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Abstract Homoclinic bifurcation for a nonlinear
inverted pendulum impacting between two rigid walls
under external quasiperiodic excitation is analyzed.
The results for the homoclinic bifurcation of quasi-
periodically excited smooth systems obtained by Ide
and Wiggins are extended to the non-smooth ones.
We present a method of Melnikov type to derive suf-
ficient conditions under which the perturbed stable
and unstable manifolds intersect transversally. Such
a transversal Intersection implies the appearance of
Smale horseshoe-type chaotic dynamics that is simi-
lar to that in the periodically forced smooth systems.
As an application, by using a combination of analyti-
cal and numerical methods, a quasiperiodically excited
impact oscillator of Duffing type with two frequencies
is studied in detail.
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1 Introduction

Many problems from mechanics, electrical engineer-
ing, and control theory are modelled by piecewise
smooth (PWS) dynamical systems. As a result, the
study of bifurcation phenomena in those systems
has become very popular in recent years. Like for
smooth systems, it is very important to investigate
the appearance of chaos for PWS systems. A typ-
ical route to chaos for PWS systems is through
discontinuity-induced bifurcations, such as grazing,
sliding, chattering, and border collision. There are
many works on this subject. See, for example, the
monographs [1–6] and the survey articles [7–12],
and the references therein.

For many smooth systems, a common route to chaos
is via homoclinic bifurcation. The Melnikov method
is a powerful tool to deal with this kind of problems
[4,13–19]. It is then natural to ask whether the Mel-
nikov method established for smooth systems used
to analyze subharmonic and homoclinic bifurcations
can be extended to PWS systems. Many efforts have
been made on this problem. To mention only a few of
them, see [1,6,20–25]. All of those works assume that
the unperturbed homoclinic or periodic orbit intersects
the discontinuity surface transversally. In recent years,
more attentions have been paid to the more interesting
and difficult cases of bifurcations of sliding and graz-
ing homoclinic orbits. In [4,26–29], Battelli, Fečkan,
Awrejcewicz et al. extended the Melnikov method to
bifurcation of sliding homoclinic orbits of general
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n-dimensional PWS systems, and for the first time, they
show rigorously the existence of Smale horseshoe-type
chaos in these systems. Grazing homoclinic bifurcation
for a nonlinear inverted pendulum impacting between
two rigid walls under external periodic excitation was
also studied in [30].

Since many systems are externally excited by more
than one frequency, systems under the action of quasi-
periodic or almost periodic force are often encountered
in real-world applications. Quasiperiodically forced
smooth systems have been well studied in the past
decades [17,31–35]. Particularly, in [17,31,32], Ide
and Wiggins applied the Melnikov method to analyze
homoclinic bifurcations of quasiperiodically forced
smooth systems. However, although there has been big
progress made in the study of homoclinic bifurcations
in periodically forced PWS systems, little work has
been done for quasiperiodically forced PWS systems.
It is worth noting that in [36], Avramov and Awre-
jcewicz studied almost periodically forced frictional
oscillations. They used the method of multiple scales to
derive the modulation equations and constructed Mel-
nikov function to study chaotic solutions of the system.
In [4,20,21,27–29], Battelli and Fečkan investigated
homoclinic bifurcations and chaos of quasiperiodically
or almost periodically forced PWS systems.

A class of the most studied PWS systems is impact
systems where a vibrator collides with one or more rigid
walls or another moving object. Being typical PWS sys-
tems, impact oscillators are found in many mechanical
systems, such as print hammers, rigid blocks, and walk-
ing machines. There are many interesting examples and
applications of impact oscillators given in [2,5,6].

Motivated by the works of Ide and Wiggins [17,
31,32], Battelli and Fečkan [4,20,21,27–29], in this
paper, we consider for the first time homoclinic bifur-
cation of the following quasiperiodically forced non-
linear impact system:

{
ẍ + g(x) = ε f (x, ẋ, t), as |x | < 1,

ẋ �→ −(1 − ερ)ẋ, as |x | = 1,
(1)

where |ε| ≤ ε0 � 1 for some ε0 > 0 and the difference
1 − ερ ∈ (0, 1] is the coefficient of restitution repre-
senting energy loss during impact. System (1) can be
used to model an inverted pendulum impacting on rigid
walls as depicted in Fig. 1. Let I = [−1, 1], μ > 0 be a
constant and Jμ = (−1 − μ, 1 + μ) ⊂ I . Assume that
functions f and g satisfy the following hypotheses:

Fig. 1 Inverted pendulum

(H1) g : Jμ → R is C2, where g(0) = 0, g′(0) <

0, g(x) 	= 0 for x ∈ I − {0}.
(H2) f : Jμ × R × R → R is C2 and quasiperiodic

in t with fundamental frequencies ω1, . . . , ωm ,
where m ≥ 2 is an integer. Hence, f (x, y, t) can
be written as f (x, y, θ1, . . . , θm) with θk = ωk t
for 1 ≤ k ≤ m. Thus, for each fixed (x, y) ∈
Jμ×R, f (x, y, θ1, . . . , θm) is 2π -periodic in each
of the θk coordinates for 1 ≤ k ≤ m.

