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Abstract In this paper, a modified nonlinear proper
orthogonal decomposition (POD) method based on
transient time series on account of approximate iner-
tial manifold method is proposed to reduce the order
of the multiple degrees of freedom (DOFs) of a rotor
system. A model of 23 DOFs rotor system compris-
ing a pair of liquid-film bearing with pedestal loose-
ness at one end is established by using the Newton’s
second law. The multi-DOFs system is reduced to a
two-DOFs model by using the modified POD method,
which preserves the original dynamics behaviors. The
comparison between the modified and the traditional
POD method shows that the modified POD method
is more effective especially in finding the bifurcation
point and detecting the bifurcation diagrams and the
mean square error of amplitudes curves. Finally, a rel-
ative error analysis is also carried out to evaluate the
accuracy of the proposed order reduction method, indi-
cating that the relative error is below 5 % excluding the
interval between original bifurcation point and the shift
of the reduced system.
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1 Introduction

The order reduction of multi-degrees of freedom
(DOFs) rotor system has become central issue of con-
cerns in nonlinear dynamics, attracting the attention of
researchers in many areas. Order reduction methods,
including the center manifold method, the Lyapunov–
Schmidt (LS) method, the Galerkin method, and the
proper orthogonal decomposition (POD) method, were
summarized by Rega and Steindl in their applied stud-
ies of nonlinear dynamics [1,2]. The center mani-
fold approach reduces the original system to a cen-
ter manifold associated with the part of the orig-
inal system characterized by the eigenvalues with
zero real parts at the bifurcation point, which may
have smaller dimensions than that of the original
system [3]. Anael [4] used center manifold theory
to analyze a model of gene transcription and pro-
tein synthesis which consists of an ordinary differ-
ential equation coupled to a delay differential equa-
tion. The center manifold theory and the stability
analysis were applied to reduce and simplify the
nonlinear system, obtaining a number of bifurcation
results and providing the rigorous theoretical proof
[5–7]. The LS method was introduced to process the
inhomogeneous term and the higher derivative of the
boundary [8,9]. Gentile et al. [10] used the LS method
to research the periodic solutions of the resonant non-
linear wave equations, and Sandfry and Hall [11] stud-
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ied the bifurcation characters of the dynamical equa-
tions.

A nonlinear finite dimensional analytic manifold,
which approximates closely the global attractor in the
two-dimensional case and certain bounded invariant
sets in the three-dimensional case were presented in
Ref. [12]. The two-dimensional Navier–Stokes (N–S)
equations with finite dimensional global attractor and
the geometric properties of the solutions of the N–S
equations were discussed by Constantin and Foias [13–
15]. Inertial manifold (IM) of the nonlinear evolution-
ary equations was proposed in the order reduction for
the infinite system [16], approximate inertial mani-
fold (AIM) was applied in the reaction–diffusion equa-
tions and Cahn–Hilliard equations in the high space
dimension by Marion [17,18]. The Lyapunov projec-
tion method was presented to determine the dimension
and state space geometry of IM of dissipative extended
dynamical systems and provide a possible way to deter-
mine the geometric characteristics of IM [19]. The
nonlinear Galerkin method was proposed to integrate
evolution differential equations that were well adapted
to the long-term integration of such questions, which
were related to the projection of equation on a nonlin-
ear manifold [20]. The POD method was proposed by
Loeve and Karhunen, being widely applied to dynamic
diagnosis of the railway tracks [21–23]. Kerschen [24]
reviewed the POD method which has been used in the
dynamical characterization and order reduction of non-
linear dynamical systems of beam and shell [25–27].
Liang verified all kinds of POD methods from the theo-
retical perspective and provided the applications to the
practical applications of nonlinear dynamics [28,29].
The same method to analyze bifurcation properties
in the dissipative systems was used and the Galerkin
method was combined together for more researches
on the order reduction of the high-dimensional sys-
tems [30–34].

