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Abstract The improved version of the constrained
optimization harmonic balance method is presented to
solve the Duffing oscillator with two kinds of frac-
tional order derivative terms. The analytical gradients
of the objective function and nonlinear quality con-
straints with respect to optimization variables are for-
mulated and the sensitivity information of the Fourier
coefficients can also obtained. A new stability analysis
method based on the analytical formulation of the non-
linear equality constraints is presented for the nonlinear
system with fractional order derivatives. Furthermore,
the robust stability boundary of periodic solution can be
determined by the interval eigenvalue problem. In addi-
tion, the sensitivity information mixed with the inter-
val analysis method is used to quantify the response
bounds of periodic solution. Numerical examples show
that the proposed approach is valid and effective for
analyzing fractional derivative nonlinear system in
the presence of uncertainties. It is illustrated that the
bifurcation solution in the fractional nonlinear systems
may not be sensitive to the variation of the influence
parameters.
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1 Introduction

In the past few decades, the study of fractional dif-
ferential equations [1,2] attracts many scientists and
engineers. For example, He and Luo [3] studied the
dynamic behaviors of fractional order Duffing sys-
tem, and the synchronization of the fractional non-
autonomous is obtained based on the stability of linear
fractional systems. In Refs. [4,5], the periodic oscilla-
tion of the fractional order nonlinear systems is inves-
tigated via the residue harmonic balance method, and
the effects of the fractional order and system para-
meter on the vibration frequency and amplitude are
revealed.

Cao et al. [6] used the fourth-order Runge–Kutta
method along with tenth-order continued fraction
expansion-Euler method to study the nonlinear dynam-
ics of Duffing system with fractional order damp-
ing. Recently, the dynamic behaviors of the frac-
tional damped crack rotor system are also simulated in
Ref. [7], and the significant effects of fractional order
damping and crack on the system dynamic behaviors
are confirmed.

Based on the averaging method, Kovacic and Mio-
drag [8] studied the free oscillators with a power-
form restoring and fractional derivative damping. In
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Refs. [9,10], the averaging method is also applied to
investigate the primary resonance of Duffing oscil-
lator with fractional order derivatives. The equiva-
lent damping and stiffness coefficients are proposed
to characterize the influence of fractional order deriv-
atives on the frequency amplitude response behavior.
From the above literatures, it can be seen that seek-
ing periodic solutions of nonlinear fractional differ-
ential equations remains a significant problem that
needs new techniques to develop exact and approximate
solutions.

The stability problem of periodic solution is very
essential and crucial for nonlinear dynamical sys-
tem. There are two category approaches to analyze
the stability of periodic solutions: time and frequency
approaches [11]. A deeper comparison of these sta-
bility methods is available in Ref. [12]. Recently, sta-
bility analysis is extended to fractional order systems.
In Ref. [13], the stability of a linear fractional vibra-
tion system of single degree of freedom is analyzed by
using the ideal of stability switch. Some other stabil-
ity results in fractional order systems can be found in
Ref. [14].

In structural dynamics, taking into account, uncer-
tainty is important for various reasons: To increase the
robustness of design, to ensure the compliance of vibra-
tion levels to standards, to assess worst case behav-
ior and so on. In many instances, simulating solutions
using a deterministic model may lead to inaccurate
computational results. Therefore, any realistic analysis
of nonlinear systems must take the uncertainties into
account.

Uncertainties are usually described following two
different points of view, known as probabilistic and
non-probabilistic approaches [15]. The polynomial
chaos expansion mixed with the harmonic balance
method is used in Ref. [16] to investigate the stochastic
stability of a self-excited nonlinear system with fric-
tion. Among non-probabilistic methods, the so-called
interval analysis method (see e.g., [17]) may be con-
sidered as the most attractive analytical tool due to its
simplicity.

Sensitivity analysis for the determination of the gra-
dients of objective and constraints is the dominant
process in the accuracy and computational time of
many optimization problems. In Ref. [18], finite differ-
ence technique has been used to determine the gradi-
ents of the objective and constraints function. However,

finite difference evaluation of gradients may result in
inaccurate optimum solution and is also computation-
ally expensive. Therefore, an efficient analytical eval-
uation of sensitivity gradients is required. The purpose
of the present paper was to extend the proposed method
to nonlinear fractional differential equations where the
derivatives of the objective and constraints function are
given.

The rest of this paper is organized as follows: The
general formulation of the developed method for deter-
mining the periodic solutions is presented in Sect. 2.
Demonstrations of the proposed method are then con-
ducted in Sect. 3. Numerical examples are given to
validity the effectiveness of the proposed method.
Finally, concluding remarks are presented and dis-
cussed in Sect. 4.

2 The proposed method

In this section, the constrained optimization harmonic
balance method [18] is extended to deal with Duff-
ing oscillator with fractional derivatives. The analyt-
ical formulation of the nonlinear equality constraints
is derived, and the gradients of the nonlinear equal-
ity constraints and the object function are therefore
obtained. The deterministic eigenvalue problem and
interval eigenvalue problem for assessing the stability
of periodic solutions are constructed. In addition, the
sensitivity of the Fourier coefficients with respect to the
influence parameters can also be calculated. By virtue
of the sensitivity information, the bounds of the peak
response can be computed by using the interval analysis
method.

2.1 System equation of motion

The following equation of motion for the Duffing oscil-
lator with the Caputo fractional derivative terms is con-
sidered [9]:

mü+cu̇+ku+αu3+K1 D p1 u+K2 D p2 u = Fcos(ωt)

(1)

where m, c, k, αF and ω are the mass, damping, linear
stiffness, nonlinear stiffness, harmonic forcing ampli-
tude and the excitation frequency of oscillation; K1, K2
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Optimization analysis of Duffing oscillator with fractional derivatives 1313

are the coefficients of the fractional derivative terms
with the orders p1 and p2, respectively; u, u̇ and
ü are, respectively, the displacement, velocity, accel-
eration; the dot denotes differentiation with respect
to t .

2.2 Analytical derivations of the nonlinear equality
constraints

2.2.1 The evaluation of the nonlinear equality
constraints

To derive the proposed method, the harmonic balance
method is adopted. In the HBM, u(t) is represented by
a truncated Fourier series:

u(t) = T(t)U (2)

where T(t) = [1 cos(ωt) sin(ωt) · · · cos(kωt)
sin(kωt) · · · cos(NHωt) sin(NHωt)]1×(1+2∗NH) and

U = [
U0 U c

1 U s
1 · · · U c

k U s
k · · · U c

NH
U s

NH

]T
repre-

sents the Fourier coefficients. Upon introducing the
new independent variable τ = ωt , the dimensionless
form of u(t) can be written as u(τ ) = T(τ )U by replac-
ing τ with ωt in T(t).

(1) General formula of D�
t u(t)

The aim in this part is to derive the expression of D�
t u(t)

with any order of � > 0.