Let ẋ = y. For ε = 0, the unperturbed system
describes a free impact oscillator and is equivalent to

ẋ = y, ẏ = −g(x), |x | < 1, (2)

y �→ −y, |x | = 1. (3)

By Hypothesis (H1), system (2) has a unique equilib-
rium at the origin O(0, 0) for x ∈ I , which is a saddle.
Considering the identification given by the impact rule
(3), the phase portrait of system (2–3) is qualitatively
the same as shown in Fig. 2. Note that the unperturbed
system (2–3) has a saddle at the origin O and two
homoclinic loops Γ+ = OAA′O and Γ− = OBB′O .
Here, A′, B ′ are the reflection points of A, B, respec-
tively. Clearly, Γ+ (respectively, Γ−) intersects x = +1
(respectively, x = −1) transversally.

The impact inverted pendulum (1) was proposed by
Chow et al. in [37,38]. It has been used in the modelling
of many mechanical devices, such as rings, rigid stand-
ing structures, and a mooring buoy. Hence, periodically
excited impact inverted pendulum has been extensively
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Fig. 2 Orbits of unperturbed system

studied for various choices of f and g [23,30,37–47].
In particular, in [23,45,46], the Melnikov methods for
homoclinic and subharmonic bifurcations established
for smooth systems were extended to be applicable
to the nonlinear impact inverted pendulum. Grazing
homoclinic bifurcation was also studied in [30]. How-
ever, to the best of our knowledge, there is still no result
on the study of homoclinic bifurcation of quasiperiodi-
cally excited impact inverted pendulum in the literature.
The purpose of this paper was to make some efforts on
this problem.

More precisely, we discuss the perturbation of the
homoclinic orbit Γ+. The discussion for Γ− is similar
and is omitted for brevity. Let S1 be the circle of period
2π , T m := S1 ×· · ·× S1 be the m-torus. Since system
(1) is quasiperiodically excited, we consider the orbits
of (1) and (2–3) in the region |x | < 1 in the space
{(x, y) | |x | < 1, y ∈ R} × T m . Then, system (2–3)
has a normally hyperbolic m-torus T0 := {(x, y) ∈
R

2, (θ1, . . . , θm) ∈ T m | (x, y) = (0, 0)} whose right
branch of (m +1)-dimensional stable manifold W s

0 and
unstable manifold W u

0 coincide along the homoclinic
manifold Γ+ × T m . Then, for sufficiently small |ε|, the
normally hyperbolic m-torus T0 persists, which has a
stable manifold W s

ε and an unstable manifold W u
ε . We

are interested in the question: under what conditions
the perturbed stable manifold W s

ε and unstable mani-
fold W u

ε intersect transversally? By the generalization
of the Smale–Birkhoff Homoclinic Theorem to the case
of orbits homoclinic to normally hyperbolic invariant
tori (Theorem 3.4.1 in [17, p. 322]), such a transversal
intersection implies the appearance of chaotic dynam-

ics that is similar to the Smale horseshoe chaos in peri-
odically forced system.

We extend the results for homoclinic bifurcation
of quasiperiodically excited smooth systems obtained
by Ide and Wiggins [17,31,32] to the general nonlin-
ear quasiperiodically excited impact inverted pendu-
lum (1). We present a method of Melnikov type to
derive sufficient conditions under which the perturbed
stable manifold W s

ε and unstable manifold W u
ε inter-

sect transversally. Compare to the works [17,31,32],
the main difficulty in our work is that, for system (1), in
order to estimate the gap between W s

ε and W u
ε , we must

estimate the time and velocity at which the orbit of (1)
reaches the walls |x | = 1. This is overcome by using
the perturbation method. As an application, by using
a combination of analytical and numerical methods, a
quasiperiodically excited impact inverted pendulum of
Duffing type with two frequencies is studied in detail.

This paper is organized as follows. We introduce
the Poincaré section and the Poincaré map for system
(1) and present a method of Melnikov type to derive
sufficient conditions under which W s

ε and W u
ε intersect

transversally in Sect. 2. In Sect. 3, we apply this method
to discuss the bifurcations of homoclinic loops for a
quasiperiodically excited impact oscillator of Duffing
type with two frequencies. Numerical simulations of
this system are given in Sect. 4. Finally, discussion and
some concluding remarks are given in Sect. 5.

2 Melnikov method

By (H2), for each fixed (x, y) ∈ Jμ×R, f (x, y, θ1, θ2,

. . . , θm) can be viewed as a function on the m-torus
T m . Thus, system (1) is equivalent to the following
suspended system

ẋ = y
ẏ = −g(x) + ε f (x, y, θ1, . . . , θm)

θ̇1 = ω1
...

θ̇m = ωm

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

as |x | < 1,

(4)

y �→ −(1 − ερ)y as |x | = 1, (5)

where (θ1, . . . , θm) ∈ T m . The solution of (4) with the
initial conditions x = x0, y = y0, θ1 = θ10, . . . , θm =
θm0 is denoted by x = x(t; x0, y0, θ10, . . . , θm0),
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y = y(t; x0, y0, θ10, . . . , θm0). For ε = 0, the unper-
turbed system is given by

ẋ = y
ẏ = −g(x)

θ̇1 = ω1
...

