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Abstract Gradient dynamics systems and their expo-
nential convergence theories are investigated in this
paper. Differing from widely considered linear gradient
dynamics system (LGDS), a class of nonlinear gradi-
ent dynamics system (NGDS) is investigated with the
exponential convergence analyzed. As an application
to scalar square root finding, by defining six different
square-based nonnegative error-monitoring functions
(i.e., energy functions), six different NGDSs are the-
oretically designed and proposed in the form of first-
order differential equations. Moreover, inspired by the
exponential convergence theory of the LGDS, for each
of the six proposed NGDSs, the corresponding expo-
nential convergence theory is proved rigorously based
on Lyapunov theory. Numerical verification and com-
parison further illustrate the efficacy of the proposed
six NGDSs, in which the main differences and respec-
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tive usages, as well as the application background and
condition, are discussed in detail.
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1 Introduction

The gradient dynamics system (GDS) has now been
regarded as a powerful alternative for online compu-
tation [1–5], such as matrix inversion [6], linear and
nonlinear equations solving [7], in view of its high-
speed processing nature and its convenience of hard-
ware implementation in practical applications [8–13].
To effectively solve different linear and nonlinear prob-
lems, different classes of GDSs are thus obtained, i.e.,
the linear gradient dynamics systems (LGDSs) and the
nonlinear gradient dynamics systems (NGDSs). Note
that the LGDSs with application to online linear equa-
tions solving have been investigated by the previous
work [7,14]. However, to the best of the authors’ knowl-
edge, there exists few research on their exponential con-
vergence theories of NGDSs [7,15]. Motivated by this
reason, we thus design, propose and investigate differ-
ent NGDSs as well as their application.

Being a case of nonlinear equations solving, the
scalar square root finding in the form of x2 − a =
0 is considered to be a basic mathematical opera-
tion arising in a wide variety of scientific and engi-
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neering applications, such as mathematical analysis
[16–20], signal processing [21] and data regression
[22]. Moreover, a majority of current microprocessors
contain the square root implementation in the operation
set. These systems must support and evaluate the oper-
ation (i.e., the computation of the square root) accu-
rately and rapidly. Thus, many numerical algorithms
are developed and investigated for scalar square root
finding [23–25] and/or related to those used for divi-
sion [26,27]. As an application to the scalar square root
finding, in this paper, the corresponding NGDS is theo-
retically designed and proposed by defining the square-
based positive or at least lower-bounded function called
the energy function (EF). More specifically, by defin-
ing six different EFs as the error-monitoring func-
tions, six different NGDSs with each being depicted
in the first-order differential equation are elegantly
constructed to make the corresponding EFs exponen-
tially converge to zero. Moreover, inspired by the pre-
vious work [7], the detailed theoretical analyses on
exponential convergence of the proposed NGDSs are
given based on Lyapunov theory [28–32] for the first
time.

The rest of this paper is organized into the following
sections. In Sect. 2, the design method of a GDS based
on an EF is presented, and then, the exponential con-
vergence for the resultant LGDS and NGDS is inves-
tigated. Section 3 proposes six different NGDSs based
on six different EFs for scalar square root finding. The-
oretical analyses about the exponential convergence of
such proposed NGDSs are investigated in Sect. 4. Sec-
tion 6 concludes this paper with final remarks. Before
ending this section, it is worth pointing out the main
contributions of this paper as follows.

1. The GDSs (including of LGDSs and NGDSs) with
their exponential convergence are uniformly inves-
tigated in this paper. In addition, differing from
the earlier-presented LGDSs, different NGDSs are
designed, proposed and investigated by defining dif-
ferent EFs to find the scalar square root for the first
time.

2. Based on Lyapunov theory, the exponential conver-
gence of the proposed NGDSs is proven, which sub-
stantiates well the feasibility and validity of the pro-
posed NGDSs for scalar square root finding.

3. A new approach on the definition of the EF for
the GDS construction is introduced and also gives
an inspiring direction on the research of dynamics

system, especially the nonlinear dynamics system,
which is guaranteed by the theoretical analysis.

4. Through the numerical verification and comparison,
in which the main differences and respective usages,
as well as the application background and condition
are discussed in detail, the efficacy of the proposed
six NGDSs is demonstrated well for scalar square
root finding.

2 Nonlinear GDS and exponential convergence

In this section, the EF is designed as an error-
monitoring function (i.e., a square-based energy func-
tion) for deriving a GDS. Specifically, by defining dif-
ferent EFs, different GDSs (i.e., LGDSs and NGDSs)
can be obtained for linear and nonlinear problems solv-
ing. In addition, the exponential convergence of the
LGDS and NGDS is investigated in this section. For
better understanding and completeness, we present the
following formal definition of EF.

Definition 1 The energy function (EF) denoted by
ε = ε(x), which is usually associated with GDS, is
a norm-based or square-based scalar-valued nonnega-
tive, or at least lower-bounded function (or termed, an
error-monitoring function).

2.1 GDS design method

Based on the above definition, a GDS for problem solv-
ing (e.g., equation computing) can thus be established
via an EF through the following steps.

Step 1. Following the gradient-descent design met-
hod [14], we define a square-based EF (i.e., ε) as the
error-monitoring function to monitor the process of
problem solving, e.g., equation computing.

Step 2. In order to force ε to converge to zero, the
negative of the gradient (i.e., −∂ε/∂x) is used as the
descent direction, which leads to the so-called GDS
design formula in the form of a first-order differential
equation:

ẋ(t) = dx(t)

dt
= −γ

∂ε

∂x
, (1)

where design parameter γ > 0 ∈ R is used to scale the
convergence rate of GDS solution. Note that γ corre-
sponds to the reciprocal of a capacitance parameter, of
which the value should be set as large as the hardware
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would permit, or appropriately large for modeling and
experimental purposes [33].

Step 3. By adopting GDS design formula (1), the dif-
ferential equation of a GDS (i.e., a dynamic equation)
can thus be established for problem solving.

2.2 General application to equation solving

Our objective is to find the solution x ∈ Rn so as to
make the following vector (or scalar when n = 1) equa-
tion hold true:

f (x) = 0, (2)

where f (·) : Rn → Rn denotes an function processing
array. The GDS design method needs to define a square-
based positive error function (or termed, EF) such as

ε(x) = 1

2
‖ f (x)‖2

2,

where ‖ · ‖2 denotes the two norm of a vector argu-
ment (or the absolute value of a scalar argument). Then,
following GDS design formula (1), we can obtain the
differential equation (termed as gradient dynamics) as
below:

ẋ(t) = −γ
∂ε

∂x
= −γ

(
∂ f (x)

∂x

)T

f (x),

where T denotes the transpose operator, and γ is defined
as before.

Furthermore, based on Eq. (2), we can obtain two
different forms of the GDS, i.e., the LGDS and the
NGDS, as following two situations.