Lemma The following statements hold for all � > 0

D�
t u(t) = T(t)∇�U (3)

where

∇� = diag
(

0,∇�
1, . . . ,∇�

k, . . . ,∇�
NH

)
,

∇�
k = (kω)� R(ϑ), ϑ = �π

2
,

R(θ) =
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
(4)

If � > 0 is an integer, Eq. (3) becomes u̇ and ü which
are widely examined.

Proof The fractional derivatives of cos(kωt) and sin
(kωt) are given by [19]

D�
t [cos(kωt)] = (kω)� cos

(
kωt + �π

2

)
,

D�
t [sin(kωt)] = (kω)� sin

(
kωt + �π

2

)
(5)

��
Then, D�

t u(t) is transformed into the following
matrix form:

D�
t u(t)

=
NH∑

k=1

{
U c

k D�
t [cos(kωt)] + U s

k D�
t [sin(kωt)]

}

=
NH∑

k=1

{[
cos(kωt) sin(kωt)

] [
(kω)� R(ϑ)

] [U c
k

U s
k

]}

= T(t)∇�U (6)

(2) General formula of uk

Let v(t) = T(t)V with V = [V0 V c
1 V s

1 · · · V c
k V s

k · · ·
V c

NH
V s

NH
]T. Using the trigonometric identities, u(t)v(t)

is given as below

u(t)v(t) = [T(t)U]T [T(t)V]

=
{

UT [T(t)]T [T(t)]
}

V

= {T(t)E(U)} V (7)

where E(U) is called operational matrix given as fol-
lows
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E(U) =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

U0 ϒ1 ϒ2
. . . ϒk

. . . ϒNH−2 ϒNH−1 ϒNH

H1 U0I + Q2 N1 + Q3 N2 + Q4
. . .

. . .
. . . NNH−2 + QNH NNH−1

H2 L1 + Q3 U0I + Q4 N1 + Q5
. . .

. . . Nk + QNH

. . . NNH−2
. . . L2 + Q4 L1 + Q5

. . .
. . .

. . .
. . . Nk

. . .

Hk
. . .

. . .
. . . U0I + QNH N1 N2

. . . Nk
. . .

. . .
. . . L2 + QNH L1 U0I N1 N2

. . .

HNH−2
. . . Lk + QNH

. . . L2 L1 U0I N1 N2

HNH−1 LNH−2 + QNH

. . . Lk
. . . L2 L1 U0I N1

HNH LNH−1 LNH−2
. . . Lk

. . . L2 L1 U0I

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(8)

with

Hk =
[

U c
k

U s
k

]
, ϒk = 1

2

[
U c

k U s
k

]
,

Lk = 1

2

[
U c

k −U s
k

U s
k U c

k

]
, Nk = 1

2

[
U c

k U s
k−U s

k U c
k

]
,

Qk = 1

2

[
U c

k U s
k

U s
k −U c

k

]
.

Thus, the polynomial nonlinear terms satisfies the
recurrence relation

uk = [T(t)U]T uk−1 = T(t)
{
[E(U)]k−1U

}
(9)

Substituting Eqs. (3) and (9) into Eq. (1) gets

CE(U) =
{[

m∇2U
]

+ [c∇U] + kU + α[E(U)]2
U

+ [
K1∇ p1 U

]+ [K2∇ p2 U
]}− F = 0 (10)

where

F = [0 1 0 · · · 0 0 · · · 0 0
]T

(11)

The nonlinear algebraic equations in Eq. (10) are
used to construct the nonlinear equality constraints of
the optimization problem.

2.2.2 Gradients of the nonlinear equality constraints

In the following, the gradients of the nonlinear equal-
ity constraints are estimated analytically through direct
differentiation of Eq. (10) with respect to each influence
parameter.

Based on Eq. (10), the gradient of CE(U) with
respect to U is calculated as follows:

J = ∂CE(U)
∂U

=
(

kI + c∇ + m∇2
)

+ (
K1∇ p1 + K2∇ p2

)

+α ∂
{[E(U)]2U

}

∂U
(12)

The partial derivative of the composite function
∂{E(U)U}

∂U can be expressed by the formula

∂ {E(U)U}
∂U

= ∂E(U)
∂U

U + E(U) (13)

Using the expression in Eq. (8), each column of the

matrix ∂E(U)
∂U U can be derived rather than calculating

the individual elements. Therefore, the following recur-

rence relation allows to calculate
∂
{[E(U)]k U

}

∂U for k > 2:

∂
{[E(U)]kU

}

∂U
= ∂

{
E(U)

[
(E(U))k−1 U

]}

∂U

= ∂E(U)
∂U

[
(E(U))k−1 U

]

+ E(U)
∂
[
(E(U))k−1 U

]

∂(U)
(14)

Following an analogous methodology, calculating
the gradients of CE(U) with ω, �,m, c, k, α are gener-
ally straight forward.

2.2.3 General scheme for calculation of vibration
response sensitivity

The sensitivity of the Fourier coefficients with respect
to the influence parameters can easily be determined by
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Optimization analysis of Duffing oscillator with fractional derivatives 1315

analytical gradients. Taking the inverse of the J matrix
in Eq. (12), the sensitivity can be expressed as a first
order explicit form:

∂U
∂bk

= −J−1 ∂CE(U)
∂bk

. (15)

2.3 Stability analysis for nonlinear systems with
fractional order derivatives

The approaches to be outlined in this section seek to
solve the stability problem for deterministic system and
uncertainty system. Two detailed methods are formu-
lated. The first approach directly deals with the deter-
ministic generalized eigenvalue problem. The second
approach described in Sect. 2.3.2 is an interval eigen-
value problem.

2.3.1 Deterministic stability analysis by solving the
generalized eigenvalue problem

In this part, using the concept of superimposing a small
disturbance around a periodic solution, the stability

analysis is performed. With the aid of Taylor expansion
method, the generalized eigenvalue problem is formed
to determine the stability of periodic solution.

Let T(t)eλt Z with Z = [Z0 Zc
1 Zs

1 · · · Zc
k Zs

k · · ·
Zc

NH
Zs

NH
]T be a small perturbation for the equilibrium

T(t)Y of Eq. (1). Introducing perturbation T(t)eλt Z
into Eq. (1) yields the stability criterion. In the fol-
lowing, fractional term D�

t u(t) in Eq. (1) is evaluated
by using U = T(t)

[
Y + eλt Z

]
to derive the stability

method.
Utilizing the property D�

x

[
eax
] = a�eax and

the Euler transformation, Zc
k D�

t

[
eλt cos(kωt)

]+ Zs
k D�

t[
eλt sin(kωt)

]
can be reformulated:

Zc
k D�

t

[
eλt cos(kωt)

]+ Zs
k D�

t

[
eλt sin(kωt)

]

= eλt [ cos(kωt) sin(kωt)
]

S�(λ, kω)

[
Zc

k
Zs

k

]
(16)

where

S�(λ, kω)

= 1

2

⎡

⎣
(
λ+ √−1kω

)� + (λ− √−1kω
)� √−1

[(
λ− √−1kω

)� − (λ+ √−1kω
)�]

√−1
[(
λ+ √−1kω

)� − (λ− √−1kω
)�] (

λ+ √−1kω
)� + (λ− √−1kω

)�

⎤

⎦ (17)

and
√−1 is an imaginary unit.