θ̇m = ωm

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

as |x | < 1, (6)

y �→ −y as |x | = 1. (7)

By (H1–H2), system (6–7) has a normally hyper-
bolic m-torus T0 := {(x, y) ∈ R

2, (θ1, . . . , θm) ∈
T m | (x, y) = (0, 0)} whose right branch of (m + 1)-
dimensional stable and unstable manifolds W s

0 and W u
0

coincides along the homoclinic manifold Γ+ ×T m . By
Proposition 4.1.5 in [17, p. 354], for sufficiently small
ε, the perturbed system (4–5) has a normally hyper-
bolic m-torus Tε, which has (m + 1)-dimensional C2

stable and unstable manifolds W s
ε and W u

ε .
Because of the nature of the vector field (4–5), in

order to study the perturbation of the right homoclinic
orbit Γ+, the Poincaré section is taken to be the follow-
ing set

Σ = {(x, y, θ1, . . . , θm) ∈ I × R × S1 × · · · × S1 |
x = 1, y > 0} = R

+ × T m .

Let

Σ− = {(x, y, θ1, . . . , θm) ∈ I × R × S1 × · · · × S1 |
x = 1, y < 0} = R

− × T m .

Elements in both Σ and Σ− are denoted by (y, θ1, . . . ,

θm). The Poincaré map P : Σ �→ Σ is defined as
follows. Consider a point (y0,Θ0) ∈ Σ , where Θ0 :=
(θ10, . . . , θm0). It is immediately mapped to (−(1 −
ερ)y0,Θ0) ∈ Σ− by the impact law (5). Then, under
the flow of system (4), it returns to Σ after a free flight
of duration τ(y0,Θ0). Then,

P(y0,Θ0) = (y(τ (y0,Θ0); 1,−(1 − ερ)y0,Θ0),

(ω1τ(y0,Θ0) + θ10)(mod T1),

. . . , (ωmτ(y0,Θ0) + θm0)(mod Tm)),

where Ti = 2π/ωi for i = 1, . . . , m.
For any (θ10, . . . , θm0) ∈ T m and sufficiently

small ε, a branch of the unstable (respectively, sta-
ble) manifold W u

ε (respectively, W s
ε ) intersects Σ

(resp. Σ−) in a m-dimensional manifold, denoted
by Δu

ε (θ10, . . . , θm0) (respectively, Δs
ε(θ10, . . . , θm0)).

The point (θ10, . . . , θm0) ∈ T m can be viewed as
parameters along the unperturbed homoclinic manifold

Γ+ × T m . Moreover, the impact rule (5) defines a 1–1
map I : Σ → Σ− such that

(y, θ1, . . . , θm) �→ (−(1 − ερ)y, θ1, . . . , θm).

Hence, the manifold Δs
ε(θ10, . . . , θm0) is the image of

the map I of the manifold −(1 − ερ)−1Δs
ε(θ10, . . . ,

θm0) on Σ . The separation between W s
ε and W u

ε in Σ

is given by

Δε(θ10, . . . , θm0) = Δu
ε (θ10, . . . , θm0)

+ 1

1 − ερ
Δs

ε(θ10, . . . , θm0), (8)

where (θ10, . . . , θm0) ∈ T m . If Δε(θ10, . . . , θm0)

has no zeros, then W s
ε and W u

ε do not intersect,
while if Δε(θ10, . . . , θm0) has simple zeros, then W s

ε

and W u
ε intersect transversally. If Δε(θ10, . . . , θm0)

has quadratic zeros, then W s
ε and W u

ε intersect with
quadratic tangencies. By the generalization of the
Smale–Birkhoff Homoclinic Theorem to the case of
orbits homoclinic to normally hyperbolic invariant tori
(Theorem 3.4.1 in [17, p. 322]), if W s

ε intersects W u
ε

transversally, then the Poincaré map P : Σ �→ Σ

possesses transversal homoclinic torus, implying the
appearance of chaotic dynamics that is similar to the
Smale horseshoe chaos in periodically forced system.

Usually, it is impossible to find a closed form of the
separation Δε(θ10, . . . , θm0). It has to be approximated
by perturbation methods. Since W s

ε and W u
ε are C2 in

ε under Hypotheses (H1) and (H2), Δu
ε (θ10, . . . , θm0),

Δs
ε(θ10, . . . , θm0) and Δε(θ10, . . . , θm0) are all C2

in ε from the way they are defined. Suppose that
Δu

ε (θ10, . . . , θm0) and Δs
ε(θ10, . . . , θm0) have the fol-

lowing Taylor expansions near ε = 0:

Δu
ε (θ10, . . . , θm0) = Mu

0 (θ10, . . . , θm0)

+ Mu
1 (θ10, . . . , θm0)ε + O(ε2),

(9)

Δs
ε(θ10, . . . , θm0) = Ms

0(θ10, . . . , θm0)

+ Ms
1(θ10, . . . , θm0)ε + O(ε2).

(10)

Clearly Mu
0 (θ10, . . . , θm0) ≡ −Ms

0(θ10, . . . , θm0) ≡√−2G(1), where

G(x) :=
∫ x

0
g(s)ds, x ∈ J.