Situation 1. Consider nonsingular constant matrix A
in linear equation:

Ax − b = 0, (3)

where coefficient matrix A ∈ Rn×n and coefficient
vector b ∈ Rn , while x ∈ Rn is the unknown vector to
be obtained. For presentation convenience, let x∗ ∈ Rn

denote the theoretical solution of Eq. (3). Evidently,
f (x) = Ax(t)−b. Thus, we have ε(x) = ‖ f (x)‖2

2/2 =
‖Ax(t) − b‖2

2/2. Following GDS design formula (1),
we obtain the linear gradient dynamics system termed
LGDS as below:

ẋ(t) = −γ AT(Ax(t) − b). (4)

Situation 2. Consider the following scalar square
root problem:

x2 − a = 0, (5)

where a > 0 ∈ R is a constant in this situation.
Note that our objective in this work is to find x ∈ R
in real time such that the above nonlinear Eq. (5)
holds true. For presentation convenience, let x∗ ∈ R
denote a theoretical square root of a. Then, we have
ε(x) = f 2(x)/2 = (

x2(t) − a
)2

/2. Following the
above design procedure, we obtain the nonlinear gra-
dient dynamics system termed NGDS as below:

ẋ(t) = −2γ x(t)
(

x2(t) − a
)

.

Thus, we constructed two classes of GDS, i.e., the
LGDS and NGDS, based on different problems or equa-
tions to be solved.

2.3 Exponential convergence theory

In the previous research [7], the exponential conver-
gence result of LGDS (4) has been proved and investi-
gated (i.e., the following lemma).

Lemma 1 [7] Consider a nonsingular constant matrix
A ∈ Rn×n in linear Eq. (3). The state vector x(t) ∈ Rn

of LGDS (4) exponentially converges to the theoretical
solution x∗ = A−1b of linear Eq. (3). In addition, the
exponential convergence rate is αγ with α denoting the
minimum eigenvalue of AT A.

Inspired by Lemma 1, we have the exponential con-
vergence theorem of the GDSs (i.e., LGDS and NGDS).
Before presenting such a theorem, the following two
definitions are given to lay a basis for further discus-
sion [34].

Definition 2 An energy function ε(t) of GDS starting
with an initial state x(0) is said to be exponentially
convergent if it satisfies

ε(t) ≤ ε(0)exp(−βt), (6)

where constant β > 0 denotes the exponential conver-
gence rate of ε(t).

Definition 3 A trajectory x(t) of GDS starting from an
initial state x(0) is said to be exponentially convergent
if it satisfies

‖x(t) − x∗‖2 ≤ μ‖x(0) − x∗‖2exp(−λt),∀t ≥ 0,

(7)

where constants μ > 0 and λ > 0 exist.
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Theorem 1 Starting with a randomly generated ini-
tial state x(0), gradient dynamics systems (GDSs), i.e.,
LGDS and NGDS, possess exponential convergence
properties, if any of the following three conditions is
satisfied.

Condition 1. Equation (6) holds true.
Condition 2. Equation (7) holds true.
Condition 3. Equation ‖∂ε/∂x‖2

2 ≥ αε(t) holds true,
∃α > 0.

Proof By Definition 2 or 3, the exponential conver-
gence property of GDS is evident, if its energy function
ε(t) or state x(t) exponentially converges (i.e., Condi-
tion 1 or 2 holds true).

Furthermore, if Condition 3 holds true, then it fol-
lows from GDS design formula (1) that the time deriv-
ative of ε(t) is

ε̇(t) =
(

∂ε

∂x

)T dx
dt

=
(

∂ε

∂x

)T

ẋ(t) = −γ

∥∥∥∥∂ε

∂x

∥∥∥∥
2

2
.

Applying Condition 3, we have

ε̇(t) = −γ

∥∥∥∥∂ε

∂x

∥∥∥∥
2

2
≤ −γαε(t).

Therefore, with γα > 0 being the exponential conver-
gence rate, we obtain

ε(t) ≤ ε(0)exp(−γαt),

which is exactly Eq. (6) and means that if Condition 3
is satisfied, then ε(t) of GDS exponentially converges
to zero. That is to say, by Definition 2, the GDS is expo-
nentially convergent. The proof is thus completed. 
�

In summary, we propose the exponential conver-
gence theory of the GDSs in this section. Specifically,
inspired by Lemma 1, we novelly extend the exponen-
tial convergence result to NGDS. Note that NGDSs are
applied to square root finding with the detailed expo-
nential convergence proofs given in Sect. 4.

3 Application to square root finding

In this section, based on different EFs, different NGDSs
are developed and investigated for scalar square root
finding via the presented GDS design method. For fur-
ther discussion, the following lemma and definition are
given as a basis for square root finding.

Lemma 2 [23] If scalar a > 0 ∈ R in (5) is constant,
the theoretical square root x∗ ∈ R exists.

Definition 4 Specially, for online solution of scalar
square root [i.e., (5)], we can define the following six
different energy functions (EFs):

ε1 = 1

2

(
x2(t) − a

)2
, (8)

ε2 = 1

2

(
1

x2(t)
− 1

a

)2

, (9)

ε3 = 1

2

(
x2(t)

a
− 1

)2

, (10)

ε4 = 1

2

(
a

x2(t)
− 1

)2

, (11)

ε5 = 1

2

(
x(t) − a

x(t)

)2

, (12)

ε6 = 1

2

(
x(t)

a
− 1

x(t)

)2

. (13)

According to the GDS design method, these different
EFs [i.e., (8)–(13)] can lead to different NGDSs. Firstly,
let us consider GDS design formula (1) and EF (8).
Then, we obtain the following nonlinear dynamic equa-
tion (i.e., a first-order nonlinear differential equation)
of an NGDS for scalar square root finding.

NGDS1 : ẋ(t) = −2γ x(t)
(

x2(t) − a
)

. (14)

Similarly, based on GDS design formula (1) and EFs
(9)–(13), the following nonlinear dynamic equations
of other NGDSs are obtained for scalar square root
finding.

NGDS2 : ẋ(t) = −2γ
x2(t) − a

ax5(t)
, (15)

NGDS3 : ẋ(t) = −2γ
x(t)

a

(
x2(t)

a
− 1

)
, (16)

NGDS4 : ẋ(t) = −2aγ
x2(t) − a

x5(t)
, (17)

NGDS5 : ẋ(t) = −γ

(
x2(t) − a

) (
x2(t) + a

)
x3(t)

, (18)

NGDS6 : ẋ(t) = −γ
(x2(t) − a)(x2(t) + a)

a2x3(t)
. (19)

Thus, we obtain six different NGDSs [i.e., (14)–
(19)] for scalar square root finding, which correspond
to six different EFs [i.e., (8)–(13)].

123



On exponential convergence of nonlinear gradient dynamics system 987

Remark 1 By defining six different EFs (8)–(13), we
develop six different NGDSs (14)–(19). Hence, it can
provide many models for researchers or practitioners
to choose. In practical applications, the practitioners
could find and choose the most suitable EF and the cor-
responding NGDS in accordance with specific request.
For example, we may find that NGDS (14) requires less
components for hardware implementation.

4 Theoretical results and analyses

In the above section, we propose six different NGDSs
(14)–(19) based on different EFs. In this section, we
propose theorems as well as their corresponding proofs
on the exponential convergence theories of NGDSs
(14)–(19).

4.1 Exponential convergence analysis of NGDS1

Let us consider NGDS1 (14), we have the following
results as the basis of its exponential convergence the-
ory.

