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Abstract This paper deals with the robust task-space
control of electrically driven robot manipulators using
voltage control strategy. In conventional robust control
approaches, the uncertainty bound is needed to design
the control law. Usually, this bound is proposed con-
servatively which may increase the amplitude of the
control signal and damage the system. Moreover, cal-
culation of this bound requires some feedbacks of the
system states which providing them may be expensive.
The novelty of this paper is proposing a robust con-
trol law in which the uncertainty bound is calculated
by Legendre polynomials. Compared to conventional
robust controllers, the proposed controller is simpler,
less computational and requires less feedbacks. Simu-
lation results and comparisons verify the effectiveness
of the proposed control approach applied on a SCARA
robot manipulator driven by permanent magnet DC
motors.
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1 Introduction

In the last few decades, adaptive control and robust
control of robot manipulators in the task space [1–3]
and joint space [4,5] have been the focus of widespread
researches. The reason for the importance of robust and
adaptive control may be their efficiency in overcom-
ing the uncertainty originated from mismatch between
the nominal and actual models. External disturbances,
parametric uncertainty and un-modeled dynamics are
the main sources of uncertainty in control engineer-
ing which can seriously degrade the controller perfor-
mance.

In earlier methods of robust control [6,7], the con-
troller is designed based on the nominal model. Then,
a robustifying term is added to the control law to
compensate the uncertainty and the value of this term
is determined using a Lyapunov stability analysis. In
these approaches, the uncertainty bound is needed to
guarantee the system stability and design the con-
trol law. Usually, this bound is a function of the sys-
tem states and the upper bound of external distur-
bance. Thus, all the required feedbacks should be
available and the upper bounds of parametric uncer-
tainty and external disturbances should be known
in advance. Moreover, linear parameterization of the
robot manipulator motion equation is necessary in
most robust and adaptive control approaches [1–7].
Therefore, the manipulator motion equation should be
completely modeled in order to identify the regressor
matrices.
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Most of researches in the field of robot control are
based on the torque control strategy (TCS). In this strat-
egy, the control law computes the torques which should
be applied to the joints. The system actuators should be
excited, so that they produce the desired torques. How-
ever, the actuator dynamics is neglected in the TCS
and its input is not determined in this strategy. To solve
this problem, voltage control strategy (VCS) [8] has
been presented which is simpler and more efficient.
Stability analysis of a voltage-based controller was pre-
sented for robot manipulators [9]. Based on the VCS,
some robust control approaches have been presented
[10–13]. Position control of robot manipulators in the
task space using TCS is very complicated, since the
controller faces both dynamical and kinematical uncer-
tainties. However, task-space control using VCS is
much simpler and less computational [14]. Position
control of flexible joint robots using TCS is a chal-
lenging task, while VCS has considerably simplified
this problem [15,16].

Recently, some regressor-free adaptive approaches
have been presented [17,18] in which uncertainties
have been approximated using Fourier series. On the
basis of Lyapunov stability, some adaptation laws are
derived for adjustment of the Fourier series coefficients.
According to [19], other orthogonal functions such as
Legendre and Chebyshev polynomials can approxi-
mate continuous-time functions with an arbitrary accu-
racy. This paper applies this idea to estimate the uncer-
tainty bound in robust task-space control of electrically
driven robot.

The most important advantage of the proposed
control approach is reducing the number of required
sensors, since providing the controller with some
of these feedbacks may be impossible or expensive.
For instance, the acceleration signal may be required
[11,12] which is often contaminated with noise and
may degrade the controller performance. Sometimes,
the time derivatives of motor currents are needed
[13]. Observer-based control structures can be applied
for estimation of these un-measurable signals. For
instance, extended state observer [20] and nonlinear
disturbance observer [21] have been proposed. How-
ever, these approaches increase the computational bur-
den of the controller by augmenting the observer
dynamics. Moreover, in these approaches, it has been
assumed that the lumped uncertainty is constant or
varies slowly. This assumption can be violated eas-
ily in the applications where high speeds are needed.

