d shows the time- and frequency-domain
acceleration response in the X -direction from Rafsan-
jani et al.’s model, Patel et al.’s model, time-varying
deflection excitation model, and the proposed model.
Note that the time delay between the impulses caused
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by the defect is same for the four different models,
which is equal to 0.0098 s as shown in Fig. 9a. However,
there are significant differences between the waveforms
of the acceleration response from the four different
models.

As shown in Fig. 9c, Rafsanjani et al.’s model only
describes the time-invariant impulse stage A0A1B1B0,
since their model used a rectangular function to model
the time-invariant deflection excitation caused by the
changes in the contact positions between the ball and
the defect when the ball passes over the defect as shown
in Fig. 1a. Patel et al.’s model also only describes
the time-invariant impulse stage A0A2B2B0, whose
impulse waveform is similar to that from Rafsanjani
et al.’s model because they also used a rectangular
function to model the time-invariant deflection exci-
tation. However, its amplitude is less than that of Raf-
sanjani et al.’s model, because Rafsanjani et al.’s model
used the defect depth to determine the amplitude of the
rectangular function, but that of Patel et al.’s model
is determined by the geometry relationship between
the ball and the defect. Moreover, the time-varying
deflection model can describe the time-varying impulse
stage A0B0, which used a half-sine function to model
the time-varying deflection excitation caused by the
changes in the contact positions between the ball and
the defect when the ball passes over the defect. Accord-
ing to the descriptions in Sect. 2, when the ball passes
over the defect, the impulse caused by the defect is time-
varying; the amplitude of the impulse function should
be determined by the contact relationship between the
ball and the defect; and the impulse excitation includes
both the time-varying deflection excitation and the
time-varying contact stiffness excitation caused by the
changes in the numbers of the contact surfaces between
the ball and the defect. However, Rafsanjani et al.’s
model, Patel et al.’s model, and the time-varying deflec-
tion model only modeled the time-invariant deflection
excitation and the time-varying deflection excitation
caused by the defect, which cannot describe the impulse
caused by the time-varying contact stiffness due to the
changes in the numbers of the contact surfaces between
the ball and the defect. To overcome this problem,
the proposed model considering both the time-varying
deflection excitation and the time-varying contact stiff-
ness excitation is proposed in this paper, which is mod-
eled by a piecewise function including the rectangu-
lar function and the half-sine function. For the pro-
posed model, the amplitude of the time-varying deflec-

tion excitation is determined by the geometry relation-
ship between the ball and the defect, and the value
of the time-varying contact stiffness is determined by
Hertzian contact theory. As shown in Fig. 9c, the pro-
posed model can describe not only the time-varying
impulse stage A0ABB0, but also the impulse stages
A0A and BB0 caused by the time-varying contact stiff-
nesses due the changes in the numbers of the contact
surfaces (from 1 surface to 3 surfaces, and from 3 sur-
faces to 1 surface) between the ball and the defect edges,
as described in Sect. 2.

As shown in Fig. 9c, note that the amplitudes of the
acceleration response from Rafsanjani et al.’s model
and the proposed model are larger than those from Patel
et al.’s model and the time-varying deflection excita-
tion model. Comparisons of the acceleration response
from Rafsanjani et al.’s model and the proposed model
show that Rafsanjani et al.’s model can only describe
the time-invariant impulse caused by the defect, but the
proposed model can describe the time-varying impulse
and effects of the defect edge topographies which are
more close to the real as the analysis in Sect. 2. Com-
parisons between Patel et al.’s model and the time-
varying deflection excitation model show Patel et al.’s
model can formulate geometry relationship between
the ball and the defect, but it cannot model the time-
varying impulse generated by the defect when the ball
passes through the defect. The time-varying deflec-
tion excitation model can consider effects of both the
geometry relationship between the ball and the defect
and the deflection impulse, but it cannot consider the
time-varying contact stiffness between the ball and the
defect.