Hence, from (8)–(10), we obtain

Δε(θ10, . . . , θm0) = M1(θ10, . . . , θm0)ε + O(ε2),

(11)
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where M1(θ10, . . . , θm0) is called the first-order Mel-
nikov function and is given by

M1(θ10, . . . , θm0)=−ρ
√−2G(1)+Mu

1 (θ10, . . . , θm0)

+ Ms
1(θ10, . . . , θm0). (12)

Similar to Theorem 2.2 of [32], we obtain the following
result:

Theorem 1 Let ∇M1 be the gradient of M1(θ10, . . . ,

θm0). If M1(θ10, . . . , θm0) has a simple zero
(θ̄10, . . . , θ̄m0), namely M1(θ̄10, . . . , θ̄m0) = 0 and
∇M1(θ̄10, . . . , θ̄m0) 	= 0, then for sufficiently small
ε > 0, the perturbed manifolds W s

ε and W u
ε intersect

transversally in Σ near (θ̄10, . . . , θ̄m0). Furthermore, if
∇M1(θ10, . . . , θm0) 	= 0 for all (θ10, . . . , θm0) ∈ T m,
then this zero of M1(θ10, . . . , θm0) can be continued to
a m-dimensional transverse homoclinic torus.

Now, we describe how to compute the first-order
Melnikov function M1(θ10, . . . , θm0). Select Pu

0 :
(xu

0 (0), yu
0 (0)) and Ps

0 : (xs
0(0), ys

0(0)) on the unper-
turbed (i.e., ε = 0) unstable manifold W u

0 and sta-
ble manifold W s

0 of the saddle O of (4), respectively,
such that 0 < xu

0 (0) < μ, 0 < xs
0(0) < μ. Let

γ u
0 : (xu

0 (t), yu
0 (t)) and γ s

0 : (xs
0(t), ys

0(t)) denote the
orbits of (4) for ε = 0 passing through Pu

0 and Ps
0 at

t = 0, respectively, which of course lie in W u
0 and W s

0 ,
respectively. Let τ u

0 and τ s
0 be the time at which the

orbits γ u
0 , γ s

0 reach the wall x = 1, respectively, i.e.,
xs

0(τ
s
0 ) = xu

0 (τ u
0 ) = 1. Clearly, when 1 < xu

0 (0) < μ

and 1 < xs
0(0) < μ, we have τ u

0 < 0 and τ s
0 > 0; when

0 < xu
0 (0) ≤ 1 and 0 < xs

0(0) ≤ 1, we have τ u
0 ≥ 0

and τ s
0 ≤ 0. Then, similar to the derivation given in

[23], we obtain

Theorem 2 Let xu
0 , yu

0 , xs
0, ys

0 and τ u
0 , τ s

0 be given
above. Then, the first-order Melnikov function
M1(θ10, . . . , θm0) is calculated by

M1(θ10, . . . , θm0) = −ρ
√−2G(1) + 1√−2G(1){∫ τ u

0

−∞
Fu(τ,Θ0)dτ +

∫ +∞

τ s
0

Fs(τ,Θ0)dτ

}
,

where

Fu(τ,Θ0) = f
(
xu

0 (τ ), yu
0 (τ ), ω1(τ − τ u

0 ) + θ10,

. . . , ωm(τ − τ u
0 ) + θm0)

)
yu

0 (τ ),

Fs(τ,Θ0) = f
(
xs

0(τ ), ys
0(τ ), ω1(τ − τ s

0 ) + θ10,

. . . , ωm(τ − τ s
0 ) + θm0)

)
ys

0(τ ).

The proof for Theorem 2 is similar to the proof for
Theorem 3.1 in [23] and thus is omitted here for brevity.

3 Impact duffing system

It is well known that Duffing’s equation has been
found in many mechanical problems [15, p. 82]. Thus,
naturally we consider the following quasiperiodically
forced impact Duffing system with two fundamental
frequencies:{

ẍ + εδ ẋ − x + x3 = ε
∑2

k=1 γk cos ωk t, |x | < 1,

ẋ �→ −(1 − ερ)ẋ, |x | = 1,

(13)

where ε ≥ 0, δ ≥ 0, γ1, γ2 > 0, ω1, ω2 > 0 and
ρ ≥ 0. Let y = ẋ , system (13) is equivalent to the
following system{

ẋ = y

ẏ = x − x3 + ε
(
−δy + ∑2

k=1 γk cos ωk t
)

,
as |x | < 1,

(14)
y �→ −(1 − ερ)y, as |x | = 1. (15)

When ε = 0, the phase portrait of the unperturbed
system of (14–15) is topologically equivalent to that
shown in Fig. 2. Take(
xu

0 (t), yu
0 (t)

)=
(√

2sech t,−√
2sech t tanh t

)
, t ∈ (−∞, 0],

(
xs

0(t), ys
0(t)

)=
(√

2sech t,−√
2sech t tanh t

)
, t ∈ [0,+∞).

Let κ = ln(
√

2 + 1). Then, τ u
0 = −κ , τ s

0 = κ . By
Theorem 2, we have

M1(θ10, θ20) = − ρ√
2

− 2δ

3

(
2
√

2 − 1
)

+ 4γ1 I (ω1) sin θ10

+ 4γ2 I (ω2) sin θ20, (16)

where θ10, θ20 ∈ [0, 2π ] and

I (ω) = ω

∫ +∞

0
sech (t + κ) cos(ωt)dt.