Thus, the proposed controller in this paper is superior
to observer-based control structures [20,21], since this
assumption is not required. In comparison with those
approaches presented in [17,18], the proposed method
in this paper is much simpler, since there is no need
to use several estimators to approximate manipulator
inertia matrix, the vector of gravitational torques or cen-
trifugal and coriolis torques. In this paper, the lumped
uncertainty for each joint is estimated. Another supe-
riority of the proposed controller is elimination of the
need for knowing the upper bound of external distur-
bances and parametric uncertainty.

Nowadays, fuzzy systems [22] and neural networks
[23–25] are widely used in adaptive and robust control
of robot manipulators due to their universal approxima-
tion property [26]. These researches can be considered
as alternatives made toward a common objective which
is estimation and compensation of uncertainty. How-
ever, stability analysis of the neural control or fuzzy
control systems still is a challenging problem. In con-
trast, the stability analysis of the proposed control sys-
tem is presented in a classic method.

This paper is organized as follows. Section 2
explains function approximation techniques. Section 3
presents a conventional robust control approach using
VCS. Section 4 develops the proposed control law. Sec-
tion 5 illustrates the simulation results and presents
a comparison between the performances of different
function approximation techniques. Finally, Sect. 6
concludes the paper.

2 Function approximation using Legendre
polynomials

From linear algebra, we know that a basis is set of
linearly independent vectors that can present any vector
in a given vector space using a linear combination [19].
An orthogonal basis for an inner product space V is a
basis for V whose vectors are mutually orthogonal. A
typical inner product is given by

〈 f, g〉 =
∫

f ∗(x)g(x)dx (1)

in which f ∗(x) is the complex conjugate of the function
f (x). If the inner product (1) is zero for f (x) �= g(x),
the functions f (x) and g(x) are called orthogonal. Sup-
pose that V is the space of all real-valued continuous-
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Robust task-space control of robot manipulators using LPs 1153

time functions. According to [19], a function h(x)

defined in this space on the interval
[

x1 x2
]

can be
approximated as

h(x) =
m∑

i=1

aiϕi (x) + εm(x) (2)

where the set
{
ϕ1(x) . . . ϕm(x)

}
forms an orthogonal

basis and εm(x) is the approximation error. The coef-
ficient ai is calculated by

ai = 1

Ai

∫ x2

x1

h(x)ϕi (x)dx i = 0, 1, . . . , m (3)

∫ x2

x1

ϕi (x)ϕ j (x)dx =
{

0 i �= j
Ai i = j

(4)

The approximation error εm(x) is bounded in the sense
that

lim
m→∞

∫ x2

x1

ε2
m(x)dx = 0 (5)

Considering the interval [−1 1] and the inner product
(1), the Legendre polynomials (LPs) that are defined as

ϕ0(x) = 1 (6)

ϕ1(x) = x (7)

(i + 1)ϕi+1(x) = (2i + 1)xϕi (x) − iϕi−1(x)

i = 1, . . . , m − 1 (8)

form an orthogonal basis [19]. Thus, a function h(x)

defined on the interval [−1 1] can be approximated
using LPs in the form of (2) in which the coefficients
ai i = 0, 1, . . . , m are calculated according to (3)
and (4) and the polynomials ϕi (x) i = 0, 1, . . . , m
are given by (5)–(8).

Remark 1 The most important problem in applying
orthogonal functions to control systems is that the
function h(x) is not available. Thus, the coefficients
ai i = 0, 1, . . . , m cannot be calculated according to
(3) and (4), since h(x) is unknown. In control systems,
these coefficients are adjusted online using adaptation
laws derived from the stability analysis. In Sect. 4, this
issue will be explained with more details.

Remark 2 Another important issue about using orthog-
onal functions for function approximation in control
systems may be the fact that the functions ϕi (x) are
mutually orthogonal just on the interval [−1 1]. Out

of this interval, the functions ϕi (x) may not be mutu-
ally orthogonal. However, the uncertain functions that
should be estimated in robust and adaptive control
systems are generally functions of the variable time
which may increase to infinity and cannot be limited to
the interval [−1 1]. To solve this problem, we can let
x = sin(ωt) in which ω is a predefined constant [27].

3 A conventional robust control approach
using VCS

According to [10], the robotic system including manip-
ulator and permanent magnet dc motors can be descri-
bed by the following nonlinear state space equation.