Center manifold is a mapping, which maps the sta-
ble subspace to the center subspace. The L–S reduction
method is similar as the center manifold method, which
projects the original space to the null space [35,36].
The two order reduction methods are discussed in the
state space. In the actual multi-DOFs rotor system, the
reduced model considers the main vibration directions
of the original system, that is to say, the impact of the
first n modes in the modal space. Even though the cen-
ter manifold and L–S methods have thorough theory
in the state space, they are not suitable in the modal

space. The POD is a powerful and effective method for
data analysis aimed at obtaining low-order modes of the
original system [28]. The traditional POD method relies
on the steady process of the system, which neglects the
free vibration information and gives large relative error
for the traditional POD method. For the modified POD
method, which can be seen as a kind of construction of
AIM, the transient time series contain the forced and
free vibration information, involving more dynamical
characteristics than the steady time series with only
forced vibration information. Therefore, the reduced
system maintains the main dynamical characteristics
of the original system [37].

The motivation of this paper is to modify the tradi-
tional POD method based on the AIM method to reduce
the order of a high-dimensional dynamical system. The
modified POD method is applied to reduce a 23-DOFs
rotor model with bearing loose to a two-DOFs sys-
tem, which preserves the main dynamical topological
structures of the original system. The efficiency of the
modified method is presented by comparing with the
traditional one and analyzing the relative error.

2 Preliminaries

In this section, we focus on the IM and AIM method
to propose the modified nonlinear POD method which
can be used in the order reduction of the multi-DOFs
systems.

2.1 Inertial manifold and approximate inertial
manifold

In the Hilbert space H , we give the inner product (·,·),
the nonlinear evolution equation can be expressed as:

du

dt
+ vAu + B (u, u) + Cu = f

u(0) = u0

R(u) = B(u, u) + Cu − f (1)

where A is the unbounded linear self-conjugate oper-
ator in H with domain D(A) dense in A. Since
A−1 is a compact operator, there exists an orthog-
onal basis {ω j }∞j=1 of H consisting of eigenvectors
of A. The corresponding eigenvalues are denoted by
λ1, λ2, . . . λi . . . λ j . . . , which satisfy 0 < λ1 ≤ λ2 ≤
· · · ≤ λ j ≤ · · · , λ j → +∞, as j → ∞. We assume
that A is positive, thus (Av, v) > 0,∀v ∈ D(A), v �=
0. R(u) is the nonlinear term and B(u, u) is bilinear
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operator D(A) × D(A) → H, C is the linear operator
D(A) → H, f ∈ D(A1/2).

We denote that Pm is the orthogonal projection of
H onto Hm = span(ω1, . . . ωm), Qm = I − Pm , the
set p = Pm(u) and q = Qm(u), then the Eq. (1) is
equivalent to the equations as follows:

dp

dt
+ vAp + Pm B (p + q, p + q) + PmC(p + q)

= Pm f (2)
dq

dt
+ vAq + Qm B (p + q, p + q) + QmC(p + q)

= Qm f (3)

Under the condition of spectrum gap [16], an inertial
manifold for Eq. (1) is a subset μ ⊆ H , which has the
following three properties:

(i) μ is positively invariant under the flow [i.e., for all
t > 0, if u0 ∈ μ then the solution of (1) u(t) ∈ μ];

(ii) μ is finite dimensional Lipschitz manifold;
(iii) μ attracts every trajectory exponentially [that is to

say, for every solution u(t) of (1) dist(u(t), μ) →
0 exponentially];

We require μ to be a graph of Lipschitz function
Ψ : Hm → Qm H , that is to say μ = {p, Ψ (p)},
then the condition (i) is equivalent to recite that for the
solution p(t) and q(t) of (2), (3) with q(0) = Ψ (p(0)),
one has q(t) = Ψ (p(t)) for all t > 0. Therefore, if the
function Ψ exists, the reduction of system (2), (3) to μ

is equivalent to the ordinary differential system called
an inertial form, as follows:

dp

dt
+ vAp + Pm B (p + Ψ (p), p + Ψ (p))

+ PmC (p + Ψ (p)) = Pm f (4)

The spectrum gap is not taken into account in the
AIM theory. In general, the spectrum gap condition
is difficult to be satisfied, so the AIM theory is pro-
posed. AIM is defined as a class of manifold is nonlin-
ear finite dimensional with a certain smoothness which
is approximate to the global attractor. As usual, the
Galerkin approximation method associated with the
eigenvectors of the Stokes operator A obtains the linear
manifold Hm as an AIM. However, replacing the map-
ping Ψ in (4) by zero, we can obtain the usual Galerkin
approximation [38]:

dum

dt
+ vAum + Pm B(um, um) + PmCum = Pm f,

um ∈ Hm (5)

The theory of AIM has shown that long time behav-
ior of partial differential equation can be fully described
by that of a finite ordinary differential system [12].
AIM method can be regarded as the nonlinear Galerkin
approximation [39]. Steindl and Troger [2] states that:
“The qualitative idea is that if a system possesses a com-
plicated attractor A, then it can often be better approx-
imated by a nonlinear manifold as given by the inertial
manifold than by the linear space used in the standard
Galerkin method.”