Lemma 3 Consider (5) and GDS design formula (1).
Starting from an initial state x(0) �= 0, the state x(t) of
NGDS1 (14) is bounded. Specifically, the lower bound
and upper bound are δ and ζ , respectively, i.e.,

|x(t)| ≥ δ ∈ R, (20)

and

|x(t)| ≤ ζ ∈ R. (21)

Proof The boundness of the state x(t) of NGDS1 (14)
can be discussed in the following four cases.

Case 1. If the initial state x(0) > 0 satisfying
x(0) ≥ x∗ = √

a, then it follows Eq. (14) that
ẋ(t) ≤ 0,∀t > 0. Therefore, the state x(t) of NGDS1

(14) is a monotonically nonincreasing function. Then,
we have

x(0) ≥ x(t) ≥ x∗ = √
a > 0.

Case 2. If the initial state x(0) > 0 satisfying
x(0) ≤ x∗ = √

a, it follows Eq. (14) that ẋ(t) ≥
0,∀t > 0. Accordingly, the state x(t) of NGDS1 (14)
is a monotonically nondecreasing function. Then, we
obtain

0 < x(0) ≤ x(t) ≤ x∗ = √
a.

Case 3. If the initial state x(0) < 0 satisfying x(0) ≥
x∗ = −√

a, it follows Eq. (14) that ẋ(t) ≤ 0,∀t > 0.
Thus, the state x(t) of NGDS1 (14) is a monotonically
nonincreasing function. Hence, we have

0 > x(0) ≥ x(t) ≥ x∗ = −√
a.

Case 4. If the initial state x(0) < 0 satisfying x(0) ≤
x∗ = −√

a, it follows Eq. (14) that ẋ(t) ≥ 0,∀t > 0.
Thus, the state x(t) of NGDS1 (14) is a monotonically
nondecreasing function. As a result, we have

x(0) ≤ x(t) ≤ x∗ = −√
a < 0.

Therefore, based on the above discussion, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(0) ≥ x(t) ≥ x∗, if x(0) ≥ x∗ = √
a > 0,

x(0) ≤ x(t) ≤ x∗, if 0 < x(0) ≤ x∗ = √
a,

x(0) ≥ x(t) ≥ x∗, if 0 > x(0) ≥ x∗ = −√
a,

x(0) ≤ x(t) ≤ x∗, if x(0) ≤ x∗ = −√
a < 0.

Since the initial state x(0) and the theoretical solution
x∗ are finite constants, we know that the state x(t) of
NGDS1 (14) is bounded, i.e., (20) and (21) hold true.
The proof is thus completed. 
�
Corollary 1 Consider positive constant a ∈ R invol-
ved in the nonlinear Eq. (5). Starting from an initial
state x(0) �= 0, the state x(t) of NGDS1 (14) will not
be zero

x(t) �= 0,∀t > 0.

Besides, if the initial state x(0) > 0, the state of (14)
satisfies x(t) > 0. On the contrary, if the initial state
x(0) < 0, the state of (14) satisfies x(t) < 0.

Based on Lemma 3 and Corollary 1, we have the
following theorem about the exponential convergence
result of NGDS1 (14).

Theorem 2 Consider constant a > 0 ∈ R involved
in the nonlinear Eq. (5). Starting from an initial state
x(0) �= 0, NGDS1 (14) possesses the exponential con-
vergence property. That is, EF (8) exponentially con-
verges to zero, and the state x(t) of (14) exponentially
converges to the theoretical scalar square root x∗ of
the constant a.

Proof To prove Theorem 2, i.e., the exponential con-
vergence theorem of NGDS1 (14), we can use Lya-
punov theory [35]. Firstly, let us define a Lyapunov
function candidate

Ł1(x(t)) = ε1 = 1

2
(x2(t) − a)2 ≥ 0, (22)

which can be discussed in the following two cases.
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Case 1. If ε1 = (x2(t)−a)2/2 = 0, then x(t) = x∗ =
±√

a. The solution of the nonlinear Eq. (5) is
found.

Case 2. If ε1 = (x2(t)−a)2/2 > 0, then x(t) �= x∗ =
±√

a.

As for Case 2, we derive the time derivative of Eq. (22)
as

Ł̇1(x(t)) = ε̇1 = dε1

dt
= ∂ε1

∂x

dx

dt
= ∂ε1

∂x
ẋ

= −γ

(
∂ε1

∂x

)2

. (23)

Following from Eq. (22), we obtain the following first-
order partial derivative of ε1 with respect to x :

∂ε1

∂x
= 2x(t)(x2(t) − a),

and we further have(
∂ε1

∂x

)2

= 4x2(t)(x2(t) − a)2.

By Lemma 3 and Corollary 1, ∃δ1 > 0, ∀x(t), we have
x2(t) ≥ δ1 [i.e., −x2(t) ≤ −δ1], where δ1 is a positive
constant. Thus, we have(

∂ε1

∂x

)2

= 4x2(t)(x2(t) − a)2

≥ 4δ1(x2(t) − a)2 = 8δ1ε1. (24)

Applying (23) and (24) yields

Ł̇1(x(t)) = ε̇1 = −γ

(
∂ε1

∂x

)2

≤ −8γ δ1ε1. (25)

In this case, ε1 �= 0, δ1 > 0, and γ > 0. Let β1 =
8γ δ1 > 0. Then, (25) can be simplified as

ε̇1(x(t)) ≤ −β1ε1(x(t)).

Thus, we have

Ł1(x(t)) = ε1(x(t)) ≤ ε1(x(0))exp(−β1t),∀t ≥ 0,

(26)

which means that the energy function ε1 exponentially
converges to zero. That is, the EF (8) is exponentially
convergent to zero.

Next, we prove the exponentially convergent prop-
erty of the state x(t) of NGDS1 (14). By substituting
(22) into (26), we obtain

1

2
(x2(t) − a)2 ≤ 1

2
(x2(0) − a)2exp(−β1t),

and further have

‖x2(t) − a‖2 ≤ ‖x2(0) − a‖2exp

(
−1

2
β1t

)
. (27)

Note that (27) can also be rewritten as

‖(x(t) − √
a)(x(t) + √

a)‖2

≤ ‖(x(0)−√
a)(x(0)+√

a)‖2exp

(
−1

2
β1t

)
. (28)

For (28), it can be discussed in the following two cases.
Case 1. If the given initial state x(0) > 0, following

from Lemma 3, we have x(0) ≥ x(t) ≥ x∗ = √
a or

x(0) ≤ x(t) ≤ x∗ = √
a. In this case, we can define a

constant μ1 > 0 as

μ1 =
∥∥∥∥ (x(0) +√

a)

(x∗ +√
a)

∥∥∥∥
2
≥

∥∥∥∥ (x(0) +√
a)

(x(t) +√
a)

∥∥∥∥
2
>0,

or

μ1 =
∥∥∥∥ (x(0) +√

a)

(x(0) +√
a)

∥∥∥∥
2
≥

∥∥∥∥ (x(0) +√
a)

(x(t) +√
a)

∥∥∥∥
2
>0.