Ż = F(Z) + [
0 0 L−1

]T
v (9)

in which Z = [
q q̇ Ia

]T
is the state vector, q ∈ Rn

is the vector of joint positions, q̇ ∈ Rn is the vector
of joint-space velocity, Ia ∈ Rn is the vector of motor
currents, L is the n × n diagonal matrices for the coef-
ficients of armature inductance and n is the number of
joints. The nonlinear vector function F(Z) is given by

F(Z) =

⎡
⎢⎢⎣

Z2

(Jmr−1 + rD(Z1))
−1(−(Bmr−1

+ rC(Z1, Z2))Z2 − rG(Z1) + KbZ3)

−L−1(Kbr−1Z2 + RZ3)

⎤
⎥⎥⎦

(10)

where D(Z1) is the n × n matrix of manipulator iner-
tia, C(Z1, Z2)Z2 ∈ Rn is the vector of centrifugal and
Coriolis torques, G(Z1) ∈ Rn is the vector of gravita-
tional torques and Jm, Bm and r are the n × n diago-
nal matrices for motor coefficients, namely the inertia,
damping and reduction gear, respectively. Also, v ∈ Rn

is the vector of motor voltages and R and Kb represent
the n×n diagonal matrices for the coefficients of arma-
ture resistance and back-emf constant, respectively. In
this paper, it is assumed that the nonlinear vector func-
tion F(Z) is unknown.

The position and velocity in the task space are
denoted by X ∈ R3 and Ẋ ∈ R3, respectively. The
Jacobian matrix J(q) ∈ R3×n relates the joint-space
velocity vector q̇ to the task-space velocity vector Ẋ as

Ẋ = J(q)q̇ (11)
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Consider the electrical equation of geared permanent
magnet DC motors in the matrix form [10]

RIa + Lİa+Kbr−1q̇ + ϕ = v (12)

where ϕ ∈ Rn is a vector of external disturbances. One
can easily obtain from (3) that q̇ = J−1(q)Ẋ. In this
paper, it is assumed that the manipulator operates in a
region where J−1(q) is nonsingular. Thus, the voltage
Eq. (12) can be rewritten as

RIa + Lİa+Kbr−1J−1(q)Ẋ + ϕ = v (13)

Assume that K̂b, r̂ and Ĵ(q) are the nominal values of
Kb, r and J(q), respectively. By adding and subtracting
K̂br̂−1Ĵ−1(q)Ẋ, the voltage Eq. (13) can be given by

K̂br̂−1Ĵ−1(q)Ẋ + F(t) = v (14)

where F(t) is the lumped uncertainty. From (13) and
(14), it follows that

F(t) = RIa + Lİa+Kbr−1J−1(q)Ẋ

+ϕ − K̂br̂−1Ĵ−1(q)Ẋ (15)

As mentioned before, the uncertainty bound is required
in most robust control approaches. Thus, it is assumed
that the lumped uncertainty F(t) in (15) is bounded
as ‖F(t)‖ ≤ η(t) in which the scalar function η(t) is
given by

η(t) = ‖R‖ ‖Ia‖ + ‖L‖ ∥∥İa
∥∥+

∥∥∥Kbr−1J−1

− K̂br̂−1Ĵ−1
∥∥ ∥∥Ẋ

∥∥ + ‖ϕ‖ (16)

Propose a robust control law for the system (14) as

K̂br̂−1Ĵ−1(q)(Ẋd + KpX̃) + ur = v (17)

where X̃ = Xd − X is the tracking error in the task
space, Xd is the desired trajectory, Kp is a diagonal
matrix of positive proportional gains and ur is a robus-
tifying control term which is determined later. In order
to prove the system stability, consider the following
assumptions.

Assumption 1 The desired trajectory is smooth in the
sense that Xd and its derivatives up to a necessary order
are available and all uniformly bounded [10].

Assumption 2 The manipulator operates in a region
where J−1(q) is nonsingular.

Theorem 1 If the control law (17) is applied to the sys-
tem (14), then tracking error X̃ will asymptotically con-
verge to zero and the state vector Z in (9) is bounded.