In addition, comparisons of the frequency spectra
of the acceleration response of the inner race of the
bearing in the X -direction from the four defect mod-
els are shown in Fig. 9b, d. Note that the same peak
frequencies at 102.20 Hz appear in the frequency spec-
tra from the four models. However, the amplitudes of
the peaks are different for the four different models.
The amplitude of the frequency spectrum of Rafsan-
jani et al.’s model is larger than those of the other three
models. The amplitude of the proposed model is larger
than those of Patel et al.’s model and the time-varying
deflection excitation model. The amplitude of the time-
varying deflection excitation model is smaller than that
of Patel et al.’s model. This occurs because the addi-
tional deflection caused by the defect is assumed as the
depth of the defect in the Rafsanjani et al.’s model,
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A B
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B1

B2

B3
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A3 C1

D1 D2 D3
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(a) (b)

Fig. 10 Effects of defect edge topographies on the acceleration
response in the X -direction of the ball bearing with a first type
defect on its outer race using the proposed models from 0.11718
to 0.11726 s: a effect of the elevation angle γ and b effect of the
length l (line with circle γ = 0.40 rad and l = 0.2L; line with

asterisk γ = 0.44 rad and l = 0.2L; line with inverse triangle
γ = 0.48 rad and l = 0.2L; line with plus symbol γ = 0.40 rad
and l = 0.2L; line with square γ = 0.40 rad and l = 0.3L; line
with star γ = 0.40 rad and l = 0.4L)

and both the time-varying deflection excitation and
the time-varying contact stiffness excitation are con-
sidered in the proposed model, when the ball passes
over the defect. However, in Patel et al.’s model and
the time-varying deflection excitation model, they only
consider the effect of the additional deflection deter-
mined by the defect size and ball diameter, which is
smaller than those in Rafsanjani et al.’s model and the
proposed model. These results show that the proposed
model is validation and more accurately for the ball
bearing dynamics simulation according to the analysis
in Sect. 2. The proposed model can not only describe
the time-varying deflection excitation generated by the
defect, but also model the time-varying contact stiff-
ness between the ball and the defect with different edge
topographies when the ball passes over the defect.

4.2.2 Effects of the defect edge topographies on the
waveforms of the acceleration response of the
ball bearing

Figures 10, 11, and 12 show effects of the defect edge
topographies on the waveforms of the acceleration
response in the X -direction of the inner race of the
ball bearing for the defect cases 1, 2, and 3, respec-
tively. Here, to compare the waveforms of the accel-
eration responses of the ball bearing caused by differ-
ent defect, the initial position of the defect is assumed
to be zero. Note that the impulses at the points A, B,

A1, A2, A3, D1, D2, and D3 caused by the changes
in the contact stiffnesses between the ball and the defect
edges are also observed in Figs. 10, 11 and 12 for
the three studied defect cases, whose reasons are sim-
ilar with the descriptions in Sect. 4.2.1. Effects of the
elevation angle γ of the small surface at the defect
edge on the acceleration response of the ball bear-
ing for cases 1, 2, and 3 are shown in Figs. 10a, 11a,
and 12a, respectively. The amplitude of the acceleration
response increases consistently with the elevation angle
γ for the three different cases. This occurs because
the amplitudes of the time-varying deflection excita-
tions and the time-varying contact stiffness excitations
caused by the three defect cases increase with the ele-
vation angle γ as shown in Eqs. (5), (21) to (23), and
Fig. 7, when the elevation angle l is a constant value.
Figures 10b, 11b, and 12b plot effects of length l of
the small surface at the defect edge on the acceleration
response of the three studied defect cases. The ampli-
tude of the acceleration response also increases con-
sistently with the length l for the three different cases.
This occurs because the amplitudes of the time-varying
deflection excitations caused by the three defect cases
increase consistently with the length l as shown in Eqs.
(21) and (23) when the elevation angle γ is a constant
value. Moreover, as shown in Figs. 10b, 11b, and 12b,
the differences of the impulses between points A1 and
B1, that between points A2 and B2, and that between
points A3 and B3 caused by the changes in the con-
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Fig. 11 Effects of defect edge topographies on the acceleration
response in the X -direction of the ball bearing with a second
defect on its outer race using the proposed models from 0.11718
to 0.11726 s: a effect of the elevation angle γ and b effect of the
length l. (line with circle γ = 0.40 rad and l = 0.2L; line with

asterisk γ = 0.44 rad and l = 0.2L; line with inverse triangle
γ = 0.48 rad and l = 0.2L; line with plus symbol γ = 0.40 rad
and l = 0.2L; line with square γ = 0.40 rad and l = 0.3L; line
with star γ = 0.40 rad and l = 0.4L)