In order to calculate
(
λ± √−1kω

)�
, let hc(x) =

(x+c)�, c = ±√−1kω. Then, h±√−1kω(λ) can be cal-
culated by expanding hc(x) as a second order Tay-
lor series. With use of h±√−1kω(λ), Eq. (16) can be
expressed in matrix form as

D�
[
eλt T(t)Z

] = eλt T(t)∇̃�

SZ

= eλt T(t)
{
∇̃�

0+∇̃�

1λ+∇̃�

2λ
2
}

Z (18)

where

∇̃�

j = diag
(

h�j (x0, 0),S�j (x0, ω), · · · ,S�j (x0, kω),

. . . ,S�j (x0, NHω)
)
, j = 0, 1, 2 (19)

with

S�j (x0, kω) =
⎡

⎣
h�j (x0,

√−1kω)+ h�j (x0,−
√−1kω) −√−1

[
h�j (x0,

√−1kω)− h�j (x0,−
√−1kω)

]

√−1
[
h�j (x0,

√−1kω)− h�j (x0,−
√−1kω)

]
h�j (x0,

√−1kω)+ h�j (x0,−
√−1kω)

⎤

⎦ ;

h�0(x0, c) = hc(x0)− h′
c(x0)x0 + h′′

c (x0)

2
x2

0 , h�1(x0, c)

= h′
c(x0)− h′′

c (x0)x0, h�2(x0, c) = h′′
c (x0)

2
(20)

By plugging U = T(t)
[
Y + eλt Z

]
and Eqs. (18)

into Eq. (1), the stability analysis problem is trans-
formed into the following generalized eigenvalue prob-
lem:

Aψ j = λ j Bψ j
(
φ j
)T A = λ j

(
φ j
)T B (21)
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where φ j and ψ j are the j th left and right eigenvec-
tors associated with eigenvalue λ j . The matrices A and
B are given by

A =
⎡

⎣
0

(
m I +∇̃2

)

−
(

m∇2+c∇+kI+3αE(V)+∇̃0

)
0

⎤

⎦ ,

B =
⎡

⎣

(
mI + ∇̃2

)
0

(
cI + 2m∇ + ∇̃1

) (
mI + ∇̃2

)

⎤

⎦ (22)

Following the approach in Ref. [20], the eigenvalues
λ̄ j used for stability analysis correspond to the eigen-
vector with the most symmetrical shape. Therefore, the
periodic solution to be stable requires:

� (λ̄ j
) ≤ 0 (23)

The stability condition in Eq. (23) is used to form
the nonlinear inequality constraint of the optimization
problem.

2.3.2 Uncertain stability analysis by calculating the
interval eigenvalue problem

When dynamical systems are subjected to parameter
uncertainties, the periodic solution should be assessed
in the way of robust stability. With the help of the per-
turbation theory and the interval analysis method, the
interval eigenvalues are then obtained to determine the
robust stability of periodic solution.

Applying the interval analysis method with the inter-
val matrices AI = AC +�AI,BI = BC + �BI to the
eigenvalue problem in Eq. (21), the stability of peri-
odic solution of Eq. (1) is then transformed into the
following interval eigenvalue problem
(

AC + �AI
)
ψ I

j = λI
j

(
BC + �BI

)
ψ I

j
(
φI

j

)T (
AC+�AI

)
=λI

j

(
φI

j

)T (
BC+�BI

)
(24)

where

λI
j = �

(
λI

j

)
+ �

(
λI

j

)√−1 (25)

According to the perturbation theory and interval
expansion, the nominal eigenvectorsφC

j , ψ
C
j and eigen-

values λC
j related to AC and BC are then used to calcu-

late the interval eigenvalue λI
j as follows [21]:

⎧
⎨

⎩

�
(
λI

j

)

�
(
λI

j

)

⎫
⎬

⎭
=
⎧
⎨

⎩

�
(
λC

j

)

�
(
λC

j

)

⎫
⎬

⎭
+
⎧
⎨

⎩

�
[
�λC

j (�AI)
]

�
[
�λC

j (�AI)
]

⎫
⎬

⎭

+
⎡

⎣
�
(
λC

j

)
−�
(
λC

j

)

�
(
λC

j

)
�
(
λC

j

)

⎤

⎦

⎧
⎨

⎩

�
[
�λC

j (−�BI)
]

�
[
�λC

j (−�BI)
]

⎫
⎬

⎭
(26)

where

�λC
j (X) =

{[
�
(
φC

j

)]T [�
(
φC

j

)]T
}

{[
1

√−1√−1 −1

]
⊗ (X)

}
⎧
⎨

⎩

�
(
ψC

j

)

�
(
ψC

j

)

⎫
⎬

⎭
(27)

This section gathers the theoretical derivations of
the proposed approach for stability analysis of periodic
solution. By employing the harmonic balance formula-
tion with the Taylor expansion technology, a new stabil-
ity method for fractional nonlinear systems is derived.
Further treatments of the stability of interval uncer-
tainty systems are derived based on the estimation of
the eigenvalue boundary.

2.4 Calculation of the bounds using the interval
analysis method

Assume that u(τ ) attains its maximum over the interval
[0, 2π] at the point τmax. By means of natural inter-
val extension, the interval responses of the maximum
vibration displacement u(aI, τmax) with interval para-
meter aI can be determined straightforward as follows
[22]:

u(aI, τmax) = u(aC, τmax)

+
∑

j

∂u(a, τmax)

∂a j

∣
∣∣∣
a j =aC

j

(
aI

j − aC
j

)

=u(aC, τmax)+
∑

j

T(τmax)
∂U
∂a j

∣
∣∣∣
a j =aC

j

�aI
j (28)

It is obvious that the interval response depends on the
sensitivity ∂U/∂a j and interval width �aI

j . The above
explicit expression of the interval response provides
useful information on the influence of uncertainties on
the range of the interval response.

2.5 Optimization problem formulation

Within the framework of the proposed method [18], the
nonlinear algebraic equations in Eq. (10) and the sta-
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Optimization analysis of Duffing oscillator with fractional derivatives 1317

bility criterion in Eq. (23) are treated as the generally
nonlinear constraints. Therefore, the following nonlin-
ear optimization problem can be formulated:

f (x) = f (U, ω, vu) = max u(τ )

s.t

{
g(x) = CE(U) = 0
gs(x) = 	 (λ̄ j

) ≤ 0
(29)

where x = {U,ω, vu}T and vu is a set of design parame-
ters and/or uncertainty parameters. g(x) and gs(x) rep-
resent the nonlinear equality and inequality constraints,
respectively.