As mentioned above, there is a certain relationship
between the Galerkin method and the AIM method,
which can be viewed as a kind of special nonlinear
Galerkin approximation applied in the ordinary differ-
ential systems. This modified POD method can be con-
sidered as a kind of construction method of AIM in the
high-dimensional nonlinear system.

2.2 Modified POD method based on transient time
series

On account of the AIM method, a modified order reduc-
tion method is proposed, which is called modified non-
linear POD method based on transient time series. This
new method will be applied to the order reduction of
the high-dimensional dynamical systems.

Under the given initial conditions, the transient
process of the system is a complex process contain-
ing not only free vibration information but also forced
vibration information. Therefore, we put forward a
modified nonlinear POD method based on transient
time series: obtaining a set of POMs by utilizing POD
from the transient process of the system, taking the first
two orders of the POMs to form the projection space,
and projecting original system onto this space. Thus, we
gain the approximate equivalent model of two-DOFs.
This method can be viewed as a structured approach of
AIM in the high-dimensional nonlinear systems.

In general, through the equivalent transformation,
the multiple-DOFs system can be written as:

Z̈ = −C Ż − K Z + F (6)

where C is the equivalent damping matrix. K is the
equivalent stiffness matrix. F is the equivalent force
vector.

The construction process are as follows:
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(1) Provide the initial conditions, proceed numerical
simulation and obtain displacement information
from transient process of various DOFs, which is
denoted by z1(t), z2(t), . . . zM (t). M is the num-
ber of DOFs in the system, recording transient
time interval displacement sequence of all DOFs
zi = (zi (t1), zi (t2), . . . zi (tN ))T , i = 1, . . . , M .
The number of time interval is N and the inter-
val is equal to each other, the time series form the
matrix X = [z1, z2, . . . , zM ], the order of X is
N × M .

When calculating the self-correlation matrix T =
X T X , the order of matrix is M ×M . The eigenvector of
the matrix can therefore be denoted by ϕ1, ϕ2, . . . , ϕM ,
and the corresponding eigenvalues are λ1 > λ2 >

· · · > λM .

(2) U is the matrix formed by the first n orders of
T = X T X , and it can also indicate that the matrix
U contains the first n largest eigenvalues of T .
The order of U is M × n, so we know that the
order of U T U is n × n. Taking the coordinates
transformation on system coordinates Z , acquiring
the new coordinates P, Z = U P , substituting Z
into Eq. (6), gaining the Eq. (7):

U P̈ = −CU Ṗ − KU P + F (7)

Due to the column vector of U is orthogonal and
nonzero, and the matrix U T U is n order diagonal and
full rank, hence there exits inverse matrix of U T U . For
the Eq. (7), taking (U T U )−1U T left multiplication on
both sides, we can obtain (8):

P̈ = −(U T U )−1U T CU Ṗ − (U T U )−1U T KU P

+ (U T U )−1U T F (8)

Setting

CR = −(U T U )−1U T CU, K R =(U T U )−1U T KU, FR

= (U T U )−1U T F,

then we receive the formula (9):

P̈ = −CR Ṗ − K R P + FR (9)

In this way, the original system is transformed into
the n-DOFs reduced system by the new order reduction
method.

3 Twenty-three-DOFs rotor system with bearing
loose

In this section, a rotor model with bearing loose is estab-
lished according to the Newton’s second law and the
reduced system is introduced in detail. The efficiency
of the order reduction is evaluated through the compar-
ison of the bifurcation diagrams and mean square error
of amplitudes curves. The relative error of the modified
order reduction method is analyzed at last.