Proof Using Eqs. (14) and (17), the closed-loop system
is given by

˙̃X + KpX̃ = Ĵ(q)K̂−1
r (F − ur) (18)

where K̂r = K̂br̂−1. Consider the following positive
definite scalar function

L = 1

2
X̃T X̃ (19)

Its time derivative is given by

L̇ = X̃T ˙̃X (20)

Substituting for ˙̃X from (18) into (20) yields

L̇ = −X̃T KpX̃ + X̃T ĴK̂
−1
r F(t) − X̃T ĴK̂

−1
r ur (21)

The upper bound of F(t) is η(t). Thus, it follows from
(21) that

L̇ ≤−X̃T KpX̃ +
∥∥∥X̃T ĴK̂

−1
r

∥∥∥ η(t) − X̃T ĴK̂
−1
r ur (22)

Propose the robustifying term ur as [4]

ur = yη

‖y‖ + λe−βt
(23)

in which λ and β are positive constants and y is
given by

y = ημT ,μ = X̃T ĴK̂
−1
r (24)

Substituting (23) and (24) into (22) yields

L̇ ≤ −X̃T KpX̃ + ‖μ‖ η − μyη

‖y‖ + λe−βt
(25)

Suppose that Kp is of the form

Kp = kpIn (26)

123



Robust task-space control of robot manipulators using LPs 1155

where In is the n ×n identity matrix. With little manip-
ulations, (25) can be rewritten as

L̇ + 2kp L ≤ ‖y‖ λe−βt

‖y‖ + λe−βt
(27)

According to the fact that ab
a+b < a ∀a, b > 0, (27) can

be simplified as

L̇ + 2kp L ≤ λe−βt (28)

which implies that the tracking error X̃ is bounded and
asymptotically converges to zero [4]. Consequently,
ur in (23) is bounded, since μ and y in (24) are
bounded. Therefore, the control effort v defined by (17)
is bounded. According to a proof given by [16], when
the motor voltages are bounded, the joint velocity q̇
and the motor currents Ia are bounded. Using Assump-
tions 1 and 2 and boundedness of ur and F(t), it can
be concluded from the closed-loop system (18) that the
task-space velocity vector Ẋ is bounded. Since q̇ =
J−1(q)Ẋ, it follows that q(t) = ∫ t

0 J−1(q)Ẋdt + q(0).
Therefore, for finite operational times, the joint posi-

tion q is bounded. Thus, the vector Z = [
q q̇ Ia

]T
is

bounded. �


4 The proposed control law

The robustifying term ur in (23) requires the uncer-
tainty bound η. According to (16), η is a function of the
motor currents Ia, its time derivative İa and the task-
space velocity Ẋ. These signals should be measured and
fed back to the controller. In most real-time applica-
tions, the motor current and its time derivative are con-
taminated by noise. Thus, using them in the control law
may degrade the controller performance. Moreover,
the maximum values of ‖R‖ , ‖L‖ ,

∥∥Kbr−1J−1−
K̂br̂−1Ĵ−1

∥∥∥ and ‖ϕ‖ are needed. To solve these prob-

lems, the uncertainty bound η is estimated via LPs in
this paper.

The closed-loop system (18) can be rewritten as

K̂rĴ(q)−1(
˙̃X + KpX̃) = (F − ur) (29)

According to the orthogonal function theorem [19], the
uncertainty bound η(t) in (16) can be estimated by a
Legendre polynomial as

η̂(t) = P̂T ξ(t) (30)

in which the vector P̂ = [
â0 â1 · · · âm

]T
is estima-

tion of the vector and P∗ = [
a0 a1 · · · am

]T
and

ai i = 0, 1, . . . , m are the optimal values of Legen-
dre coefficients which minimizes the estimation error∣∣η − η̂

∣∣. In order to derive the adaptation law of P̂, con-
sider the following positive definite function.