There are three major advantages to derive the ana-
lytical gradients of the nonlinear constrained optimiza-
tion problem. First, the analytical gradients can be used
to accelerate the convergence of the optimization algo-
rithm, thus reducing the computational costs. Second,
the stability analysis of the periodic solution can be
determined by virtue of the analytical derivation of the
nonlinear equality constraints. Furthermore, the inter-
val eigenvalue problem is solved to identify the robust
stability region. Third, based on the analytical gradients
of the nonlinear equality constraints, the sensitivity of
the Fourier coefficients with respect to influence para-
meters can be derived, and the bounds of periodic solu-
tion are calculated with the help of the interval analysis
method.

3 Numerical results

In order to demonstrate the effectiveness of the pro-
posed method, numerical examples which have been
taken from recent publication [9] are considered. The
dynamic behaviors of the Duffing oscillator without
and with fractional derivative terms are compared.
Parameter studies about the fractional derivative terms
are also conducted. The sensitivity of the Duffing oscil-
lator is analyzed. The explicit stability and response
bounds for the Duffing system with parameter uncer-
tainty are given.

3.1 The dynamical behaviors of the Duffing oscillator
without fractional order derivative terms

3.1.1 The frequency response curve of the Duffing
oscillator

To align with the computational study in Ref. [9], the
following structural parameters were chosen: m = 5,

Fig. 1 Frequency–response curve of the Duffing oscillator with-
out the fractional derivative terms

c = 0.1, k = 10, α = 15, K1 = 0.8, K2 = 1, p1 =
0.6, p2 = 1.4, F = 5. In order to highlight the influ-
ence of the fractional derivative terms, the frequency
response function of the standard Duffing oscillator
without the fractional derivative terms is plotted in
Fig. 1 where the stable and unstable segments of the
frequency responses are shown by the solid and dashed
line, respectively.

It can be seen from Fig. 1 that the system reaches the
top amplitude at resonant peak P . The unstable region
is located between two bifurcation points B1 and B2.
Three periodic solutions of which the upper and lower
response bounds are F1 and F3, respectively, coexist at
the excitation frequency ω = 2.2. The solution F2 is
unstable. In the following, three cases are investigated
by utilizing the proposed method:

(1) Case 1 searching the resonant peak P

As explained previously, the unknown variables that
have to be determined are the unknown Fourier coef-
ficients U and the resonant frequency of the periodic
solution P .

(2) Case 2 seeking the bifurcation points

In order to seek the bifurcation points B1 and B2, the
object function shown in Eq. (29) is set as min

∣∣	 (λ̄ j
)∣∣

and only the nonlinear equality constraints are consid-
ered.

(3) Case 3 finding the multi-solutions at a given fre-
quency
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1318 H. Liao

Fig. 2 Numerical optimization results of the Duffing oscillator
without the fractional derivative terms

While looking for multiple solutions at a given fre-
quency, the excitation frequency is not included as an
optimization variable, and the Fourier coefficients U
are the only unknown variables. It should be noted that
the objective function in Eq. (29) is changed as the min-
imization of the vibration displacement for searching
the periodic solution F3, while the sign of inequality
stability constraint is reversed to locate the solution
F2.

3.1.2 The numerical results of the proposed method

When the Duffing oscillator has no fractional deriva-
tives, the numerical results are presented in Fig. 2. As
shown in Fig. 2, there is one main harmonic term in the
system response, and the presence of several higher
harmonic components can be detected.

Table 1 summarizes the stability results that were
evaluated at these optimal solutions. In Table 1, ρ̄ j rep-
resents the Floquet multipliers obtained using the pro-
posed stability method. For the purpose of comparison,
stability results using the Runge–Kutta method are also
listed in Table 1 where the corresponding Floquet mul-
tipliers are denoted by ρ̂ j . It can be seen from Table 1
that the stability results obtained in this paper are con-
sistent with the results calculated by the conventional
stability method in the time domain. Regions of stable
and unstable periodic response appear to be correctly
predicted. In particular, there is always one multiplier
1 for B1 and B2, which the optimization algorithm
intends to find. Overall, comparing to the known stabil-
ity method, the proposed stability method in Sect. 2.3.1
is verified.

3.1.3 Sensitivity information

Sensitivity analysis can be used as a useful design tool
to evaluate the system response to changing parameters.
One advantage of the proposed method over previous
ones (such as the method in Ref. [18]) is the sensitivity
information which provides the trends of variation of
the objective and constraint functions versus system
parameters efficiently.

Sensitivities of the Fourier coefficients with respect
to the influence parameters are displayed in Fig. 3. As
shown in Fig. 3, the dominant contribution of the sensi-
tivity is the first harmonic content with negligible con-
tributions from other higher terms. For all points stud-
ied, the Fourier coefficients appear to be very sensitive
to the variation of frequency ω. It should be noted that
for the periodic solutions with higher vibration ampli-
tude, such as P, B2 and F1, the Fourier coefficients are

Table 1 Numerical results of the Duffing oscillator without the fractional derivative terms

P ω λ̄ j ρ̄ j max(|ρ̄ j |) ρ̂ j u(τmax)

P 8.7446 −0.0100±0.0100i 0.9928±0.0071i 0.9928 0.9928±0.0072i 5.8773

B1 2.1171 0\−0.0200 1\0.9424 1 1\0.9424 0.6072

B2 8.7447 0\−0.0200 1\0.9858 1 1\0.9858 5.8772

F1 −0.0100±0.4781i 0.1980±0.9515i 0.9718 0.1980±0.9515i 1.2932

F2 2.2 0.3442\−0.3642 2.6727\0.3534 2.6727 2.6727\0.3534 0.8683

F3 −0.0100±0.5356i 0.0399±0.9710i 0.9718 0.0399±0.9710i 0.406

L 1 −0.01±0.1735i 0.4343±0.8326i 0.9391 0.4343±0.8326i 0.5938

U 10 −0.01±1.4143i 0.6265±0.7714i 0.9937 0.6265±0.7714i 0.0102
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Fig. 3 Sensitivities of the
Duffing oscillator without
the fractional derivative
terms. a Resonance peak
solution P. b Bifurcation
solution B1. c Solution F3.
d Solution L

seen to be in general much more sensitive to changes
of damping, whereas the sensitivity of ∂U/∂m seems
to be greater than ∂U/∂c for solutions B1, F2, F3 and
U . The sensitivity results show that the sensitivities of
U with respect to the stiffness parameters k and α have
the lowest sensitivity. The sensitivity of linear stiffness
k is more significant than α in the region of low vibra-
tion amplitude, while the contribution by the nonlinear
stiffness parameter α becomes large for high vibration
amplitude solutions P , B2 and F1. In addition, it is
indicated that the bifurcation points show the highest
sensitivity. The level of the sensitivity of the bifurcation
points implies that the Jacobian matrix may be close to
singularity.