3.1 Original model

The 23-DOFs model is shown in Fig. 1, suggesting
that the axial, torsional vibrations of the system and
the gyroscopic moment are neglectful. oi (i = 2 . . . 9)

are the geometric centers of the discs, o1, o10 are
the geometric centers of the left and right bearing.
Here, oei (i = 1 . . . 11) are the centers of gravity;
mi (i = 1 . . . 11) are the equivalent lumped mass;
ki (i = 1 . . . 10) are the equivalent stiffness of the
corresponding discs; ci (i = 1 . . . 11) are the equiva-
lent damping coefficients at the position of the lumped
mass. Assuming that the left bearing is loose, the max-
imum clearance between the loose side bearing and
the foundation is δ1. The shaft between rotor discs and
the bearing is massless elastic. Also cs is the damping
coefficient of pedestal loose, and ks is the supporting
stiffness. When loosing occurs, cs and ks are piecewise
linear, Y12 is the pedestal displacement, the expression
is:

ks =
⎧
⎨

⎩

ks1 (Y12 > δ1)

0 (0 ≤ Y12 ≤ δ1)

ks2 (Y12 < 0)

cs =
⎧
⎨

⎩

cs1 (Y12 > δ1)

0 (0 ≤ Y12 ≤ δ1)

cs2 (Y12 < 0)

By using the Newton’s second law, we can receive
the differential equations of motion and the dimension-
less form can be obtained as well, which are shown as
formulas (10) and (11).

M Z̈ + C Ż + K Z = F

Z = (X1, Y1, . . . Y11, Y11, Y12)
T

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1

m1
. . .

m11

m11

m12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

23×23

(10)
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Fig. 1 Rotor models with
pedestal looseness at one
end
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We nondimensionalize the Eq. (10) and the dimen-
sionless transformation is defined as:

τ = ωt, xi = Xi

c
, yi = Yi

c
, ẋi = dxi

dτ
, ẏi = dyi

dτ
,

ẍi = dẋi

dτ
, ÿi = dẏi

dτ
, M1 = m1cω2

s P
, M11 = m11cω2

s P
,

M12 = m12cω2

s P
, bi = Bi

c
(i = 2, . . . 10), fx = Fx

s P
,

fy = Fy

s P

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1

c1
. . .

c11

c11

cs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

23×23

K =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1 −k1

k1 −k1

−k1 k1 + k2 −k2

−k1 k1 + k2 −k2
. . .

−k9 k9 + k10 −k10

−k9 k9 + k10 −k10

−k10 k10

−k10 k10

ks

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

23×23

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Fx
(
X1, Y1 − Y12, Ẋ1, Ẏ1 − Ẏ12

)

Fy
(
X1, Y1 − Y12, Ẋ1, Ẏ1 − Ẏ12

) − m1g

m2 B2ω2 cos(ωt)

m2 B2ω2 sin(ωt) − m2g

...

m10 B10ω2 cos(ωt)

m10 B10ω2 sin(ωt) − m10g

Fx
(
X11, Y11, Ẋ11, Ẏ11

)

Fy
(
X11, Y11, Ẋ11, Ẏ11

) − m11g

−Fy
(
X1, Y1 − Y12, Ẋ1, Ẏ1 − Ẏ12

) − m12g

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

23×1

where fx and fy are the model of dimensionless non-

linear oil-film force, fx = Fx
s P , fy = Fy

s P . Fx and Fy are
the x, y directional components of bearing nonlinear
oil-film force. c is the bearing clearance,
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c̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1
m1ω

c1
m1ω

. . .
c11

m11ω
c11

m11ω
cs

m12ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

23×23

s = μωRL
P

( R
c

)2 ( L
2R

)2
is the Sommerfeld number. μ is

the lubricating oil viscosity, L is the bearing length, R
is the radius of the bearing, ω is the external excitation,
P is the loading, and τ is the dimensionless time.

f̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
M1

fx (x1, y1 − y12, ẋ1, ẏ1 − ẏ12)
1

M1
fy (x1, y1 − y12, ẋ1, ẏ1 − ẏ12) − g

ω2c
b2 cos τ

b2 sin τ − g
ω2c

...

b10 cos τ

b10 sin τ − g
ω2c

1
M11

fx (x11, y11, ẋ11, ẏ11)
1

M11
fy (x11, y11, ẋ11, ẏ11) − g

ω2c
− 1

M12
fy (x1, y1 − y12, ẋ1, ẏ1 − ẏ12) − g

ω2c

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

23×1

The dimensionless equation of (10) is expressed as:

z̈ = −c̄ż − k̄z + f̄ (11)

The expression of c̄, k̄, f̄ are shown as above,

z = (x1, y1, . . . , x11, y11, y12)
T .