A
B A1

B1 B2
B3

A2 A3 C1

D1

D2

D3

C2 C3

(a) (b)

Fig. 12 Effects of defect edge topographies on the acceleration
response in the X -direction of the ball bearing with a third defect
on its outer race using the proposed models from 0.11718 to
0.11736 s: a effect of the elevation angle γ and b effect of the
length l. (line with circle γ = 0.40 rad and l = 0.2L; line with

asterisk γ = 0.44 rad and l = 0.2L; line with inverse triangle
γ = 0.48 rad and l = 0.2L; line with plus symbol γ = 0.40 rad
and l = 0.2L; line with square γ = 0.40 rad and l = 0.3L; line
with star γ = 0.40 rad and l = 0.4L)

tact stiffnesses between the ball and the defect edges
decrease as the length l increases for the defect cases
1, 2, and 3. This occurs because the duration of the
impulse increases with the arc length of the propagated
surface at the defect edges in the tangential direction
�θ when the length l increases as shown in Figs. 1
and 2.

Figures 13 and 15 show effects of time-varying
defect edge topographies on waveforms of the acceler-
ation response in the X -direction of the inner race of

the ball bearing for the defect cases 2, 3, and 4, respec-
tively. In this paper, to describe effects of time-varying
defect edge topographies on vibrations of the ball bear-
ing with a localized surface defect on its races, the rates
of change of the elevation angle γ and the length l of
the small surface at the defect edges are assumed to be
constant since simulating the rates of the defect edge
topographies due to the ball impacts is very complex
and beyond the scope of this study. Note that the ampli-
tude of the acceleration response increases consistently
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X: 0.1172
Y: 13.29

X: 0.1270
Y: 13.49

X: 0.1368
Y: 13.69

X: 0.1466
Y: 13.84

γ=0.42 rad
l=0.02 mm

γ=0.44 rad
l=0.02 mm

γ=0.46 rad
l=0.02 mm

γ=0.48 rad
l=0.02 mm

γ=0.40 rad
l=0.02 mm

γ=0.40 rad
l=0.03 mm

γ=0.40 rad
l=0.04 mm

γ=0.40 rad
l=0.05 mm

X: 0.1172
Y: 13.27

X: 0.1270
Y: 17.60

X: 0.1368
Y: 21.21

X: 0.1466
Y: 23.67

(a)

(b)

Fig. 13 Effects of defect edge topographies on the acceleration
response in the X -direction of the ball bearing with a first defect
on its outer race using the proposed models from 0.1172 to 0.1563
s: a effect of the elevation angle γ and b effect of the length l

with the elevation angle γ and the length l of the small
surface at the defect edge due to the impacts between
the ball and the defect edges for the studied cases. This
is because the amplitudes of the time-varying deflection
excitation and the time-varying contact stiffness excita-
tion increase with the elevation angle γ and the length
l of the small surface at the defect edge as analyzed in
Eqs. (5), (21) to (23), and Fig. 7. The results from the
proposed model considering the time-varying deflec-
tion excitation and the time-varying contact stiffness
excitation caused by the localized defect with different
edge topographies cannot be predicted by the previous
localized surface defect models in the literature (Fig.
14).

4.2.3 Effects of the defect edge topographies on the
statistical measures of the acceleration response
of the ball bearing

Statistical measures which can determine the impul-
sive character of a time-domain signal are widely used
in bearing fault diagnosis and detection [7,8,40–42].
Here, three different well-known statistical indicators
such as root mean square (RMS), crest factor (CF), and
kurtosis are applied to investigate effects of the defect

X: 0.1172
Y: 16.77

X: 0.1270
Y: 21.06

X: 0.1368
Y: 23.01

X: 0.1466
Y: 24.13

γ=0.40 rad
l=0.02 mm

γ=0.40 rad
l=0.03 mm

γ=0.40 rad
l=0.04 mm

γ=0.40 rad
l=0.05 mm

X: 0.1172
Y: 17.45

X: 0.1270
Y: 19.02

X: 0.1368
Y: 19.12

X: 0.1466
Y: 19.22

γ=0.42 rad
l=0.02 mm

γ=0.44 rad
l=0.02 mm

γ=0.46 rad
l=0.02 mm

γ=0.48 rad
l=0.02 mm

(a)