Thus, we have

‖x(t) − x∗‖2 ≤ μ1‖x(0) − x∗‖2exp

(
−1

2
β1t

)
,

which means that the state x(t) of NGDS1 (14) expo-
nentially converges to the theoretical positive solution
x∗ = √

a of (5).
Case 2. If the given initial state x(0) < 0, following

from Lemma 3, then we have x(0) ≥ x(t) ≥ x∗ =
−√

a or x(0) ≤ x(t) ≤ x∗ = −√
a. In this case, the

constant μ1 > 0 can be defined as another form

μ1 =
∥∥∥∥ (x(0) − √

a)

(x(0) − √
a)

∥∥∥∥
2

≥
∥∥∥∥ (x(0) − √

a)

(x(t) − √
a)

∥∥∥∥
2

> 0,

or

μ1 =
∥∥∥∥ (x(0) − √

a)

(x∗ − √
a)

∥∥∥∥
2

≥
∥∥∥∥ (x(0) − √

a)

(x(t) − √
a)

∥∥∥∥
2

> 0.

Thus, we also have

‖x(t) − x∗‖2 ≤ μ1‖x(0) − x∗‖2exp

(
−1

2
β1t

)
,

which means that the state x(t) of NGDS1 (14) expo-
nentially converges to the theoretical negative solution
x∗ = −√

a of (5).
Based on the above analysis, according to Theorem

1, we have the conclusion that NGDS1 (14) processes
the exponential convergence property. The proof is thus
completed. 
�
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4.2 Exponential convergence analysis of NGDS2

Based on the GDS design formula (1) and EF (9), we
obtain the following NGDS2 (15) for scalar square root
finding. Besides, for NGDS2 (15), we have the follow-
ing exponentially convergent results.

Lemma 4 Consider (5) and GDS design formula (1).
Starting from an initial state x(0) �= 0, the state x(t)
of NGDS2 (15) is bounded, specifically, lower-bounded
and upper-bounded.

Proof It can be generalized from the proof of Lemma
3. 
�
Corollary 2 Consider positive constant a ∈ R invol-
ved in the nonlinear Eq. (5). Starting from an initial
state x(0) �= 0, the state x(t) of NGDS2 (15) will not
be zero

x(t) �= 0,∀t > 0.

Besides, if the initial state x(0) > 0, the state of (15)
satisfies x(t) > 0. On the contrary, if the initial state
x(0) < 0, the state of (15) satisfies x(t) < 0.

Based on Lemma 4 and Corollary 2, we have the
following theorem about the exponential convergence
result of NGDS2 (15).

Theorem 3 Consider constant a > 0 ∈ R involved
in the nonlinear Eq. (5). Starting from an initial state
x(0) �= 0, NGDS2 (15) possesses the exponential con-
vergence property. That is, the EF (9) exponentially
converges to zero, and the state x(t) of (15) exponen-
tially converges to the theoretical scalar square root x∗
of a.

Proof To prove Theorem 3, we can use Lyapunov the-
ory [35] as well. Let us define a Lyapunov function
candidate as

Ł2(x(t)) = ε2 = 1

2

(
1

x2(t)
− 1

a

)2

≥ 0, (29)

which can be discussed in the following two cases.

Case 1. If ε2 = (1/x2(t) − 1/a)2/2 = 0, then x(t) =
x∗ = ±√

a. The solution of the nonlinear Eq.
(5) is found.

Case 2. If ε2 = (1/x2(t) − 1/a)2/2 > 0, then x(t) �=
x∗ = ±√

a.

As for Case 2, we derive the time derivative of (29) as

Ł̇2(x(t)) = ε̇2 = dε2

dt
= ∂ε2

∂x

dx

dt
= ∂ε2

∂x
ẋ

= −γ

(
∂ε2

∂x

)2

. (30)

Following from Eq. (29), we obtain the first-order par-
tial derivative of ε2 with respect to x as

∂ε2

∂x
= 2

x2(t) − a

ax5(t)
,

and we further have(
∂ε2

∂x

)2

= 4
(x2(t) − a)2

a2x10(t)
.

In consideration of the corresponding Lemma 4 and
Corollary 2, ∃ζ2 > 0, ∀x(t), we have x2(t) ≤ ζ2 [i.e.,
−x2(t) ≥ −ζ2] with ζ2 being a positive constant. Thus,
we further have(

∂ε2

∂x

)2

= 4
(x2(t) − a)2

a2x10(t)

≥ 4
(x2(t) − a)2

a2x4(t)ζ 3
2

= 8
ε2

ζ 3
2

. (31)

Applying (30) and (31) yields

Ł̇2(x(t)) = ε̇2 = −γ

(
∂ε2

∂x

)2

≤ −8γ
ε2

ζ 3
2

. (32)

In this case, ε2 �= 0, ζ2 > 0, and γ > 0. Let β2 =
8γ /ζ 3

2 > 0. Then, (32) can be simplified as

ε̇2(x(t)) ≤ −β2ε2(x(t)).

Thus, we have

Ł2(x(t)) = ε2(x(t)) ≤ ε2(x(0))exp(−β2t),∀t ≥ 0,

(33)

which means that the energy function ε2 exponentially
converges to zero. That is, EF (9) is exponentially con-
vergent to zero.

Next, we prove the exponentially convergent prop-
erty of the state x(t) of NGDS2 (15). By substituting
(29) into (33), we obtain

1

2

(
1

x2(t)
− 1

a

)2

≤ 1

2

(
1

x2(0)
− 1

a

)2

exp(−β2t),

which can be simplified as∥∥∥∥ x2(t) − a

x2(t)

∥∥∥∥
2

≤
∥∥∥∥ x2(0) − a

x2(0)

∥∥∥∥
2

exp(−1

2
β2t). (34)
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Note that (34) can be further rewritten as∥∥∥∥ (x(t) − √
a)(x(t) + √

a)

x2(t)

∥∥∥∥
2

≤
∥∥∥∥ (x(0) − √

a)(x(0) + √
a)

x2(0)

∥∥∥∥
2

exp(−1

2
β2t).

(35)

For (35), it can be discussed in the following two cases.
Case 1. If the given initial state x(0) > 0, following

from Lemma 4, then we have x(0) ≥ x(t) ≥ x∗ = √
a

or x(0) ≤ x(t) ≤ x∗ = √
a. In this case, we can define

a constant μ2 > 0 as

μ2 =
∥∥∥∥ x2(0)(x(0) + √

a)

x2(0)(x∗ + √
a)

∥∥∥∥
2

≥
∥∥∥∥ x2(t)(x(0) + √

a)

x2(0)(x(t) + √
a)

∥∥∥∥
2

> 0,

or

μ2 =
∥∥∥∥∥

x∗2(x(0) + √
a)

x2(0)(x(0) + √
a)

∥∥∥∥∥
2

≥
∥∥∥∥ x2(t)(x(0) + √

a)

x2(0)(x(t) + √
a)

∥∥∥∥
2

> 0.