From (16), it is clear that if
ρ√
2

+ 2δ

3

(
2
√

2 − 1
)

< 4γ1 I (ω1) + 4γ2 I (ω2),

then the first-order Melnikov function M1(θ10, θ20) has
a simple zero. Thus, in the six-dimensional parameter
space (ρ, δ, γ1, γ2, ω1, ω2), the bifurcation set is given
by the five-dimensional surface

ρ√
2

+ 2δ

3

(
2
√

2 − 1
)

= 4γ1 I (ω1) + 4γ2 I (ω2). (17)

Since the left side of (17) is a linear combination of
ρ and δ with constant coefficients, without the loss of
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Fig. 3 Graph of I (ω) for ω > 0. ωm is the unique maximum of
I (ω)

generality, let α := ρ√
2

+ 2δ
3 (2

√
2 − 1), I1 := I (ω1)

and I2 := I (ω2) in the rest of the paper. Then, (17) can
be rewritten in the following form

−1

4
α + γ1 I1 + γ2 I2 = 0. (18)

As shown in Fig. 3, the function I (ω) has a unique
maximum ωm ≈ 0.930895866 with Im := I (ωm) ≈
0.376828848. Furthermore, I (ω) is strictly increas-
ing for ω ∈ (0, ωm) and strictly decreasing for ω ∈
(ωm,+∞). If α > 4(γ1 + γ2)Im , then M1(θ10, θ20) <

0, implying that for sufficiently small ε > 0, W s
ε

and W u
ε do not intersect. If α = 4(γ1 + γ2)Im , then

M1(θ10, θ20) has a unique zero θ10 = θ20 = π
2 if and

only if ω1 = ω2 = ωm . Furthermore, if ω1 = ω2 =
ωm , then ∇M1(

π
2 , π

2 ) = 0.
In the rest of the paper, we focus our attention

on the case α < 4(γ1 + γ2)Im . Clearly, for a given
value of (α, γ1, γ2), points in the I1 − I2 plane above
the line segment given by (18) inside the rectangle
D := {(I1, I2) ∈ R

2 | 0 ≤ I1, I2 ≤ Im} correspond
to transverse homoclinic tori. Let ω+(I ) (respectively,
ω−(I )) be the inverse function of I (ω) for ω ∈ (0, ωm)

(respectively, ω ∈ (ωm,+∞)). In the following, we
use the same method in [32] to represent the bifurca-
tion sets for the case α < 4(γ1 + γ2)Im in the ω1 − ω2

plane. Our discussion can be divided into nine cases
as follows, where for each case in the diagram of the

corresponding bifurcation set, the shaded area corre-
sponds to transverse homoclinic tori. Parameters cho-
sen from this area correspond to the chaotic behav-
ior of system (13), thus the area is called chaotic
zone.

(1) If 4Im max{γ1, γ2} < α < 4(γ1 + γ2)Im , then the
line (18) intersects ∂D at (Ih1, Im) and (Im, Iv1)

with 0 < Ih1, Iv1 < Im , where ∂D is the boundary
of D and

Ih1 = 1

γ1

(
1

4
α−γ2 Im

)
, Iv1 = 1

γ2

(
1

4
α−γ1 Im

)
.

The corresponding bifurcation set in the ω1 − ω2

plane is given in Fig. 4a. The corresponding chaotic
zone is denoted by C1.

(2) If γ1 > γ2 and α = 4Im max{γ1, γ2} = 4γ1 Im ,
then the line (18) intersects ∂D at (Im, 0) and
(Ih2, Im) with 0 < Ih2 = Im(γ1 − γ2)/γ1 < Im .
The corresponding bifurcation set in the ω1 − ω2

plane is given in Fig. 4b. The corresponding chaotic
zone is denoted by C2.

(3) If γ1 < γ2 and α = 4Im max{γ1, γ2} = 4γ2 Im ,
then the line (18) intersects ∂D at (0, Im) and
(Im, Iv3) with 0 < Iv3 = Im(γ2 − γ1)/γ2 < Im .
The corresponding bifurcation set in the ω1 − ω2

plane is given in Fig. 4c. The corresponding chaotic
zone is denoted by C3.

(4) If γ1 = γ2 and α = 4Im max{γ1, γ2} = 4γ2 Im =
4γ1 Im , then the line (18) intersects ∂D at (0, Im)

and (Im, 0). The corresponding bifurcation set in
the ω1 − ω2 plane is given in Fig. 4d. The corre-
sponding chaotic zone is denoted by C4.

(5) If γ1 > γ2 and 4γ2 Im < α < 4γ1 Im , then the
line (18) intersects ∂D at (Ih5A, 0) and (Ih5B, Im)

with 0 < Ih5A = α
4γ1

, Ih5B = Ih1 < Im . The
corresponding bifurcation set in the ω1 − ω2 plane
is given in Fig. 4e. The corresponding chaotic zone
is denoted by C5.

(6) If γ1 < γ2 and 4γ1 Im < α < 4γ2 Im , then the
line (18) intersects ∂D at (0, Iv6A) and (Im, Iv6B)

with 0 < Iv6A = α
4γ2

, Iv6B = Iv1 < Im . The
corresponding bifurcation set in the ω1 − ω2 plane
is given in Fig. 4f. The corresponding chaotic zone
is denoted by C6.