L = 1

2
X̃T X̃ + P̃T P̃

2γ
(31)

where P̃ = P∗ − P̂. Its time derivative is given by

L̇ = X̃T ˙̃X − P̃T ˙̂P
γ

(32)

Substituting for ˙̃X from (18) into (32) yields

L̇ = −X̃T KpX̃ + X̃T ĴK̂
−1
r F(t) − X̃T ĴK̂

−1
r ur − P̃T ˙̂P

γ

(33)

The upper bound of F(t) is η(t). Thus, it follows from
(33) that

L̇ ≤−X̃T KpX̃+
∥∥∥X̃T ĴK̂

−1
r

∥∥∥ η(t)−X̃T ĴK̂
−1
r ur− P̃T ˙̂P

γ

(34)

Propose ur as [4]

ur = ŷη̂∥∥ŷ
∥∥ + λe−βt

(35)

in which λ and β are positive constants and ŷ is
given by

ŷ = η̂μT ,μ = X̃T ĴK̂
−1
r (36)

Substituting (35) and (36) into (34) yields

L̇ ≤−X̃T KpX̃ + ‖μ‖ η(t) − μ
ŷη̂∥∥ŷ

∥∥ + λe−βt
− P̃T ˙̂P

γ

(37)
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which can be rewritten as

L̇ ≤ −X̃T KpX̃ + ∥∥ŷ
∥∥ − μŷη̂∥∥ŷ

∥∥ + λe−βt

+‖y‖ − ∥∥ŷ
∥∥ − P̃T ˙̂P

γ
(38)

In other words,

L̇ ≤ −X̃T KpX̃ + ∥∥ŷ
∥∥ − μŷη̂∥∥ŷ

∥∥ + λe−βt

+‖μ‖ P̃T ξ − P̃T ˙̂P
γ

(39)

It follows from (39) that

L̇ ≤ −X̃T KpX̃ +
∥∥ŷ

∥∥ λe−βt∥∥ŷ
∥∥ + λe−βt

+ ‖μ‖ P̃T ξ − P̃T ˙̂P
γ

(40)

Consider the following adaptation law

˙̂P = γ ‖μ‖ ξ (41)

Thus, (40) will be simplified as

L̇ ≤ −X̃T KpX̃ + λe−βt (42)

which implies that the tracking error X̃ asymptotically
converges to zero [4] and the vector P̂ is bounded.
According to the reason presented in Sect. 2, one

can conclude that the state vector Z = [
q q̇ Ia

]T
is

bounded.
Thus, the proposed control law is given by

K̂br̂−1Ĵ−1(q)(Ẋd + KpX̃) + ur = v (43)

where ur is defined in (35) and (36). The estimated
uncertainty bound η̂ is given by (30) in which P̂ is
adjusted using the adaptation law (41).

Remark 3 In many task-space control approaches
based on the TCS [1–3], some adaptation laws are
required for the manipulator dynamical and kinemat-
ical parameters. While the proposed control method
does not require such adaptation laws. Thus, it results
in a simpler controller with less computational load
which reveals the superiority of VCS.

Remark 4 Suppose that we are interested in applying
adaptive fuzzy systems instead of LPs to estimate the
uncertainty bound η(t). According to [10], the closed
loop (18) implies that the uncertainty F is a function

of X̃, ˙̃X and q. Thus, its bound can be considered as a
function of these variables and the fuzzy system design
for estimation of η(t) requires these feedbacks as its
inputs. Because of kinematical uncertainties, we are not
allowed to use Ẋ = Ĵ(q)q̇. Thus, measuring the signal
Ẋ needs an additional sensor. However, the proposed
control law which applies LPs requires feedbacks of q
and X.

Remark 5 Other orthogonal functions such as Cheby-
shev and Bessel polynomials can be similarly applied
using the proposed control scheme instead of LPs. Just
their inner product and basis functions are different.

5 Simulation results

The proposed control law (43) is simulated using a
SCARA robot manipulator with the symbolic repre-
sentation shown in [28]. The Denavit–Hartenberg (DH)
parameters [28] of the SCARA robot and its dynam-
ical parameters are given in Tables 1 and 2, respec-
tively. The parameters of permanent magnet dc motors
are given in Table 3. In the simulations, the arm which
consists of the first three joints is used to perform the
proposed task-space control law and the fourth joint is
locked [29]. The maximum voltage of each motor is set
to umax = 40 V.

In order to have better comparisons between differ-
ent controllers, the following cost function is defined.