3.1.4 The interval boundaries in the presence of
uncertainty

Obtaining stability boundaries is vital to study the
effects of structural parameters. One of the merits of

the proposed method is that the robust stability bound-
aries and response intervals can be obtained using the
presented method when some of the structural parame-
ters are subjected to uncertainties. In the following, the
stability boundaries and interval responses of uncertain
dynamic systems are estimated. The interval parame-
ters of the uncertain structural parameters are described
by

m ∈ m I =
[
mC − �m,mC + �m

]
, c ∈ cI

=
[
cC − �c, cC + �c

]
, k ∈ kI

=
[
kC − �k, kC + �k

]
(30)

where mC = 5, cC = 0.1, kC = 10 and �m,�c and
�k are the uncertainty degree.

Table 2 shows the comparisons when one of the
structural parameters m, c, and k is assumed to be
uncertain while the other two parameters are kept fixed.
In Table 2, the real and imaginary parts of the inter-

123



1320 H. Liao

Table 2 Stability boundaries with different uncertainty parameters

�k = 0.01 �c = 0.01 �m = 0.01

�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)

P [−0.0104, −0.0096] [0.0100, 0.0101] [−0.0101, −0.0099] [0.0097, 0.0103] [−0.0831, 0.0631] [0.0091, 0.0109]

B1 [−0.0086, 0.0086] [−0.0013, 0.0013] [−2.8, 2.7] × 10−5 [−1.8, 1.8] × 10−4 [−0.0227, 0.0227] [−0.0033, 0.0033]

[−0.0286, −0.0114] [−8.8, 8.8] × 10−4 [−0.0201, −0.0199] [−1.8, 1.8] × 10−4 [−0.0426, 0.0026] [−0.0026, 0.0026]

B2 [−0.0020, 0.0019] [−8.2, 8.2] × 10−6 [−3.6,−3.4] × 10−5 [−2.6, 2.6] × 10−4 [−0.1538, 0.1537] [−0.0007, 0.0007]

[−0.0219, −0.0180] [−2.9, 2.9] × 10−6 [−0.0200, −0.0199] [−2.6, 2.6] × 10−4 [−0.1737, 0.1337] [−0.0013, 0.0013]

F1 [−0.0250, 0.0050] [0.4759, 0.4804] [−0.0101, −0.0099] [0.4776, 0.4787] [−0.0889, 0.0689] [0.4649, 0.4914]

F2 [0.3234, 0.3650] 0 [0.3437, 0.3447] 0 [0.2488, 0.4397] 0

[−0.3849, −0.3436] 0 [−0.3648, −0.3637] 0 [−0.4643, −0.2641] 0

F3 [−0.0321, 0.0121] [0.5355, 0.5358] [−0.0101, −0.0099] [0.5350, 0.5363] [−0.1372, 0.1172] [0.5335, 0.5377]

L [−0.0355, 0.0155] [0.1732, 0.1738] [−0.0101, −0.0099] [0.1729, 0.1741] [−0.0843, 0.0643] [0.1712, 0.1757]

U [−0.0100, −0.0099] [1.4143, 1.4144] [−0.0100, −0.0099] [1.4143, 1.4144] [−0.0100, −0.0099] [1.4143, 1.4144]

Table 3 Stability boundaries with different �m,�c,�k

�m,�c,�k = 0.01 �m,�c,�k = 0.03 �m,�c,�k = 0.05

�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)

P [−0.1664, 0.1464] [0.0082, 0.0119] [−0.4792, 0.4592] [0.0046, 0.0155] [−0.7919, 0.7719] [0.0010, 0.0191]

B1 [−0.0313, 0.0313] [−0.0048, 0.0048] [−0.0937, 0.0937] [−0.0142, 0.0142] [−0.1561, 0.1561] [−0.0237, 0.0237]

[−0.0512, 0.0112] [−0.0037, 0.0037] [−0.1135, 0.0735] [−0.0109, 0.0109] [−0.1759, 0.1359] [−0.0181, 0.0181

B2 [−0.1557, 0.1556] [−0.0010, 0.0010] [−0.4669, 0.4669] [−0.0029, 0.0029] [−0.7782, 0.7781] [−0.0048, 0.0048]

[−0.1756, 0.1357] [−0.0016, 0.0016] [−0.4868, 0.4468] [−0.0047, 0.0047] [−0.7979, 0.7580] [−0.0078, 0.0078]

F1 [−0.1116, 0.0916] [0.4692, 0.4871] [−0.3147, 0.2947] [0.4514, 0.5049] [−0.5178, 0.4978] [0.4336, 0.5227]

F2 [0.2275, 0.4609] 0 [−0.0057, 0.6941] 0 [−0.2389, 0.9274] 0

[−0.4854, −0.2430] 0 [−0.7278, −0.0007] 0 [−0.9701, 0.2416] 0

F3 [−0.1593, 0.1393] [0.5328, 0.5384] [−0.4577, 0.4377] [0.5274, 0.5439] [−0.7561, 0.7361] [0.5219, 0.5494]

L [−0.1098, 0.0898] [0.1704, 0.1765] [−0.3094, 0.2894] [0.1644, 0.1825] [−0.5089, 0.4889] [0.1584, 0.1885]

U [−0.0100, −0.0099] [1.4143, 1.4144] [−0.0100, −0.0099] [1.4143, 1.4144] [−0.0100, −0.0099] [1.4143, 1.4144]

val eigenvalues λ̄I
j are presented to estimate stability

bounds of periodic solutions. As it can be noticed in
Table 2 that for �k = 0.01, all the upper bounds of the
real parts of the interval eigenvalues are negative for
solutions P and U which are robust asymptotically sta-
ble while other solutions are not robust stable. The sta-
bility boundaries are not sensitive to the variation of c.
On the contrary, the uncertainty of m has strong effects
on the stability boundaries. Even for small uncertainty
�m = 0.01, all the solutions except U lose stability.

When both the coefficients m, c and k vary, the com-
bined effects of the uncertainty in m, c, k are given in

Tables 3 and 4 in which m, c and k vary between 1, 3,
5 % of the nominal values. Compared with the results
obtained in Tables 2 and 3 clearly shows that the dom-
inated term in the system’s stability boundaries is the
mass m term, whereas the terms k and c have small con-
tributions. In Table 4, the response bounds with posi-

tive upper bound of �
(
λ̄I

j

)
are not reliable and should

be considered as the only validation of the method in
Sect. 2.4.