(7) If γ1 > γ2 and α = 4Im min{γ1, γ2} = 4γ2 Im , then
the line (18) intersects ∂D at (0, Im) and (Ih7, 0)

with 0 < Ih7 = γ2
γ1

Im < Im . The corresponding
bifurcation set in the ω1 − ω2 plane is given in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Bifurcation sets in ω1 − ω2 plane, the shaded area cor-
responds to transverse homoclinic tori. a 4Im max{γ1, γ2} <

α < 4(γ1 + γ2)Im . b γ1 > γ2 and α = 4γ1 Im . c γ1 > γ2
and α = 4γ1 Im . d γ1 = γ2 and α = 4γ1 Im . e γ1 > γ2 and

4γ2 Im < α < 4γ1 Im . f γ1 < γ2 and 4γ1 Im < α < 4γ2 Im .
g γ1 > γ2 and α = 4γ2 Im . h γ1 < γ2 and α = 4γ1 Im . i
0 < α < 4Im min{γ1, γ2}.

Fig. 4g. The corresponding chaotic zone is denoted
by C7.

(8) If γ1 < γ2 and α = 4Im min{γ1, γ2} = 4γ1 Im , then
the line (18) intersects ∂D at (Im, 0) and (0, Iv8)

with 0 < Iv8 = γ1
γ2

Im < Im . The corresponding
bifurcation set in the ω1 − ω2 plane is given in
Fig. 4h. The corresponding chaotic zone is denoted
by C8.
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Fig. 5 The intersections of W u
ε and W s

ε in Σ
θ20∗
θ1m ,θ1M

, where
γ1 = 1.1, γ2 = 1.0, ω1 = π

3 , ω2 = 0.7, ε = 0.04, δ = 1.6,

ρ = 0, [θ1m , θ1M ] = [− 7
6 π, 3

2 π ] and θ20∗ = 0.5π

(9) If 0 < α < 4Im min{γ1, γ2}, then the line (18)
intersects ∂D at (Ih9, 0) and (0, Iv9) with 0 <

Ih9 = α
4γ1

, Iv9 = α
4γ2

< Im . The corresponding
bifurcation set in the ω1 − ω2 plane is given in
Fig. 4i. The corresponding chaotic zone is denoted
by C9.

4 Numerical simulations

In this section, we present numerical simulations for
the impact Duffing system (13) to show the theoretical
results from the Melnikov method in Sect. 3. It is easy
to see that for the nine bifurcation sets described in
Sect. 3, by switching the roles of γ1 and γ2, cases (3),
(6), and (8) are the same as cases (2), (5), and (7),
respectively. Thus, we omit cases (3), (6), and (8) in the
numerical simulations for brevity. The computations
are implemented in MATLAB.

When performing numerical simulations for system
(13), it is important and difficult to detect the impact-
ing time and velocity accurately. We adopt an event-
driven method described in [2,48] for this purpose.
We implement this method by using the built-in event
detection routines along with the built-in ODE solvers
of MATLAB. In this way, we are able to detect the
impacting events as accurate as the accuracy of MAT-
LAB allows as suggested by Piiroinen and Kuznetsov
in [48].

We first describe how to plot the intersections of the
perturbed unstable manifold W u

ε and stable manifold
W s

ε in a fixed slice of the Poincaré section Σ given by

Σ
θ20∗
θ1m ,θ1M

={(y, θ1, θ2)∈Σ | θ1 ∈[θ1m, θ1M ], θ2 =θ20∗},
where θ1m, θ1M , and θ20∗ are constants, θ1M − θ1m ≥
T1. For this purpose, we modified the method for
the computation of stable and unstable manifolds of
hyperbolic trajectories in two-dimensional aperiodi-
cally time-dependent systems proposed by Mancho et
al. [49] so it is applicable to system (13). The algorithm
is described as follows.

The first step is to find the distinguished hyperbolic
trajectory ξDH T (t, ε) := (xDH T (t, ε), yDH T (t, ε))
of system (13) (see [49] for the definition), which
is the unique quasiperiodic orbit of (13) such that
ξDHT (t, ε) → (0, 0) uniformly for t ∈ (−∞,+∞)

as ε → 0. Thus we have

ξDHT (t, ε) = ε

2∑
k=1

γk

1 + ω2
k

(− cos ωk t, ωk sin ωk t) + ε2

2∑
k=1

δγkωk

(1 + ω2
k )

2
(sin ωk t, ωk cos ωk t) + O(ε3).

The second step is to approximate the local stable and
unstable manifolds. As described in [49], they are given
by the straight line segment between ξDHT (t, ε) and

Table 1 Parameters for
numerical simulation and
the largest Lyapunov
exponent λmax, where
γm ≈ 1.293904566. The
other parameters are fixed
as ρ = 0, ε = 0.04, δ = 1.6
and ω1 = π

3

Chaotic zone γ1 γ2 ω2 θ̄10 θ̄20 θ20 Δθ2 λmax

C1 1.1 1 0.7 0.5π 0.5π 5.9 0.1 0.042

C2 γm 1 0.5 0.5π 1.6 6.0 0.15 0.046

C4 γm γm 0.5 π
7 1 6.5 0.15 0.038

C5 1.5 1 0.4 0.5π 0.5π 6.6 0.3 0.066

C7 1.5 γm 0.3 0.4π 1.55 18.8 0.3 0.048

C9 1.6 1.5 0.3 π
3 1.5 12.55 0.25 0.073
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Fig. 6 Parameters are chosen from C1 with γ1 = 1.1, γ2 =
1, ω2 = 0.7 and θ̄10 = θ̄20 = 0.5π . a Convergent sequences of
the Lyapunov exponents, b the Poincaré map, c a projection of

the double Poincaré map on to the (θ1, y) plane, d a projection of
the Poincaré map on to the (θ1, θ2) plane and e on to the (θ1, y)

plane and f on to the (θ2, y) plane.