Thus, we have

‖x(t) − x∗‖2 ≤ μ2‖x(0) − x∗‖2exp(−1

2
β2t),

which means that the state x(t) of NGDS2 (15) expo-
nentially converges to the theoretical positive solution
x∗ = √

a of (5).
Case 2. If the given initial state x(0) < 0, following

from Lemma 4, then we have x(0) ≥ x(t) ≥ x∗ =
−√

a or x(0) ≤ x(t) ≤ x∗ = −√
a. In this case, the

constant μ2 > 0 can be defined as another form

μ2 =
∥∥∥∥∥

x∗2(x(0) − √
a)

x2(0)(x(0) − √
a)

∥∥∥∥∥
2

≥
∥∥∥∥ x2(t)(x(0) − √

a)

x2(0)(x(t) − √
a)

∥∥∥∥
2

> 0,

or

μ2 =
∥∥∥∥ x2(0)(x(0) − √

a)

x2(0)(x∗ − √
a)

∥∥∥∥
2

≥
∥∥∥∥ x2(t)(x(0) − √

a)

x2(0)(x(t) − √
a)

∥∥∥∥
2

> 0.

Thus, we also have

‖x(t) − x∗‖2 ≤ μ2‖x(0) − x∗‖2exp(−1

2
β2t),

which means that the state x(t) of NGDS2 (15) expo-
nentially converges to the theoretical negative solution
x∗ = −√

a of (5).
Based on the above analysis, according to Theorem

1, we have the conclusion that NGDS2 (15) processes
the exponential convergence property. The proof is thus
completed. 
�

4.3 Exponential convergence analysis of NGDS3

With the GDS design formula (1) and EF (10) exploited,
NGDS3 (16) is established for scalar square root
finding.

Lemma 5 Consider (5) and GDS design formula (1).
Starting from an initial state x(0) �= 0, the state x(t)
of NGDS3 (16) is bounded, specifically, lower-bounded
and upper-bounded.

Corollary 3 Consider a positive constant a ∈ R
involved in the nonlinear Eq. (5). Starting from an ini-
tial state x(0) �= 0, the state x(t) of NGDS3 (16) will
not be zero

x(t) �= 0,∀t > 0.

Besides, if the initial state x(0) > 0, the state of (16)
satisfies x(t) > 0. On the contrary, if the initial state
x(0) < 0, the state of (16) satisfies x(t) < 0.

In addition, we have the following theorem about
the exponentially convergent result of NGDS3 (16).

Theorem 4 Consider constant a > 0 ∈ R involved
in the nonlinear Eq. (5). Starting from an initial state
x(0), NGDS3 (16) possesses the exponential conver-
gence property. That is, EF (10) exponentially con-
verges to zero, and the state x(t) of (16) exponentially
converges to the theoretical scalar square root x∗ of a.

Proof To prove Theorem 4, we can reuse Lyapunov
theory [35]. Let us define a Lyapunov function candi-
date as

Ł3(x(t)) = ε3 = 1

2

(
x2(t)

a
− 1

)2

≥ 0, (36)

which can be discussed in the following two cases.

Case 1. If ε3 = (x2(t)/a − 1)2/2 = 0, then x(t) =
x∗ = ±√

a. The solution of the nonlinear Eq.
(5) is found.
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Case 2. If ε3 = (x2(t)/a − 1)2/2 > 0, then x(t) �=
x∗ = ±√

a.

As for Case 2, we derive the time derivative of (36) as

Ł̇3(x(t)) = ε̇3 = dε3

dt
= ∂ε3

∂x

dx

dt
= ∂ε3

∂x
ẋ

= −γ

(
∂ε3

∂x

)2

. (37)

Based on (36), we obtain the following first-order par-
tial derivative of ε3 with respect to x :

∂ε3

∂x
= 2

x(t)

a

(
x2(t)

a
− 1

)
,

and we further have(
∂ε3

∂x

)2

= 4
x2(t)

a2

(
x2(t)

a
− 1

)2

.

In view of the corresponding Lemma 5 and Corollary
3, ∃δ3 > 0, ∀x(t), we have x2(t) ≥ δ3 [i.e., −x2(t) ≤
−δ3], where δ3 is a constant. Therefore, we further have
(

∂ε3

∂x

)2

= 4
x2(t)

a2

(
x2(t)

a
− 1

)2

≥ 4δ3
(x2(t) − a)2

a4 = 8
δ3

a2 ε3.

It follows from (37) that

Ł̇3(x(t)) = ε̇3 = −γ

(
∂ε3

∂x

)2

≤ −8γ
δ3

a2 ε3. (38)

In this case, ε3 �= 0, δ3 > 0, and γ > 0. Let β3 =
8γ δ3/a2 > 0. Then, (38) can be simplified as

ε̇3(x(t)) ≤ −β3ε3(x(t)).

Consequently, we have

Ł3(x(t)) = ε3(x(t)) ≤ ε3(x(0))exp(−β3t),∀t ≥ 0,

(39)

which means that the energy function ε3 exponentially
converges to zero. That is, EF (10) is exponentially
convergent to zero.

Next, we prove the exponentially convergent prop-
erty of the state x(t) of NGDS3 (16). By substituting
(36) into (39), we obtain

1

2

(
x2(t)

a
− 1

)2

≤ 1

2

(
x2(0)

a
− 1

)2

exp(−β3t),

which can be simplified as

‖x2(t) − a‖2 ≤ ‖x2(0) − a‖2exp

(
−1

2
β3t

)
. (40)

Note that (40) can be also rewritten as

‖(x(t) − √
a)(x(t) + √

a)‖2 ≤ ‖(x(0) − √
a)(x(0)

+√
a)‖2exp

(
−1

2
β3t

)
. (41)

For (41), it can be discussed in the following two cases.
Case 1. If the given initial state x(0) > 0, following

from Lemma 5, then we have x(0) ≥ x(t) ≥ x∗ = √
a

or x(0) ≤ x(t) ≤ x∗ = √
a. In this case, we can define

a constant μ3 > 0 as

μ3 =
∥∥∥∥ (x(0) + √

a)

(x∗ + √
a)

∥∥∥∥
2

≥
∥∥∥∥ (x(0) + √

a)

(x(t) + √
a)

∥∥∥∥
2

> 0,

or

μ3 =
∥∥∥∥ (x(0) + √

a)

(x(0) + √
a)

∥∥∥∥
2

≥
∥∥∥∥ (x(0) + √

a)

(x(t) + √
a)

∥∥∥∥
2

> 0.

Thus, we have

‖x(t) − x∗‖2 ≤ μ3‖x(0) − x∗‖2exp

(
−1

2
β3t

)
,

which means that the state x(t) of NGDS3 (16) expo-
nentially converges to the theoretical positive solution
x∗ = √

a of (5).
Case 2. If the given initial state x(0) < 0, following

from Lemma 5, then we have x(0) ≥ x(t) ≥ x∗ =
−√

a or x(0) ≤ x(t) ≤ x∗ = −√
a. In this case, the

constant μ3 > 0 can be defined as another form

μ3 =
∥∥∥∥ (x(0) − √

a)

(x(0) − √
a)

∥∥∥∥
2

≥
∥∥∥∥ (x(0) − √

a)

(x(t) − √
a)

∥∥∥∥
2

> 0,

or

μ3 =
∥∥∥∥ (x(0) − √

a)

(x∗ − √
a)

∥∥∥∥
2

≥
∥∥∥∥ (x(0) − √

a)

(x(t) − √
a)

∥∥∥∥
2

> 0.