It is worth emphasizing that high interval sensitiv-
ity to a selected uncertain parameter means a strong
influence of this parameter on the width of the interval
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Table 4 Response intervals
with different �m,�c,�k

�m,�c,�k = 0.01 �m,�c,�k = 0.03 �m,�c,�k = 0.05

P [5.7247, 6.0298] [5.4196, 6.3349] [5.1146, 6.6399]

B1 [−8.1667, 8.1667] × 105 [−2.4500, 2.4501] × 106 [−4.0834, 4.0834] × 106

B2 [−26.5106, 38.2651] [−91.2862, 103.0407] [−156.0617, 167.8162]
F1 [1.2819, 1.3044] [1.2595, 1.3269] [1.2370, 1.3493]

F2 [0.8408, 0.8958] [0.7859, 0.9508] [0.7309, 1.0057]

F3 [0.3897, 0.4222] [0.3574, 0.4545] [0.3250, 0.4869]

L [0.5879, 0.5996] [0.5764, 0.6112] [0.5648, 0.6228]

U [0.0098, 0.0101] [0.0096, 0.0103] [0.0094, 0.0105]

Table 5 Numerical results of the Duffing oscillator with fractional derivative terms

ω λ̄ j ρ̄ j max(
∣
∣ρ̄ j
∣
∣) u(τmax)

P 2.3172 −0.1704±0.0858i 0.6129±0.1453i 0.6299 1.2941

B1 2.0651 0±1.8031i 0.6988±0.7153i 1 0.5024

B2 2.3335 0\−0.3404 1\0.3999 1 1.2794

F1 2.2 −0.1694±0.2808i 0.4287±0.4430i 0.6165 1.2471

F2 −0.5010\0.1701 0.2391\1.6257 1.6257 1.0456

F3 −0.1530±0.6391i −0.1626+0.6253i 0.9736 0.3496

L 1 −0.1570±0.2194i 0.0714±0.3661i 0.3730 0.5911

U 10 −0.01±1.4143i 0.6265±0.7714i 0.9937 0.0099

response. Such information may be useful to identify
the most crucial uncertain parameters.

3.2 The dynamic behaviors of the Duffing oscillator
with two kinds of fractional derivative terms

The method in Ref. [18] cannot deal with the fractional
order nonlinear systems. Moreover, the stability Hill
method is not able to identify the periodic solution
stability of fractional order nonlinear systems. Integer
order Duffing system validation in Sect. 3.1 shows that
the proposed method in Sect. 2 is correct. In this section,
based on the proposed method, the vibration charac-
ters of fractional order Duffing oscillator are studied to
show the advantage of the developed method for find-
ing the periodic solutions and its stability in fractional
order nonlinear systems.

3.2.1 The numerical results of the proposed method

Using the developed method, the numerical optimiza-
tion results of the Duffing Oscillator with fractional
derivatives are shown in Table 5. As shown in Table 5,

all the moduli of the Floquet multipliers are<1 except
for the periodic solution F2, and the bifurcation solu-
tions B1and B2 and these solutions obtained by the pro-
posed method are stable. For the bifurcation solution
B1, the moduli of a pair of complex conjugate Floquet
multipliers 0.6988±0.7153i is equal to 1. This indi-
cates that a Hopf bifurcation occurs at B1.

The difference between the numerical results
obtained with and without fractional derivatives is
apparent. When analyzed in the absence of fractional
derivatives, as demonstrated in Fig. 2 and Table 1, u
has its maximum value 5.8773 at resonance frequency
8.7446. When fractional derivatives are taken into
account, the vibration amplitude in resonance is 1.2941
where the resonance frequency is located at 2.3172.
The maximum vibration amplitude without fractional
derivatives is 4.5416 times larger than that with frac-
tional derivatives. Therefore, the fractional derivatives
can remarkably influence the vibration responses of the
nonlinear systems. It should be noted that the vibra-
tion amplitude and vibration frequency of all these
solutions in Table 5 are identical to those presented
in Fig. 1 of Ref. [9], which validates the proposed
method.
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Fig. 4 Comparison of these
solutions between the time
integration method (TIM)
and the proposed method
(COHBM)

In order to fully validate the stability approach,
direct numerical integrations have been carried out.
Numerical simulations are performed using the
Grunwald–Letnikov method (see Eq. (38) in Ref. [9]).
The initial conditions can be readily supplied by the
results of the presented method. In order to eliminate
the transient part of the responses, the initial responses
are discarded from the stored responses and results are
plotted only for 350–400. The phase portraits of the
Duffing system at these optimal solutions are presented
in Fig. 4 using the time integration method (denoted by
TIM)and the proposed method (denoted by COHBM).
For the unstable solution F2, the temporal evolution of
numerical integration solution is displayed in Fig. 5. As
demonstrated in Fig. 5, the unstable solution F2 jumps
to the stable solution F1 after a finite period of time,
thus confirms the unstable of solution F2. From Figs. 4
and 5, it is evident that the present approach solutions
match well with the numerical integration solutions.
Therefore, the validity of the presented stability method
is confirmed.

3.2.2 The sensitivity information

In Fig. 6, the sensitivities of the Fourier coefficients
with respect to the structural parameters are depicted.
For the Duffing oscillator with fractional derivatives,
the dynamic behaviors of the structural parameters
ω, c,m, k and α are similar to that of the Duff-
ing oscillator without fractional derivatives. For the
high vibration amplitude solutions P, B2, F1, F2 and
L , these two parameters K2 and p1 have a signifi-
cant impact on the sensitivity results. Conversely, the

Fig. 5 The time evolution of the unstable solution F2

Fourier coefficients are more sensitive to p2 and m
for the low vibration amplitude points B1, F3 and U .
It should be noted that the bifurcation points B1 and
B2 have great difference between the sensitivity. The
bifurcation point B2 has very large sensitivity val-
ues, which approaches to infinity. However, the sen-
sitivities of bifurcation point B1 are relatively very
small. Therefore, it can be concluded that in the frac-
tional nonlinear systems, bifurcation periodic solu-
tion may not be sensitive to the variation of structural
parameters.

3.2.3 The interval boundaries in the presence of
uncertainty

For several values of �m,�c,�k, the computed sta-
bility and response bounding intervals are listed in
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Fig. 6 Sensitivities of the
Duffing oscillator with
fractional derivative terms.
a Resonance peak solution
P. b Bifurcation solution B1.
c Solution F3. d Solution L

Tables 6 and 7. Generally, the smaller the uncertainty
is, the tighter the interval results is. With the increase

of �m,�c,�k, the width of �
(
λ̄I

j

)
increases grad-

ually. The upper bounds of �
(
λ̄I

j

)
for the solution P

with �m,�c,�k = 0.03, 0.05 are 0.0070 and 0.1253,
respectively, which are greater than 0. According to the
Floquet theorem, it can be concluded that the periodic
solution P is not robust asymptotically stable. Simi-
larly, the cases of 3 and 5 % uncertainty for solution
F1 show that the solution F1 does not robust asymptot-
ically stable for this relative high uncertainty. On the
contrary, the maximal stability margins for solutions
F3, L and U indicate that these low vibration ampli-
tude solutions are not sensitive to the uncertainty. In
particularly, the lower and upper bounds of the stabil-
ity interval for solution U are the same for the three
levels of uncertainty.