(b)

Fig. 14 Effects of defect edge topographies on the acceleration
response in the X -direction of the ball bearing with a third defect
on its outer race using the proposed models from 0.1172 to 0.1563
s: a effect of the elevation angle γ and b effect of the length l

edge topographies on the acceleration response in the
X -direction of the inner race of the ball bearing. These
parameters of a discrete signal s are given by [8]

RMS =
√√√√ 1

Nf

Nf∑
i=1

s2
i (37)

CF = max(s) − min(s)

RMS
(38)

Kurtosis =
∑Nf

i=1 (si − mean(s))4

Nf RMS4 (39)

where Nf is the number of samples, si is the i th data
of the discrete signal s, max() is the maximum value
of the discrete signal s, min() is the minimum value of
the discrete signal s, and mean() is the mean value of
the discrete signal s.

Figures 16, 17, and 18 show the statistical measures
of the acceleration response in the X -direction of the
inner race of the ball bearing from 0.3 to 0.4 s for the
defect cases 1, 2, and 3. According to the parameters
in Table 2 and the descriptions in Fig. 3, the range of
the elevation angle γ can be chosen to be from 0.4 to
0.5 rad in this section. The RMS of the X -direction
acceleration response for cases 1, 2, and 3 are shown
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(a) (b)

Fig. 15 Effects of defect edge topographies on the acceleration response in the X -direction of the ball bearing with a fourth defect on
its outer race using the proposed models from 0.1172 to 0.1563 s: a schematic of the fourth defect and b effect of the length l

in Figs. 16a, d, g, j, m, 17a, d, g, j, m, and 18a, d,
g, j, m, respectively. The RMS increases consistently
with the length l and the elevation angle γ for the three
different cases. This occurs because the amplitude of
the acceleration response of the ball bearing increases
with the elevation angle γ and the length l as shown
in Figs. 10, 11, 12, 13, and 14. Figures 16b, e, h, k,
n, 17b, e, h, k, n, and 18b, e, h, k, n give the crest
factor of the X -direction acceleration response of the
three studied defect cases. For the three defect cases,
the crest factor decreases with the length l because the
duration of the impulse waveform increase with the
length l as shown in Figs. 10, 11, and 12. It increases
as the elevation angle γ increases because the duration
of the impulse waveform decreases with the elevation
angle γ , and the amplitude of the impulse waveform
is affected little by the changes of the elevation angle
γ , as shown in Figs. 10, 11, 12, 13, and 14, when the
length l is a constant value for the defect cases 1 and
2. For the defect case 3, it decreases as the elevation
angle γ increases because of the differences between
amplitude of the acceleration response at the contact
position at the beginning and ending edges and that at
the other locations of the defect as shown in Fig. 12a.
The kurtosis of the X -direction acceleration response
of the three selected defect cases is shown in Figs. 16c,
f, i, l o, 17c, f, i, l, o, and 18c, f, i, l, o, respectively. The
kurtosis also decreases with the length l for the three
defect cases. Moreover, the kurtosis also increases as
the elevation angle γ increases for the defect cases 1
and 2; it decreases with the elevation angle γ for the
defect case 3. This occurs because the similar reasons
with the crest factors for the three defect cases. The
above results show that the vibration level of the ball
bearing increases as the defect sizes for the three stud-
ied defect cases. The crest factor of the acceleration

response will decrease when the defect edges progress
along the direction of the ball motion for the defect
cases 1, 2, and 3. When the defect edges progress along
the direction of the ball motion, the kurtosis of the
acceleration response of the ball bearing also decreases
for defect cases 1, 2, and 3.