ξ
u,s
W (t, ε) = ξDHT (t, ε) + 1√

2
λ

(
eu,s(t) + O(ε2)

)
,

where eu(t) = (1, 1), es(t) = (−1, 1), λ is a parame-
ter that can be adjusted if necessary during the com-
putation. In the third step, the interval [θ1m, θ1M ] is
partitioned equally into N parts by θ1m = θ0

1 < θ2
1 <

· · · < θ N
1 = θ1M , where N is a sufficiently large posi-

tive integer. Then, for each θ
j

1 (0 ≤ j ≤ N ), we apply
the method described in [49] to compute W u

ε and W s
ε

in the time slice

Π
θ

j
1

:=
{
(x, y, t) ∈ R

3 | t = θ
j

1

}

until x = 1, and we obtain a point (1, y
θ

j
1
, θ

j
1 ) ∈ Π

θ
j

1
.

Consequently, for W u
ε , we obtain a point (y

θ
j

1
, θ

j
1 , θ20∗)

∈ Σ
θ20∗
θ1m ,θ1M

; for W s
ε , applying the impact law (15),

we obtain a point (−(1 − ερ)−1 y
θ

j
1
, θ

j
1 , θ20∗) ∈

Σ
θ20∗
θ1m ,θ1M

. By this method, we in fact approximated
the curves Δu

ε (θ1, θ20∗) and Δs
ε(θ1, θ20∗) defined in

Sect. 2. Clearly, if Δu
ε (θ1, θ20∗) and Δs

ε(θ1, θ20∗) inter-
sect transversally, then the two surfaces Δu

ε (θ1, θ2) and
Δs

ε(θ1, θ2) also intersect transversally, implying that
W u

ε and W s
ε intersect transversally.

For the sake of brevity, we only show one instance
of the computation. Take γ1 = 1.1, γ2 = 1.0, ω1 =
π
3 , ω2 = 0.7, ε = 0.04, δ = 1.6, ρ = 0, [θ1m, θ1M ] =
[− 7

6π, 3
2π ], θ20∗ = 0.5π . It is easy to check that

the parameters are in the chaotic zone C1, and the
result is shown in Fig. 5. As can be seen that the
two curves Δu

ε (θ1, θ20∗) and Δs
ε(θ1, θ20∗) intersect

transversally at θ1 ≈ 0.5389 and θ1 ≈ 2.6233, imply-
ing that W u

ε and W s
ε intersect transversally. Hence,

the result confirms the theoretical prediction given in
Sect. 3.

As pointed out in [33] and [35], since the Poincaré
map for system (13) is a three-dimensional map, the
fractal nature of the strange attractor of the map, if
it exits, is not evident. We adopt the double Poincaré
section technique proposed by Moon and Holmes in
[33] to overcome this difficulty as follows. Take a thin
section

Σθ20,Δθ2 = {(y, θ1, θ2) ∈ Σ | θ2 ∈ [θ20, θ20 + Δθ2]},
where Δθ2 is small. Then, the double Poincaré map
Pθ20,Δθ2 : Σθ20,Δθ2 → Σθ20,Δθ2 is well defined.
Furthermore, we compute the spectrum of Lyapunov
exponents for each case by the method for impact sys-
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Fig. 7 Parameters are chosen from C2 with γ1 = γm , γ2 =
1, ω2 = 0.5, θ̄10 = 0.5π and θ̄20 = 1.6. a Convergent sequences
of the Lyapunov exponents, b the Poincaré map, c a projection of

the double Poincaré map on to the (θ1, y) plane, d a projection of
the Poincaré map on to the (θ1, θ2) plane and e on to the (θ1, y)

plane and f on to the (θ2, y) plane.

Fig. 8 Parameters are chosen from C4 with γ1 = γ2 = γm , ω2 =
0.5, θ̄10 = π

7 and θ̄20 = 1. a Convergent sequences of the Lya-
punov exponents, b the Poincaré map, c a projection of the dou-

ble Poincaré map on to the (θ1, y) plane, d a projection of the
Poincaré map on to the (θ1, θ2) plane and e on to the (θ1, y) plane
and f on to the (θ2, y) plane.
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Fig. 9 Parameters are chosen from C5 with γ1 = 1.5, γ2 =
1, ω2 = 0.4 and θ̄10 = θ̄20 = 0.5π . a Convergent sequences of
the Lyapunov exponents, b the Poincaré map, c a projection of

the double Poincaré map on to the (θ1, y) plane, d a projection of
the Poincaré map on to the (θ1, θ2) plane and e on to the (θ1, y)

plane and f on to the (θ2, y) plane.