To consider the stability of bifurcation solutions B1

and B2, the solutions B1 and B2 become unstable in
the presence of uncertainty. The smallest deviations

for �
(
λ̄I

j

)
of solution B2 are null. It is obvious that

the interval response results for solution B2 in Table 7
shows no meaning. It should be noted that the first order
Taylor expansion based interval approach is to over
estimate the structural response of bifurcation solutions
with high sensitivity especially when the magnitudes
of the parameter uncertainty are relatively large. A fur-
ther study in future work is needed to tight the interval
bounds.

The proposed method, based on the joint application
of the proposed stability method and the interval analy-
sis method, provides general estimates of the range of
the stability regions and response bounds even when
relatively large uncertainties are involved. Compared
with the direct Monte Carlo simulation for calculat-
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Table 6 Stability boundaries with different �m,�c,�k

�m,�c,�k = 0.01 �m,�c,�k = 0.03 �m,�c,�k = 0.05

�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)

P [−0.2296, −0.1113] [0.0605, 0.1112] [−0.3479, 0.0070] [0.0100, 0.1617] [−0.4662, 0.1253] [−0.0406, 0.2123]

B1 [−0.0792, 0.0792] [1.7185, 1.8877] [−0.2376, 0.2376] [1.5495, 2.0567] [−0.3960, 0.3960] [1.3804, 2.2257]

B2 [−0.0780, 0.0780] [0.0000, 0.0000] [−0.2339, 0.2339] [0.0000, 0.0000] [−0.3898, 0.3898] [0.0000, 0.0000]

[−0.4187, −0.2620] [0.0000, 0.0000] [−0.5754, −0.1054] [0.0000, 0.0000] [−0.7320, 0.0513] [0.0000, 0.0000]

F1 [−0.2496, −0.0892] [0.2134, 0.3481] [−0.4099, 0.0712] [0.0788, 0.4828] [−0.5703, 0.2315] [−0.0559, 0.6174]

F2 [−0.5432, −0.4588] [−0.0293, 0.0293] [−0.6274, −0.3746] [−0.0877, 0.0877] [−0.7117, −0.2903] [−0.1461, 0.1461]

[0.1359, 0.2044] [−0.0357, 0.0357] [0.0675, 0.2728] [−0.1070, 0.1070] [−0.0009, 0.3412] [−0.1782, 0.1782]

F3 [−0.1563, −0.1496] [0.6341, 0.6440] [−0.1630, −0.1429] [0.6244, 0.6538] [−0.1697, −0.1362] [0.6146, 0.6635]

L [−0.1822, −0.1318] [0.2056, 0.2331] [−0.2324, −0.0815] [0.1783, 0.2605] [−0.2827, −0.0312] [0.1509, 0.2878]

U [−0.0100, −0.0099] [1.4143, 1.4144] [−0.010, −0.0099] [1.4143, 1.4144] [−0.010, −0.0099] [1.4143, 1.4144]

Table 7 Response intervals
with different �m,�c,�k

�m,�c,�k = 0.01 �m,�c,�k = 0.03 �m,�c,�k = 0.05

P [1.2685, 1.3197] [1.2313, 1.3569] [1.1895, 1.3987]

B1 [0.4702, 0.5346] [0.4060, 0.5988] [0.3417, 0.6631]

B2 [−4.8207, 4.8209] × 104 [−1.4463, 1.4463] × 105 [−2.4104, 2.4104] × 105

F1 [1.2239, 1.2703] [1.1776, 1.3166] [1.1313, 1.3629]

F2 [1.0149, 1.0762] [0.9537, 1.1374] [0.8925, 1.1986]

F3 [0.3396, 0.3597] [0.3196, 0.3797] [0.2996, 0.3996]

L [0.5854, 0.5969] [0.5740, 0.6083] [0.5625, 0.6197]

U [0.0098, 0.0101] [0.0096, 0.0103] [0.0094, 0.0105]

ing the stability and response boundaries, the presented
approach enables to drastically reduce the computa-
tional costs.

3.3 The effects of K1, K2, p1 and p2 on the
maximum vibration amplitude

The combined effects of structural parameters on the
vibration response can be investigated via the proposed
approach when all the influence parameters vary simul-
taneously. In order to demonstrate the superiority of
the proposed method, the influence of structural para-
meters K1, K2, p1 and p2 on the maximum vibration
amplitude are illustrated in this section.

3.3.1 The numerical results of the proposed method

A first simulation is carried out to obtain the worst case
resonance. Using the proposed method in Eq. (29), the

structural parameters taking into account are included
as optimization variables in Eq. (29), i.e., vu =
{K1, K2, p1, p2}. The optimization bounds of the
optimization variables are K1 ∈ [0, 1.6], K2 ∈
[0.5, 1.5], p1 ∈ [0.2, 0.8], p2 ∈ [1.2, 1.8]. Optimiza-
tion results demonstrate that the solution attains its
positive maximum at K1 = 0, K2 = 0.5, p1 = 0.2
and p2 = 1.8, which is located at the boundary of
the domain �(K1, K2, p1, p2). It can be seen that
the maximum vibration amplitude strongly depends
on the parameters of fractional derivatives, and the
parameter p2 has a significant effect on the vibration
response.

To demonstrate the above results, a set of data
points in the domain �(K1, K2, p1, p2) is selected
to gain more insight of the influence of these struc-
tural parameters. These data points are listed in
Table 8.

The optimization results with the mentioned method
are presented in Table 9. Observe in Table 9 that these
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Table 8 The selected
parameter sets

m c k α K1 K2 p1 p2

DP1 5 0.1 10 15 0 0.5 0.2 1.8

DP2 0.2 0.6 0.3 1.7

DP3 0.5 0.8 0.4 1.6

DP4 0.8 1.0 0.5 1.5

DP5 0.8 1.0 0.6 1.4

DP6 1.1 1.2 0.6 1.4

DP7 1.4 1.4 0.7 1.3

DP8 1.6 1.5 0.8 1.2

Table 9 Numerical results of the eight cases

ω λ̄ j ρ̄ j max(|ρ̄ j |) u(τmax)

DP1 3.7566 −0.0628±0.0337i 0.8989±0.0507i 0.9003 2.4648

DP2 3.2357 −0.0843±0.0405i 0.8464±0.0668i 0.8490 2.0620

DP3 2.7298 −0.1177±0.0593i 0.7557±0.1038i 0.7627 1.6619

DP4 2.3836 −0.1572±0.0791i 0.6464±0.1368i 0.6607 1.3679

DP5 2.3172 −0.1704±0.0858i 0.6129±0.1453i 0.6299 1.2941

DP6 2.1368 −0.2046±0.1017i 0.5235±0.1614i 0.5479 1.1439

DP7 1.9572 −0.2600±0.1240i 0.4001±0.1682i 0.4340 0.9729

DP8 1.8635 −0.3027±0.1420i 0.3198±0.1660i 0.3603 0.8790

optimal solutions are stable because all the moduli of
the Floquet multiplier are <1.