Thus, we have

‖x(t) − x∗‖2 ≤ μ3‖x(0) − x∗‖2exp

(
−1

2
β3t

)
,

which means that the state x(t) of NGDS3 (16) expo-
nentially converges to the theoretical negative solution
x∗ = −√

a of (5).
Based on the above analysis, according to Theorem

1, we have the conclusion that NGDS3 (16) processes
the exponential convergence property. The proof is thus
completed. 
�
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4.4 Exponential convergence analysis of NGDS4

Following from GDS design formula (1) and EF (11),
we have the NGDS4 (17) for scalar square root finding.

Lemma 6 Consider (5) and GDS design formula (1).
Starting from an initial state x(0) �= 0, the state x(t)
of NGDS4 (17) is bounded, specifically, lower-bounded
and upper-bounded.

Corollary 4 Consider positive constant a ∈ R invol-
ved in the nonlinear Eq. (5). Starting from an initial
state x(0) �= 0, the state x(t) of NGDS4 (17) will not
be zero

x(t) �= 0,∀t > 0.

Besides, if the initial state x(0) > 0, the state of (17)
satisfies x(t) > 0. On the contrary, if the initial state
x(0) < 0, the state of (17) satisfies x(t) < 0.

In addition, we have the following theorem about
the exponentially convergent result of NGDS4 (17).

Theorem 5 Consider constant a > 0 ∈ R involved
in the nonlinear Eq. (5). Starting from an initial state
x(0) �= 0, NGDS4 (17) possesses the exponential con-
vergence property. That is, EF (11) exponentially con-
verges to zero, and the state x(t) of (17) exponentially
converges to the theoretical scalar square root x∗ of a.

Proof Similarly, we can define a Lyapunov function
candidate as

Ł4(x(t)) = ε4 = 1

2

(
a

x2(t)
− 1

)2

≥ 0, (42)

which can be discussed in the following two cases.
Case 1. If ε4 = (a/x2(t) − 1)2/2 = 0, then x(t) =

x∗ = ±√
a. The solution of the nonlinear Eq. (5) is

found.
Case 2. If ε4 = (a/x2(t) − 1)2/2 > 0, then x(t) �=

x∗ = ±√
a.

As for Case 2, we derive the time derivative of (42) as

Ł̇4(x(t)) = ε̇4 = dε4

dt
= ∂ε4

∂x

dx

dt
= ∂ε4

∂x
ẋ

= −γ

(
∂ε4

∂x

)2

. (43)

Following from (42), we obtain the first-order partial
derivative of ε4 with respect to as

∂ε4

∂x
= 2a

x2(t) − a

x5(t)
,

and we further have(
∂ε4

∂x

)2

= 4a2 (x2(t) − a)2

x10(t)
.

Considering the corresponding Lemma 6 and Corol-
lary 4, ∃ζ4 > 0, ∀x(t), we have x2(t) ≤ ζ4 [i.e.,
−x2(t) ≥ −ζ4], where ζ4 is a positive constant. Thus,
we further have(

∂ε4

∂x

)2

= 4a2 (x2(t) − a)2

x10(t)

≥ 4a2 (x2(t) − a)2

ζ 3
4 x4(t)

= 8
a2ε4

ζ 3
4

. (44)

Applying (42) and (44) yields

Ł̇4(x(t)) = ε̇4 = −γ

(
∂ε4

∂x

)2

≤ −8γ
a2ε4

ζ 3
4

. (45)

In this case, ε4 �= 0, ζ4 > 0, and γ > 0. Let
β4 = 8γ a2/ζ 3

4 > 0. Then, (45) can be simplified as

ε̇4(x(t)) ≤ −β4ε4(x(t)).

Thus, we have

Ł4(x(t)) = ε4(x(t)) ≤ ε4(x(0))exp(−β4t),∀t ≥ 0,

(46)

which means that the energy function ε4 exponentially
converges to zero. That is, EF (11) is exponentially
convergent to zero.

Next, we prove the exponentially convergent prop-
erty of the state x(t) of NGDS4 (17). By substituting
(42) into (46), we obtain

1

2

(
a

x2(t)
− 1

)2

≤ 1

2

(
a

x2(0)
− 1

)2

exp(−β4t),

which can be simplified as∥∥∥∥ x2(t) − a

x2(t)

∥∥∥∥
2

≤
∥∥∥∥ x2(0) − a

x2(0)

∥∥∥∥
2

exp

(
−1

2
β4t

)
. (47)

Note that (47) can be further rewritten as∥∥∥∥ (x(t) − √
a)(x(t) + √

a)

x2(t)

∥∥∥∥
2

≤
∥∥∥∥ (x(0) − √

a)(x(0) + √
a)

x2(0)

∥∥∥∥
2

exp

(
−1

2
β4t

)
.

(48)
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For (48), it can be discussed in the following two cases.
Case 1. If the given initial state x(0) > 0, following

from Lemma 6, then we have x(0) ≥ x(t) ≥ x∗ = √
a

or x(0) ≤ x(t) ≤ x∗ = √
a. In this case, we can define

a constant μ4 > 0 as

μ4 =
∥∥∥∥ x2(0)(x(0) + √

a)

x2(0)(x∗ + √
a)

∥∥∥∥
2

≥
∥∥∥∥ x2(t)(x(0) + √

a)

x2(0)(x(t) + √
a)

∥∥∥∥
2

> 0,

or

μ4 =
∥∥∥∥∥

x∗2(x(0) + √
a)

x2(0)(x(0) + √
a)

∥∥∥∥∥
2

≥
∥∥∥∥ x2(t)(x(0) + √

a)

x2(0)(x(t) + √
a)

∥∥∥∥
2

> 0,

Therefore, we have

‖x(t) − x∗‖2 ≤ μ4‖x(0) − x∗‖2exp

(
−1

2
β4t

)
,

which means that the state x(t) of NGDS4 (17) expo-
nentially converges to the theoretical positive solution
x∗ = √

a of (5).
Case 2. If the given initial state x(0) < 0, following

from Lemma 6, then we have x(0) ≥ x(t) ≥ x∗ =
−√

a or x(0) ≤ x(t) ≤ x∗ = −√
a. In this case,

∃μ4 > 0, which can be defined as another form

μ4 =
∥∥∥∥∥

x∗2(x(0) − √
a)

x2(0)(x(0) − √
a)

∥∥∥∥∥
2

≥
∥∥∥∥ x2(t)(x(0) − √

a)

x2(0)(x(t) − √
a)

∥∥∥∥
2

> 0,

or

μ4 =
∥∥∥∥ x2(0)(x(0) − √

a)

x2(0)(x∗ − √
a)

∥∥∥∥
2

≥
∥∥∥∥ x2(t)(x(0) − √

a)

x2(0)(x(t) − √
a)

∥∥∥∥
2

> 0.

As a result, we have

‖x(t) − x∗‖2 ≤ μ4‖x(0) − x∗‖2exp

(
−1

2
β4t

)
,

which means that the state x(t) of NGDS4 (17) expo-
nentially converges to the theoretical negative solution
x∗ = −√

a of (5).
Based on the above analysis, according to Theorem

1, we have the conclusion that NGDS4 (17) processes
the exponential convergence property. The proof is thus
completed. 
�

4.5 Exponential convergence analysis of NGDS5

With NGDS5 design formula (1) and EF (12) exploited,
the following NGDS5 (18) is established for scalar
square root finding.