Fig. 10 Parameters are chosen from C7 with γ1 = 1.5, γ2 =
γm , ω2 = 0.3, θ̄10 = 0.4π and θ̄20 = 1.55. a Convergent
sequences of the Lyapunov exponents, b the Poincaré map, c

a projection of the double Poincaré map on to the (θ1, y) plane,
d a projection of the Poincaré map on to the (θ1, θ2) plane and e
on to the (θ1, y) plane and f on to the (θ2, y) plane.
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Fig. 11 Parameters are chosen from C9 with γ1 = 1.6, γ2 =
1.5, ω2 = 0.3, θ̄10 = π

3 and θ̄20 = 1.5. a Convergent sequences
of the Lyapunov exponents, b the Poincaré map, c a projection of

the double Poincaré map on to the (θ1, y) plane, d a projection of
the Poincaré map on to the (θ1, θ2) plane and e on to the (θ1, y)

plane and f on to the (θ2, y) plane.

tems presented in [50,51] to verify the chaotic motions
for the chosen parameters. It is elementary to prove
that one of the three Lyapunov exponents is zero.
Thus, we only need to compute the other two Lya-
punov exponents. To approximate the Poincaré map
P : Σ �→ Σ , the fourth-fifth-order Runge–Kutta–
Fehlberg method is chosen to solve system (13) for
|x | < 1.

Since the left side of (17) is a linear combina-
tion of ρ and δ with constant coefficients, without
the loss of generality, we fix ρ = 0 in this sec-
tion. We also fix ε = 0.04, δ = 1.6 and ω1 = π

3 .
Hence, α = ρ√

2
+ 2δ

3 (2
√

2 − 1) ≈ 1.950322266.

Let γm = α
4Im

≈ 1.293904566. Parameters γ1, γ2,
and ω2 are chosen from the chaotic zone for each
case, so that system (13) exhibits chaotic behavior. In
each case, we choose the values of θ̄10, θ̄20 and sim-
ulate an orbit of (13) starting from (x0 + 10−10, y0 +
10−10, θ̄10, θ̄20), where y0 = 0, x0 is the solution of the
equation

x0 − x3
0 − ε

(
γ1 cos θ̄10 + γ2 cos θ̄20

) = 0. (19)

Equation (19) is solved by the Newton–Raphson
method with initial guess x0

0 = 0. The Poincaré map
P : Σ �→ Σ is iterated for 180,000 times with the
first 2,000 iterations omitted for transients to decay.
In each case, we plot (a) the convergent sequences
in the iteration process of the spectrum of Lyapunov
exponents; (b) the three-dimensional Poincaré map
P : Σ �→ Σ ; (c) a projection of the double
Poincaré map Pθ20,Δθ2 : Σθ20,Δθ2 → Σθ20,Δθ2 on
to the (θ1, y) plane; (d) a projection of the Poincaré
map P : Σ �→ Σ on to the (θ1, θ2) plane and
(e) on to the (θ1, y) plane and (f) on to the (θ2, y)

plane.
In Table 1, the parameters chosen from the six

chaotic zones Ck (k = 1, 2, 4, 5, 7, 9) for numerical
simulations and the largest Lyapunov exponent λmax

are listed, where θ̄10 and θ̄20 are used to solve (19) to
obtain initial conditions, θ20 and Δθ2 are used to define
the double Poincaré map Pθ20,Δθ2 : Σθ20,Δθ2 →
Σθ20,Δθ2 . The results are shown in Figs. 6, 7, 8, 9, 10,
and 11. From Table 1 and the figures, it is easy to see
that for the chosen parameters for each chaotic zone, the
largest Lyapunov exponent is positive and the double
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Poincaré map has an attractor of fractal-like structure,
suggesting that the system is chaotic. Therefore, the
numerical experiments confirm our theoretical predic-
tions.

5 Discussion and remarks

In this paper, we discussed for the first time the homo-
clinic bifurcation of a quasiperiodically excited nonlin-
ear impact inverted pendulum. By using a method of
Melnikov type, we extended the results of Ide and Wig-
gins [17,31,32] for homoclinic bifurcation of quasi-
periodically excited smooth systems to the non-smooth
ones. We are able to give a criterion for the appearance
of Smale horseshoe-type chaotic dynamics of the sys-
tem.

As an important application, by using a combina-
tion of analytical and numerical methods, we studied a
quasiperiodically excited impact oscillator of Duffing
type with two frequencies in detail. We give a com-
plete description of the bifurcation sets and the chaotic
zones in the parameter space. Numerical simulations
have been performed for parameters chosen from the
chaotic zones. The numerical results confirm the theo-
retical predictions.

It is worth mentioning that in addition to the work
of Ide and Wiggins in [32], Parthasarathy also stud-
ied homoclinic bifurcation sets of quasiperiodically
excited Duffing oscillator with two frequencies in [52].
Compared to their works, the main difference here is
that the example considered in Sects. 3 and 4 is an
impact system, which is non-smooth, while the systems
studied in [32,52] are smooth. Hence, the expressions
for the corresponding Melnikov functions are quite dif-
ferent. As can be seen from (16) that the Melnikov func-
tion M1(θ10, θ20) computed in this paper involves in an
additional parameter ρ due to the impact law given in
(15), the integral I (ω) cannot be found analytically.
Consequently, the resulting bifurcation sets for sys-
tem (13) are different from those presented in [32,52].
Furthermore, the new feature of our work includes a
comprehensive numerical simulations to validate the
theoretical results, which is not a trivial task for non-
smooth systems.
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20. Battelli, F., Fečkan, M.: Homoclinic trajectories in discon-
tinuous systems. J. Dyn. Differ. Equ. 20, 337–376 (2008)
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