Obviously, the maximum vibration amplitudes and
the corresponding resonance frequencies are monoton-
ically decreasing function about K1, K2 and p1, that
is to say, decreasing K1, K2 and p1 could increase
u(τmax) and resonance frequency. On the contrary,
increasing p2 leads to the decrease of u(τmax) and its
resonance frequency. This means that p2 plays a key
effect on the present results and increasing p2 could
suppress the worst resonance.

3.3.2 The sensitivity information

The variations of the sensitivity for the eight cases
are illustrated in Fig. 7. It is shown that, among the
nine influence parameters, the sensitivities of U with
p2, c, K2 and ω are significantly higher than the other
five. From Fig. 7, it can be realized that the sensitiv-
ity values of the Fourier coefficients decrease dramat-
ically with increasing K1, K2 and p1 and decreasing
p2. For ∂U/∂ p1, the sensitivity magnitude of ∂U/∂ p1

increases to a maximum value at DP2 and then begins

to decrease. The case DP1 shows the highest sensitivity
and the DP8 case the lowest one.

By inspection of Fig. 7, the influence of these struc-
tural parameters on the maximum vibration amplitude
can be detected. In particular, it is observed that the
maximum vibration displacement and its sensitivity
turn out to be mainly affected by the structural para-
meters p2, c and K2. The influence of ω is compara-
tively less significant, while the structural parameters
K1, p1,m, α and k have almost negligible effects on
the sensitivity.

3.3.3 The interval boundaries in the presence of
uncertainty

Following the developed method, the upper and lower
bounds of λ̄I

j for the eight cases with three differ-
ent values of the deviation amplitude of the interval
parameters, say �m,�c,�k = 0.01, 0.03 and 0.05,
are illustrated in Table 10. The response bounds esti-
mated are given in Table 11. A close inspection of
Tables 10 and 11 show that, for small level of uncer-
tainty (�m,�c,�k = 0.01), the upper bounds of
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Fig. 7 Sensitivity curves
for different parameters of
the fractional derivative
terms

Table 10 Stability boundaries with different �m,�c,�k

�m,�c,�k = 0.01 �m,�c,�k = 0.03 �m,�c,�k = 0.05

�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)
�
(
λ̄I

j

)

DP1 [−0.1018, −0.0237] [0.0274, 0.0400] [−0.1798, 0.0542] [0.0149, 0.0525] [−0.2578, 0.1322] [0.0024, 0.0650]

DP2 [−0.1552, −0.0134] [0.0257, 0.0553] [−0.2969, 0.1283] [−0.0037, 0.0848] [−0.4386, 0.2700] [−0.0332, 0.1143]

DP3 [−0.1218, −0.1135] [0.0576, 0.0609] [−0.1300, −0.1053] [0.0545, 0.0641] [−0.1382, −0.0971] [0.0513, 0.0673]

DP4 [−0.2185, −0.0960] [0.0537, 0.1045] [−0.3409, 0.0265] [0.0031, 0.1552] [−0.4633, 0.1489] [−0.0476, 0.2059]

DP5 [−0.2296, −0.1113] [0.0605, 0.1112] [−0.3479, 0.0070] [0.0100, 0.1617] [−0.4662, 0.1253] [−0.0406, 0.2123]

DP6 [−0.2645, −0.1448] [0.0702, 0.1333] [−0.3841, −0.0252] [0.0071, 0.1964] [−0.5037, 0.0944] [−0.0560, 0.2594]

DP7 [−0.2722, −0.2478] [0.1074, 0.1406] [−0.2966, −0.2234] [0.0742, 0.1738] [−0.3209, −0.1991] [0.0410, 0.2070]

DP8 [−0.3150, −0.2905] [0.1274, 0.1565] [−0.3393, −0.2662] [0.0985, 0.1855] [−0.3637, −0.2418] [0.0695, 0.2145]

Table 11 Responses
intervals with different
�m,�c,�k

�m,�c,�k = 0.01 �m,�c,�k = 0.03 �m,�c,�k = 0.05

DP1 [2.4234, 2.5063] [2.3406, 2.5890] [2.2579, 2.6718]

DP2 [2.0290, 2.0951] [1.9630, 2.1610] [1.8970, 2.2270]

DP3 [1.6353, 1.6885] [1.5821, 1.7417] [1.5289, 1.7949]

DP4 [1.3457, 1.3901] [1.3013, 1.4345] [1.2570, 1.4788]

DP5 [1.2685, 1.3197] [1.2313, 1.3569] [1.1895, 1.3987]

DP6 [1.1248, 1.1630] [1.0868, 1.2011] [1.0487, 1.2392]

DP7 [0.9562, 0.9896] [0.9229, 1.0229] [0.8896, 1.0562]

DP8 [0.8637, 0.8944] [0.8330, 0.9250] [0.8024, 0.9556]

�
(
λ̄I

j

)
for all cases are negative. Therefore, the inter-

val responses listed in the second column of Table 11,
which associate with stable periodic solutions, are
credible.

Notice that the stability boundaries for cases DP3,
DP7 and DP8 are less sensitive to the fluctuation of

the uncertainty parameters than other cases. The upper

bounds of �
(
λ̄I

j

)
for cases DP3,DP7 and DP8 with

three different values of �m,�c,�k are <0, which
demonstrate that these periodic solutions are still stable
even for relatively large uncertainty. Indeed, the stabil-
ity bounds which are characterized by a wider region
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imply a greater deviation of the dynamical behavior
from the periodic solution pertaining to the nominal
system.

4 Conclusions

The improved method in Ref. [18] is used to solve the
Duffing oscillator with two kinds of fractional order
derivative terms. The fractional operation matrix and
the polynomial nonlinear operation matrix are derived
analytically, and the gradients of the nonlinear equal-
ity constraints and objective function with respect to
optimization variables are therefore obtained. Then, a
generalized eigenvalue problem is constructed to ana-
lyze the stability of periodic solution, and the uncer-
tainty stability boundary is determined by the interval
eigenvalue problem. Moreover, the response bounds of
periodic solution are calculated by using the interval
analysis method along with the sensitivity information.
Finally, the validity of the proposed approach is demon-
strated on the Duffing oscillator without and with frac-
tional derivative terms. Parameter studies for the frac-
tional derivative terms are performed. It is illustrated
that the fractional derivative terms have an evident
influence on the dynamic behaviors of Duffing oscilla-
tor, and the bifurcation solution in fractional nonlinear
systems may not be sensitive to the change of the influ-
ence parameter.

It is worth mentioning that the proposed approach
in this paper can be used as the robust design opti-
mization method. The basic idea of the potential robust
design method is given as follows: To reduce the unde-
sired vibration response for the given frequency inter-
val, the objective function is to minimize the upper
bound of vibration response given in Eq. (29), while
the inequality stability criterion in Eq. (29) is replaced

with �
(
λ̄I

j

)
< 0. The corresponding examples will

appear in the near future.
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