5 Conclusions

A new ball bearing dynamic model coupled with effects
of defect edge topographies is developed to investi-
gate effects of defect edge topographies on the vibra-
tion response of a ball bearing with a localized surface
defect on its races. According to the shape and sizes
of the defect, a new contact model for determining the
contact relationships between the ball and the defect
edges is proposed based on Hertzian elastic contact
theory. The proposed model is applied to investigate
effects of defect edge topographies on the contact stiff-
nesses between the ball and the defect edges, and the
vibration response of the ball bearing. The following
specific conclusions can be drawn:

1. The contact stiffness between the ball and the races
of the ball bearing varies with the contact positions
between the ball and the defect edges when the ball
passes over the defect due to changes in the num-
bers of the contact surfaces between the ball and the
defect edges. The total contact stiffness between the
healthy race and the defective race of the ball bear-
ing increases with the numbers of contact surfaces
between a ball and the defect edges. The total con-
tact stiffness also increases as the elevation angle γ

increases.
2. The different defect models have significant effect

on the pulse waveform of the vibration response
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l=0.1L l=0.1L l=0.1L

l=0.2L l=0.2L l=0.2L

l=0.4L l=0.4L l=0.4L

l=0.6L l=0.6L l=0.6L

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 16 Statistical measures of the acceleration response of the
inner race of the bearing in the X -direction for defect case 1: a
RMS, b crest factor, c kurtosis, d RMS for l = 0.1L , e crest fac-
tor for l = 0.1L , f kurtosis for l = 0.1L , g RMS for l = 0.2L ,

h crest factor for l = 0.2L , i kurtosis for l = 0.2L , j RMS for
l = 0.4L , k crest factor for l = 0.4L , l kurtosis for l = 0.4L , m
RMS for l = 0.6L , n crest factor for l = 0.6L , and o kurtosis
for l = 0.6L
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l=0.1L l=0.1L l=0.1L

l=0.2L l=0.2L l=0.2L

l=0.4L l=0.4L l=0.4L

l=0.6L l=0.6L l=0.6L

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 17 Statistical measures of the acceleration response of the
inner race of the bearing in the X -direction for defect case 2: a
RMS, b crest factor, c kurtosis, d RMS for l = 0.1L , e crest
factor for l = 0.1L , and f kurtosis for l = 0.1L , g RMS for

l = 0.2L , h crest factor for l = 0.2L , (i) kurtosis for l = 0.2L ,
j RMS for l = 0.4L , k crest factor for l = 0.4L , l kurtosis for
l = 0.4L , m RMS for l = 0.6L , n crest factor for l = 0.6L , and
o kurtosis for l = 0.6L
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l=0.1L l=0.1L l=0.1L

l=0.2L l=0.2L l=0.2L

l=0.4L l=0.4L l=0.4L

l=0.6L l=0.6L l=0.6L

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 18 Statistical measures of the acceleration response of the
inner race of the bearing in the X -direction for defect case 3: a
RMS, b crest factor, c kurtosis, d RMS for l = 0.1L , e crest
factor for l = 0.1L , and f kurtosis for l = 0.1L , g RMS for

l = 0.2L , h crest factor for l = 0.2L , i kurtosis for l = 0.2L ,
j RMS for l = 0.4L , k crest factor for l = 0.4L , l kurtosis for
l = 0.4L , m RMS for l = 0.6L , n crest factor for l = 0.6L , and
o kurtosis for l = 0.6L
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of the ball bearing caused by a localized surface
defect. Therefore, it is necessary to formulate the
localized defect model including effects of the
length–width ratio of the defect, the time-varying
deflection and the time-varying contact stiffness
excitation produced by the defect, and effects of
defect edge topographies.

3. The impulses caused by changes in the time-
varying contact stiffnesses between the ball and
the defect edges with different topographies can
be described by the proposed model, which can-
not be described by the previous deflection excita-
tion models in the literature. The amplitude of the
impulse increases with the elevation angle γ and
the length l of the small surface at the defect edge.
Moreover, the proposed method in this paper can be
extended to formulate effects of the random defect
edge topographies on the vibration response of the
ball bearing with a localized surface defect on its
races.

4. The RMS of the acceleration response of the ball
bearing increases consistently with the defect sizes
for defect cases 1, 2, and 3. The crest factor and
the kurtosis of the acceleration response of the
ball bearing will decrease when the defect edges
progress along the direction of the ball motion for
the defect cases 1, 2, and 3.
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