Lemma 7 Consider (5) and GDS design formula (1).
Starting from an initial state x(0) �= 0, the state x(t)
of NGDS5 (18) is bounded, specifically, lower-bounded
and upper-bounded.

Corollary 5 Consider positive constant a ∈ R invol-
ved in the nonlinear Eq. (5). Starting from an initial
state x(0) �= 0, the state x(t) of NGDS5 (15) will not
be zero

x(t) �= 0, ∀t > 0.

Besides, if the initial state x(0) > 0, the state of (18)
satisfies x(t) > 0. On the contrary, if the initial state
x(0) < 0, the state of (18) satisfies x(t) < 0.

In addition, we have the following theorem about
the exponentially convergent result of NGDS5 (18).

Theorem 6 Consider constant a > 0 ∈ R involved
in the nonlinear Eq. (5). Starting from an initial state
x(0), NGDS5 (18) possesses the exponential conver-
gence property. That is, EF (12) exponentially con-
verges to zero, and the state x(t) of (18) exponentially
converges to the theoretical scalar square root x∗ of a.

Proof Let us define a Lyapunov function candidate as

Ł5(x(t)) = ε5 = 1

2

(
x(t) − a

x(t)

)2

≥ 0, (49)

which can be discussed in the following two cases.

Case 1. If ε5 = (x(t) − a/x(t))2/2 = 0, then x(t) =
x∗ = ±√

a. The solution of the nonlinear
Eq. (5) is found.

Case 2. If ε5 = (x(t) − a/x(t))2/2 > 0, then x(t) �=
x∗ = ±√

a.

As for Case 2, we derive the time derivative of (49) as

Ł̇5(x(t)) = ε̇5 = dε5

dt
= ∂ε5

∂x

dx

dt
= ∂ε5

∂x
ẋ

= −γ

(
∂ε5

∂x

)2

. (50)

Following from (49), we obtain the first-order partial
derivative of ε5 with respect to x as

∂ε5

∂x
= (x2(t) − a)(x2(t) + a)

x3(t)
,
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and we further have(
∂ε5

∂x

)2

= (x2(t) − a)2(x2(t) + a)2

x6(t)
.

Considering Lemma 7 and Corollary 5, ∃η5 > 1, ∀x(t),
we have

η5 ≤ (x2(t) + a)2

x4(t)
,

where η5 > 1 is a constant. Thus, we further have
(

∂ε5

∂x

)2

= (x2(t) − a)2(x2(t) + a)2

x6(t)

≥ (x2(t) − a)2η5

x2(t)
= 2η5ε5. (51)

Applying (50) and (51) yields

Ł̇5(x(t)) = ε̇5 = −γ

(
∂ε5

∂x

)2

≤ −2γ η5ε5. (52)

In this case, ε5 �= 0, η5 > 0 and γ > 0. Let β5 =
2γ η5 > 0. Then, (52) can be simplified as

ε̇5(x(t)) ≤ −β5ε5(x(t)).

Thus, we have

Ł5(x(t)) = ε5(x(t)) ≤ ε5(x(0))exp(−β5t),∀t ≥ 0,

(53)

which means that the energy function ε5 exponentially
converges to zero. That is, EF (12) is exponentially
convergent to zero.

Next, let us prove the exponentially convergent prop-
erty of the state x(t) of NGDS4 (17). By substituting
(49) into (53), we obtain

1

2

(
x(t) − a

x(t)

)2

≤ 1

2

(
x(0) − a

x(0)

)2

exp(−β5t),

which can be simplified as∥∥∥∥ x2(t) − a

x(t)

∥∥∥∥
2

≤
∥∥∥∥ x2(0) − a

x(0)

∥∥∥∥
2

exp

(
−1

2
β5t

)
. (54)

Note that (54) can be also rewritten as∥∥∥∥ (x(t) − √
a)(x(t) + √

a)

x(t)

∥∥∥∥
2

≤
∥∥∥∥ (x(0) − √

a)(x(0) + √
a)

x(0)

∥∥∥∥
2

exp

(
−1

2
β5t

)
.

(55)

For (55), it can be discussed in the following two cases.
Case 1. If the given initial state x(0) > 0, following

from Lemma 7, then we have x(0) ≥ x(t) ≥ x∗ = √
a

or x(0) ≤ x(t) ≤ x∗ = √
a. In this case, we can define

a constat μ5 > 0 as

μ5 =
∥∥∥∥ x(0)(x(0) + √

a)

x(0)(x∗ + √
a)

∥∥∥∥
2

≥
∥∥∥∥ x(t)(x(0) + √

a)

x(0)(x(t) + √
a)

∥∥∥∥
2

> 0,

or

μ5 =
∥∥∥∥ x∗(x(0) + √

a)

x(0)(x(0) + √
a)

∥∥∥∥
2

≥
∥∥∥∥ x(t)(x(0) + √

a)

x(0)(x(t) + √
a)

∥∥∥∥
2

> 0.

Thus, we have

‖x(t) − x∗‖2 ≤ μ5‖x(0) − x∗‖2exp

(
−1

2
β5t

)
,

which means that the state x(t) of NGDS5 (18) expo-
nentially converges to the theoretical positive solution
x∗ = √

a of (5).
Case 2. If the given initial state x(0) < 0, following

from Lemma 7, then we have x(0) ≥ x(t) ≥ x∗ =
−√

a or x(0) ≤ x(t) ≤ x∗ = −√
a. In this case, the

constant μ5 > 0 can be defined as another form

μ5 =
∥∥∥∥ x∗(x(0) − √

a)

x(0)(x(0) − √
a)

∥∥∥∥
2

≥
∥∥∥∥ x(t)(x(0) − √

a)

x(0)(x(t) − √
a)

∥∥∥∥
2

> 0,

or

μ5 =
∥∥∥∥ x(0)(x(0) − √

a)

x(0)(x∗ − √
a)

∥∥∥∥
2

≥
∥∥∥∥ x(t)(x(0) − √

a)

x(0)(x(t) − √
a)

∥∥∥∥
2

> 0.

Thus, we have

‖x(t) − x∗‖2 ≤ μ5‖x(0) − x∗‖2exp

(
−1

2
β5t

)
,

which means that the state x(t) of NGDS5 (18) expo-
nentially converges to the theoretical negative solution
x∗ = −√

a of (5).
Based on the above analysis, according to The-

orem 1, we have the conclusion that NGDS5 (18)
processes the exponential convergence property. The
proof is thus completed. 
�

4.6 Exponential convergence analysis of NGDS6

Similar to the analysis of NGDS5 (18), based on EF
(13), we obtain NGDS6 (19) for scalar square root
finding.
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Lemma 8 Consider (5) and GDS design formula (1).
Starting from an initial state x(0) �= 0, the state x(t)
of NGDS6 (19) is bounded, specifically, lower-bounded
and upper-bounded.

Corollary 6 Consider positive constant a ∈ R involv-
ed in the nonlinear Eq. (5). Starting from an initial state
x(0) �= 0, the state x(t) of NGDS6 (19) will not be zero

x(t) �= 0,∀t > 0.