The parameters in the system are shown as follows:

m1 = 4 kg, m2 = 21.9339 kg, m3 = 7.7990 kg,

m4 = 6.3545 kg

m5 = 9.0666 kg, m6 = 5.9773 kg, m7 = 5.9773 kg,

m8 = 6.9809 kg

m9 = 7.2284 kg, m10 = 3.90146 kg, m11 = 4 kg,

m12 = 75 kg

R = L = 30 mm, c = 0.11 mm, μ = 0.018 pa s,

c1 = c11 = 800 N s/m

c2 = c10 = 1,250 N s/m, c3 = c9 = 1,050 N s/m,

c4 = c8 = 850 N s/m

c5 = c7 = 1,050 N s/m, c6 = 1,250 N s/m,

ki = 2 × 107 N/m(i = 1, . . . , 10, i �= 5)

ks1 = 7.5 × 107 N/m, ks2 = 2.5 × 108 N/m,

cs1 = 350 N s/m, δ1 = 0.22 mm

cs2 = 500 N s/m, B5 = 0.01 mm,

Bi = 0 (i = 2, . . . 10, i �= 5)

k̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1
m1ω2 − k1

m1ω2

k1
m1ω2 − k1

m1ω2

− k1
m2ω2

k1+k2
m2ω2

−k2
m2ω2

− k1
m2ω2

k1+k2
m2ω2

−k2
m2ω2

. . .
−k9

m10ω2
k9+k10
m10ω2

−k10
m10ω2

−k9
m10ω2

k9+k10
m10ω2

−k10
m10ω2

−k10
m11ω2

k10
m11ω2

−k10
m11ω2

k10
m11ω2

ks
m12ω2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

23×23

The nonlinear oil-film force [40] of x and y direc-
tions can be found in formula (12):

{
fx

fy

}

= −[(x − 2 ẏ)2 + (y + 2ẋ)2]1/2

1 − x2 − y2

×
{

3xV (x, y, α) − sin αG (x, y, α) − 2 cos αS (x, y, α)

3yV (x, y, α) + cos αG (x, y, α) − 2 sin αS (x, y, α)

}

(12)
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Fig. 2 The time history of
x11 under the initial
conditions when
ω = 750(rad/s)
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The parameters in (12) can be identified as:

α = arctan

(
y + 2ẋ

x − 2 ẏ

)

− π

2
sign

(
y + 2ẋ

x − 2 ẏ

)

− π

2
sign(y + 2ẋ) (13)

G(x, y, α) = 2
(
1 − x2 − y2

)1/2

[
π

2

+ arctan
y cos α − x sin α
(
1 − x2 − y2

)1/2

]

(14)

V (x, y, α) = 2 + (y cos α − x sin α)G (x, y, α)

1 − x2 − y2

(15)

S (x, y, α) = x cos α + y sin α

1 − (x cos α + y sin α)2 (16)

In order to facilitate the theory analysis, providing
the Taylor series expansion on the oil-film force, α can
be rewritten as:

α = arctan
y + 2ẋ

x − 2 ẏ
− π

2

(
(y + 2ẋ) (x − 2 ẏ)

|y + 2ẋ | |x − 2 ẏ|
)

− π

2

(
y + 2ẋ

|y + 2ẋ |
)

(17)

For convenience of the calculation, formula (11) is
written as (18):

Z̈ = −C Ż − K Z + F (18)

As above, C is the damping matrix, K is the stiffness
matrix, and F is the force vector, which includes oil-
film force and external excitation. Z = [z1 z2 . . . z23]T

corresponds to [x1 y1 . . . x11 y11 y12]T in the Eq. (11).