C f =
∫ 6

0

∥∥∥X̃(t)
∥∥∥ dt (44)

Table 1 Denavit–Hartenberg parameters

link θ (rad) d (m) a (m) α (rad)

1 θ1 0 a1 = 0.621 0

2 θ2 0 a2 = 1.064 π

3 0 d3 0 0

4 θ4 d4 = 0.05 0 0

123



Robust task-space control of robot manipulators using LPs 1157

Table 2 Dynamical parameters

link xi yi zi mi Ixxi Iyyi Izzi Ixyi Ixzi Iyzi

1 −0.308 −0.001 −0.14 95.23 1.62 7.31 7.6 0.02 −0.002 0.0001

2 −0.674 0.001 −0.19 158.09 3.74 22.64 21.68 0.0135 2.1 −0.001

3 0 0 −0.54 16.62 1.63 1.63 0.04 0 −0.0004 0

4 0 0 −0.025 0.106 0 0 0 0 0 0

Table 3 Motor parameters

Motor R km = kb Jm Bm r L vmax

1, 2, 3 1.26 0.26 0.0002 0.001 0.01 0.001 40

Simulation 1 The performance of conventional robust
control (17) using the robust term (23) and the bound
of uncertainty (17) is illustrated. The desired trajectory
in the task space is defined as

Xd = [
0.75 − 0.1 cos

(
π t
3

)
0.75 − 0.1 sin

(
π t
3

)
0
]T

(45)

The external disturbance is a step function with ampli-
tude 1 V which is applied to all motors at t = 4 s.
The amplitude of the external disturbance has been
selected according to the amplitude of the control sig-
nal in the steady state which is approximately 5 V.
Thus, the external disturbance amplitude is 20 % of
the motor voltages. To consider the kinematical uncer-
tainties, Ĵ(q) is selected as Ĵ(q) = 0.8J(q). More-
over, it is assumed that the motor parameter K̂r has
been estimated as K̂r = 0.9Kr. The proportional gain
Kp plays an important role in the controller perfor-
mance. In order to make the steady-state tracking error
as small as possible, large values should be selected.
On the other hand, a large value for Kp may result in
large control signal at the initial time and will dam-
age the system. To solve this trade-off problem, Kp is
proposed as

y(t) =
{

5 + 146.25t2 − 48.75t3 0 ≤ t ≤ 2
200 t > 2

Kp(t) = y(t)I3

(46)

The scalar function y(t) has been plotted in Fig. 1. The
parameters λ and β in (23) are set to 1. The maximum

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

220

Time (sec)

K
p

The proportional gain Kp

Fig. 1 Proportional gain Kp

values for‖R‖ , ‖L‖and ‖ϕ‖ have been considered as
1.3, 0.002 and 2, respectively. Figure 2 illustrates the
control efforts which are satisfactory. The motor volt-
ages are smooth and under the maximum permitted
voltage. The tracking performance in the xy plane is
shown in Fig. 3, and the task-space tracking errors are
presented in Fig. 4. In this simulation, C f = 0.03797.

Simulation 2 The performance of the proposed con-
trol law (43) is evaluated. All the controller parame-
ters are the same as Simulation 1. The parameter γ in
(41) has been selected as γ = 1,000, and the initial
values of the LPs have been selected randomly. The
uncertainty bound η(t) is estimated according to (30)
in which P̂ is adjusted online using the adaptation law
(41). In order to make the estimation error

∣∣η − η̂
∣∣ as

small as possible, we should increase the number of
orthogonal functions in the vector ξ. In this paper, 11
terms have been selected [18]. According to Remark 2,
in order to make x limited to the interval [−1 1], we
have selected it as x = sin(2t). Figure 5 illustrates
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Fig. 3 Tracking performance in the xy plane in Simulation 1

the tracking performance in the xy plane, and Fig. 6
shows the end-effector tracking errors which are satis-
factory. The control efforts are presented in Fig. 7. As
shown in this figure, motor voltages are smooth and do
not exceed the maximum permitted voltages. Variation
and adaptation of the Legendre coefficients are pre-
sented in Fig. 8 which implies that these coefficients
are bounded. For this controller, C f = 0.03709.