3.2 Reduced model

Given the initial conditions that the integral step is
π/256, the displacement and the velocity are x4 =

y4 = 0.5, xi = yi = y12 = 0 (i = 1 . . . 11, i �=
4), ẋi = ẏi = ẏ12 = 0.001 (i = 1, . . . , 11), and
ω = 750 (rad/s). As is shown in Fig. 2, the horizontal
ordinate time history of the right bearing is provided.
If τ in formula (11) is selected between 0 and 50π , the
system is the transient process, and the system is in the
periodic motion state after 50π . According to Sect. 2.2,
the coordinate transformation matrix utilizes the signal
of the transient process to gain is:

U T = 10−2
(

U1

U2

)

U1 =
⎛

⎝
13.14, 4.46, 25.06, 1.93, 31.55, 0.15, 35.96, 1.63,

38.56, 2.51, 38.51, 2.52, 36.77, 1.68, 33.22, 0.16,

27.79, 1.85, 20.59, 4.27, 12.50, 6.98, 3.74

⎞

⎠

U2 =
⎛

⎝
7.44, 18.47, 4.14, 27.50, 1.23, 32.50, 1.03, 35.80,

2.59, 37.56, 3.12, 37.11, 2.57, 35.21, 1.12, 31.82,

1.01, 26.96, 3.76, 20.79, 7.00, 14.02, 2.59

⎞

⎠

Thus, in formula (9), n = 2, the equation of the
two-DOFs reduced system is (19):

P̈ = −C2 Ṗ − K2 P + F2 (19)

When the damping matrix, stiffness matrix, the
external excitation matrix are C2, K2, F2, the follow-
ings are the coefficients of the matrixes:

C2 =
(

c11 c12

c21 c22

)

, K2 =
(

k11 k12

k21 k22

)

,

F2 =
(

f1 + fω1 + g1

f2 + fω2 + g2

)

The parameters in the above matrixes are shown in
the “Appendix”.

3.3 Results of order reduction

In order to show the efficiency of the modified order
reduction method, this section highlights the dynam-
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ical behaviors of the original system and the reduced
system. We therefore analyze the bifurcation diagrams,
the mean square error of amplitudes curves and the
relative error. Comparison of the original system with
the reduced system shows that the reduced system pre-
serves the dynamical topological structures of the orig-
inal system by applying the modified POD method and
reserves none by the traditional one.

Figure 3a shows the bifurcation diagram of the origi-
nal system, Fig. 3b, c shows the bifurcation diagrams of
the reduced systems by applying the modified and tra-
ditional POD method, horizontal axis is the rotate speed
of the rotor system, and vertical axis is the amplitude of
x11. Figure 3b suggests that the reduced system main-
tains main bifurcation character of the original system,
and the topological structure of the reduced system is
basically the same as the original system. Figure 3c
indicates that the reduced system loses most dynam-
ics behaviors and preserves no topological structures
of the original system.

Figure 4 gives the mean square error of amplitudes
curves of the original system and the reduced system.
As can be seen, a new pattern of manifestation is found.
Figure 4 reflects the relation between the rotate speed
and the mean square error of amplitudes, which stands
for the mean square error of the point displacements,
and the algorithm is indicated in formula (20). Again, in
Fig. 4a, the bifurcation occurs when ω = 1,340 rad/s
in the original system and when ω = 1,410 rad/s in
the reduced system as shown in Fig. 4b. The difference
of the interval ω ∈ [1,340, 1,410] is clearly shown.
However, the curve keeps basically the same in other
intervals, and which demonstrates the reduced system
preserves the dynamics behaviors of the original sys-
tem.

Also, here xi (i = 1, . . . N ) stands for the displace-
ments of the points, N is the number of the point, μ is
the mean value and σ is the mean square error.

μ =
∑N

i=1 xi

N
, σ =

√
√
√
√

N∑

i=1

(xi − μ)2

N
(20)

In Fig. 5, the relative error of the modified POD
method is found, the horizontal coordinate represents
the rotate speed of the rotor system, the vertical coor-
dinate stands for the mean square error difference
between original system and reduced system. The equa-
tion e = |rm − rn| /rm suggests that e is the relative
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Fig. 3 Bifurcation diagrams. a Bifurcation diagram for original
system, b bifurcation diagram for reduced system, c bifurcation
diagram for traditional POD method

error and that rm, rn is the original and reduced system
mean square error of amplitude, respectively. We can
see that the relative error of the modified POD method
is <5 % excluding the interval between original bifur-
cation point and the shift of the reduced system, merely
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Fig. 4 Mean square error of amplitudes curve. a The original
system, b the reduced system
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Fig. 5 The order reduction relative error

rising up obviously when ω ∈ [1,340, 1,410], which is
not in the range of the normal value. Although there is a
certain relative error of the order reduction method, the
reduced system maintains the main dynamical charac-
teristics of the original system as a whole. With the rela-
tive error analysis, we obtain the efficiency of the mod-
ified POD method based on transient time series. This
new method can be used as an effective order reduction
method of the multiple-DOFs systems.

4 Conclusions

In this paper, a modified nonlinear POD method has
been proposed based on the AIM method to reduce a
23-DOFs rotor model with bearing loose to a two-DOFs
model. It is shown that the dynamical characteristics of
the original model has been preserved in the reduced
model by the comparison between the bifurcation dia-
gram and the mean square error of amplitudes. Finally,
the efficiency of the modified POD method has also
been demonstrated that the relative error of the rotor
system is <5 % excluding the interval between bifur-
cation points of the original system and the shift in
the reduced system. Further studies on this subject are
being carried out by the present authors in two aspects:
One is the reason of extracting transient time series and
the other is to elaborate the missed information of the
reduced system.
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Appendix

c11 = 10−2
(

1.9979
c1

m1
+ 6.3193

c2

m2
+ 9.9517

c3

m3

+ 12.954
c4

m4
+ 14.934

c5

m5
+ 14.896

c6

m6

+ 13.546
c7

m7
+ 11.033

c8

m8
+ 7.7582

c9

m9

+ 4.4199
c10

m10
+ 2.0503

c11

m11
+ 0.14015

cs

m12

)

c12 = 10−2
(

0.1747
c1

m1
+ 0.50805

c2

m2
+ 0.43517

c3

m3

+ 0.21398
c4

m4
− 0.05375

c5

m5
− 0.26634

c6

m6

− 0.35194
c7

m7
− 0.31994

c8

m8
− 0.21875

c9

m9

− 0.11377
c10

m10
−0.1043

c11

m11
+0.096872

cs

m12

)

c21 = 10−2(0.1747
c1

m1
+ 0.50805

c2

m2
+ 0.43517

c3

m3

+ 0.21398
c4

m4
− 0.05375

c5

m5
− 0.26634

c6

m6

− 0.35194
c7

m7
− 0.31994

c8

m8
− 0.21875

c9

m9
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− 0.11377
c10

m10
− 0.1043

c11

m11
+ 0.096872

cs

m12
)

c22 = 10−2
(

3.9645
c1

m1
+ 7.7322

c2

m2
+ 10.581

c3

m3

+ 12.825
c4

m4
+ 14.171

c5

m5
+ 13.867

c6

m6

+ 12.461
c7

m7
+ 10.136

c8

m8
+ 7.2763

c9

m9

+ 4.4643
c10

m10
+ 2.455

c11

m11
+ 0.0066975

cs

m12

)

k11 = 10−8
(

−0.03547
k5

m6
+ 1.3019

k6

m6
+ 0.263

ks

m12

− 2.7589
k8

m9
+ 3.6742

k9

m9
+ 5.3886

k1

m2

− 2.9737
k2

m2
+ 3.0203

k3

m4

− 1.7859
k4

m4
+ 1.928

k4

m5
+ 0.035518

k5

m5

− 1.5408
k10

m11
− 1.2315

k6

m7
+ 2.4972

k7

m7

+ 3.8427
k2

m3
− 2.6143

k3

m3

+ 2.5903
k9

m10
+ 2.9058

k10

m10
− 2.2172

k7

m8

− 2.7206
k1

m1
+ 3.3869

k8

m8

)

k12 = 10−8
(

−0.40584
k5

m6
− 0.30843

k6

m6

+ 0.18178
ks

m12

+ 1.277
k8

m9
− 1.6474

k9

m9
− 1.8797

k1

m2

+ 1.5507
k2

m2
− 1.4206

k3

m4

+ 0.99842
k4

m4
− 1.0456

k4

m5
+ 0.40628

k5

m5

+ 1.6473
k10

m11
+ 0.32023

k6

m7
− 0.89506

k7

m7

− 1.7101
k2

m3
+ 1.3256

k3

m3

+ 1.5552
k9

m10
− 1.7937

k10

m10
+ 0.89517

k7

m8

+ 1.5869
k1

m1
− 1.3098

k8

m8

)