According to [18], 11 terms for ξ is sufficient and
simulation results verify that there is no need to increase
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Fig. 4 Task-space tracking errors in Simulation 1
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Fig. 5 Tracking performance in the xy plane in Simulation 2

the number of LPs. However, we increased the size of
ξ to 13, 15, 17 and 19 in order to evaluate its estimat-
ing effects. The cost function C f was approximately
0.03709 for all simulations. On the other hand, increas-
ing the convergence rate γ plays more important role
in reducing the task-space tracking error and C f . For
example, if γ = 8,000, the cost function C f reduces
to 0.02589.

In order to evaluate the effect of parametric uncer-
tainty, we have simulated the case Ĵ(q) = 0.5J(q) and
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Fig. 6 Task-space tracking errors in Simulation 2
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Fig. 7 Control efforts in Simulation 2

K̂r = 0.25Kr. The tracking performance in XY plane
and motor voltages have been displayed in Figs. 9 and
10. Although parametric uncertainty is increased, these
figures indicate that the controller robustness is satis-
factory. The cost function C f for this case increases to
0.06892.

Estimating effect of the uncertainties: suppose
that the robust term ur in (35) is set to zero. Then, the
cost function C f increases from 0.03709 to 0.06941.
This shows the effectiveness of proposed method.

A comparison between the conventional robust con-
trol and proposed control Comparing results in Simu-
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Fig. 8 Variations of Legendre coefficients in Simulation 2

0.6 0.7 0.8 0.9
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

X (m)

Y
 (m

)

Desired trajectory

Robot path

Fig. 9 Tracking performance in xy plane for increased paramet-
ric uncertainty in Simulation 2

lations 1 and 2 show that there is no significant differ-
ence between them. However, the superiority of the pro-
posed control approach is that the number of required
feedbacks is less than ones in the conventional robust
control law. Thus, the proposed control is simpler and
less computational.

Simulation 3 A comparison between the adaptive
control [3] and proposed control The control laws in
both approaches calculate the motor voltages. How-
ever, the control approach in [3] is based on the linear
parameterization of the manipulator dynamics. Thus,
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Fig. 10 Control efforts for increased parametric uncertainty in
Simulation 2
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Fig. 11 Tracking performance in the xy plane for adaptive Jaco-
bian tracking controller [3]

the structures of manipulator inertia matrix, centrifu-
gal and Coriolis torques and the vector of gravitational
torques must be available to obtain the regressor matrix.
In contrast, the design approach in this paper is based
on the VCS which is simpler due to its independency
from manipulator dynamics. The tracking performance
of [3] in xy plane and motor voltages have been pre-
sented in Figs. 11 and 12, respectively.
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Fig. 12 Control efforts for adaptive Jacobian tracking controller
[3]

For this controller, the cost function C f shows
0.0907 which is greater than the cost function 0.03709
for the proposed approach. In the adaptive control
approach [3], manipulator dynamical and kinemati-
cal parameters and also actuator model parameters
should be estimated using adaptation laws. As shown
in Fig. 12, if the initial values of these parameters are
selected randomly, the initial values of motor voltages
may exceed the maximum permitted limit and actuator
saturation happens which is not desirable, while ran-
dom selection of Legendre coefficients in the proposed
approach did not result in actuator saturation.

6 Conclusion

Based on the TCS, some control approaches have been
presented for robust tracking control of robot manip-
ulators in the task space. These control algorithms are
based on the linear parameterization property of the
robot motion equation and drive some adaptation laws
for the kinematical and dynamical parameters of the
robot manipulator. As a result, the robot motion equa-
tion should be completely modeled in these approaches
which may be a difficult task. In contrast, using VCS
considerably simplifies robot control problems, since
it is free from manipulator model.

Conventional robust control approaches require the
uncertainty bound as a function of the system states
and the upper bound of external disturbances. Provid-
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ing the controller with some of these feedbacks may be
expensive or impossible. Applying function approx-
imation techniques for estimation of the uncertainty
bound eliminates the need for additional sensors and
simplifies the control law. In this paper, LPs were used.
Simulation results imply that the performances of the
two discussed control laws are the same. However, the
superiority of using function approximation techniques
is in the number of needed feedbacks which is less than
that of a conventional robust control approach.
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