k21 = 10−8
(

−0.0073538
k5

m6
+ 0.48086

k6

m6

+ 0.18178
ks

m12
− 1.1199

k8

m9
+ 1.3582

k9

m9

+2.2124
k1

m2
− 1.5733

k2

m2
+ 0.91057

k3

m4

− 0.54315
k4

m4
+ 0.49602

k4

m5
− 0.0069134

k5

m5

− 1.7759
k10

m11
− 0.46906

k6

m7
+ 0.83512

k7

m7

+ 1.4139
k2

m3
+ 1.0056

k3

m3

− 1.4504
k9

m10
+ 1.6295

k10

m10
− 0.83501

k7

m8

− 2.5053
k1

m1
+ 1.0871

k8

m8

)

k22 = 10−8
(

−2.8136
k5

m6
+1.3556

k6

m6
+0.12565

ks

m12

− 2.4191
k8

m9
+ 3.0657

k9

m9
+ 4.4024

k1

m2

− 2.3578
k2

m2
+ 2.255

k3

m4

− 1.2115
k4

m4
+ 0.29045

k4

m5
− 1.3564

k5

m5

− 1.2821
k10

m11

+ 2.309
k6

m7
+ 2.9876

k7

m7
− 1.9562

k2

m3

− 2.2111
k3

m3

+ 2.414
k9

m10
− 2.0539

k10

m10
− 2.0539

k7

m8

− 2.6678
k1

m1
+ 2.9474

k8

m8

)

f1 = −0.13413

M1
f1x − 0.044593

M1
f1y − 0.12501

M11
f2x

− 0.069826

M11
f2y − 0.037437

M12
f1y

f1x = fx (−0.31552p1 − 0.012433p2, 0.001973p1

+ 0.34105p2

− 0.34855 ṗ1 + 0.011375 ṗ2, 0.014298 ṗ1

+ 0.35867 ṗ2)

f1y = fy(−0.31546p1 − 0.012273p2, 0.001477p1

+ 0.32505p2

− 0.35955 ṗ1 + 0.010275 ṗ2, 0.016298 ṗ1

+ 0.35797 ṗ2)
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fω1 = −0.25064b2 cos t − 0.31546b3 cos t

− 0.35955b4 cos t − 0.38562b5 cos t

− 0.38513b6 cos t − 0.36766b7 cos t

− 0.33216b8 cos t − 0.27792b9 cos t

− 0.20586b10 cos t + 0.001592b8 sin t

+ 0.016822b7 sin t + 0.016298b4 sin t

− 0.018518b9 sin t + 0.025132b5 sin t

+ 0.025196b6 sin t − 0.019256b2 sin t

+ 0.001477b3 sin t − 0.042671b10 sin t

f2 = −0.074424

M1
f1x + 0.18468

M1
f1y − 0.069966

M11
f2x

+ 0.1402

M11
f2y − 0.025876

M12
f1y

f2x = fx (−0.38562p1 + 0.02587p2, 0.025132p1

+ 0.37556p2

− 0.38513 ṗ1 + 0.031192 ṗ2, 0.025196 ṗ1

+ 0.37107 ṗ2)

f2y = fy(−0.36766p1 + 0.02568p2, 0.016822p1

+ 0.35207p2

− 0.33216 ṗ1 + 0.011157 ṗ2, 0.001592 ṗ1

+ 0.31818 ṗ2)

fω2 = −0.041395b2 cos t − 0.012273b3 cos t

+ 0.010275b4 cos t + 0.02587b5 cos t

+ 0.031192b6 cos t + 0.025681b7 cos t

+ 0.01157b8 cos t − 0.01009b9 cos t

− 0.037572b10 cos t + 0.31818b8 sin t

+ 0.35207b7 sin t + 0.35797b4 sin t

+ 0.26956b9 sin t + 0.37556b5 sin t

+ 0.27497b6 sin t + 0.32505b2 sin t

+ 0.001477b3 sin t + 0.20792b10 sin t

g1 = 0.07091G, g2 = 3.2031G
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