Besides, if the initial state x(0) > 0, the state of (19)
satisfies x(t) > 0. On the contrary, if the initial state
x(0) < 0, the state of (19) satisfies x(t) < 0.

In addition, we have the following theorem about
the exponentially convergent result of NGDS6 (19).

Theorem 7 Consider constant a > 0 ∈ R involved
in the nonlinear Eq. (5). Starting from an initial state
x(0), NGDS6 (19) possesses the exponential conver-
gence property. That is, EF (13) exponentially con-
verges to zero, and the state x(t) of (19) exponentially
converges to the theoretical scalar square root x∗ of a.

Proof Let us define a Lyapunov function candidate as

Ł6(x(t)) = ε6 = 1

2

(
x(t)

a
− 1

x(t)

)2

≥ 0, (56)

which can be discussed in the following two cases.

Case 1. If ε6 = (x(t)/a − 1/x(t))2/2 = 0, then
x(t) = x∗ = ±√

a. The solution of the non-
linear Eq. (5) is found.

Case 2. If ε6 = (x(t)/a − 1/x(t))2/2 > 0, then
x(t) �= x∗ = ±√

a.

As for Case 2, we derive the time derivative of (56)
as

Ł̇6(x(t)) = ε̇6 = dε6

dt
= ∂ε6

∂x

dx

dt
= ∂ε6

∂x
ẋ

= −γ

(
∂ε6

∂x

)2

. (57)

Following from (56), we obtain the first-order partial
derivative of ε6 with respect to x as

∂ε6

∂x
= (x2(t) − a)(x2(t) + a)

a2x3(t)
,

and we further have(
∂ε6

∂x

)2

= (x2(t) − a)2(x2(t) + a)2

a4x6(t)
.

In consideration of Lemma 8 and Corollary 6, ∃η6 > 1,
∀x(t), we have

η6 ≤ (x2(t) + a)2

x4(t)
,

where η6 > 1 is a constant. Thus, we further have
(

∂ε6

∂x

)2

= (x2(t) − a)2(x2(t) + a)2

a4x6(t)

≥ η6(x2(t) − a)2

a4x2(t)
= 2

η6ε6

a2 . (58)

Applying (57) and (58) yields

Ł̇6(x(t)) = ε̇6 = −γ

(
∂ε6

∂x

)2

≤ −2γ
η6ε6

a2 . (59)

In this case, ε6 �= 0, η6 > 0 and γ > 0. Let β6 =
2γ η6/a2 > 0. Then, (59) can be simplified as

ε̇6(x(t)) ≤ −β6ε6(x(t)).

Thus, we have

Ł6(x(t)) = ε6(x(t)) ≤ ε6(x(0))exp(−β6t),∀t ≥ 0,

(60)

which means that the energy function ε6 exponentially
converges to zero. That is, EF (13) is exponentially
convergent to zero.

Next, let us prove the exponentially convergent prop-
erty of the state x(t) of NGDS6 (19). By substituting
(56) into (60), we obtain

1

2

(
x(t)

a
− 1

x(t)

)2

≤ 1

2

(
x(0)

a
− 1

x(0)

)2

exp(−β6t),

which can be simplified as∥∥∥∥ x2(t) − a

x(t)

∥∥∥∥
2

≤
∥∥∥∥ x2(0) − a

x(0)

∥∥∥∥
2

exp(−1

2
β6t). (61)

Note that (61) can be also rewritten as∥∥∥∥ (x(t) − √
a)(x(t) + √

a)

x(t)

∥∥∥∥
2

≤
∥∥∥∥ (x(0) − √

a)(x(0) + √
a)

x(0)

∥∥∥∥
2

exp(−1

2
β6t).

(62)

For (62), it can be discussed in the following two cases.
Case 1. If the given initial state x(0) > 0, following

from Lemma 8, then we have x(0) ≥ x(t) ≥ x∗ = √
a
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or x(0) ≤ x(t) ≤ x∗ = √
a. In this case, we can obtain

a constant μ6 > 0 as

μ6 =
∥∥∥∥ x(0)(x(0) + √

a)

x(0)(x∗ + √
a)

∥∥∥∥
2

≥
∥∥∥∥ x(t)(x(0) + √

a)

x(0)(x(t) + √
a)

∥∥∥∥
2

> 0,

or

μ6 =
∥∥∥∥ x∗(x(0) + √

a)

x(0)(x(0) + √
a)

∥∥∥∥
2

≥
∥∥∥∥ x(t)(x(0) + √

a)

x(0)(x(t) + √
a)

∥∥∥∥
2

> 0.

Thus, we have

‖x(t) − x∗‖2 ≤ μ6‖x(0) − x∗‖2exp(−1

2
β6t),

which means that the state x(t) of NGDS6 (19) expo-
nentially converges to the theoretical positive solution
x∗ = √

a of (5).
Case 2. If the given initial state x(0) < 0, following

from Lemma 8, then we have x(0) ≥ x(t) ≥ x∗ =
−√

a or x(0) ≤ x(t) ≤ x∗ = −√
a. In this case,

∃μ6 > 0, which can be defined as another form

μ6 =
∥∥∥∥ x∗(x(0) − √

a)

x(0)(x(0) − √
a)

∥∥∥∥
2

≥
∥∥∥∥ x(t)(x(0) − √

a)

x(0)(x(t) − √
a)

∥∥∥∥
2

> 0,

or

μ6 =
∥∥∥∥ x(0)(x(0) − √

a)

x(0)(x∗ − √
a)

∥∥∥∥
2

≥
∥∥∥∥ x(t)(x(0) − √

a)

x(0)(x(t) − √
a)

∥∥∥∥
2

> 0.

Thus, we have

‖x(t) − x∗‖2 ≤ μ6‖x(0) − x∗‖2exp

(
−1

2
β6t

)
,

which means that the state x(t) of NGDS6 (19) expo-
nentially converges to the theoretical negative solution
x∗ = −√

a of (5).
Based on the above analysis, according to Theorem

1, we have the conclusion that NGDS6 (19) processes
the exponential convergence property. The proof is thus
completed. 
�

In summary, we construct six different NGDSs (14)–
(19) for scalar square root finding, which correspond
to six different EFs (8)–(13). More importantly, the
exponential convergence theorems of such six differ-
ent NGDSs are investigated completely.

Remark 2 Based on the above theoretical analyses, the
proposed NGDSs are all effective for scalar square
root finding, though they are based on different EFs.
It may give us a new direction on the definition of the
energy function for the dynamics system construction
(specifically, the NGDS construction): i.e., the energy
function is not only defined by following the definition
equation of the problem to be solved [e.g., the non-
linear Eq. (5)], but also defined as other appropriate
forms. More importantly, different dynamics systems
with their exponential convergence theorems proven
can thus be obtained by defining different EFs for the
problem to be solved, which can be an inspiring direc-
tion on the research of dynamics system.

5 Numerical verification and comparison

In the previous sections, different NGDSs based on
different EFs are proposed and investigated for scalar
square root finding, and the corresponding theorems
and proofs are given in detail. In this section, the cor-
responding MATLAB Simulink modeling of the pro-
posed NGDSs (14)–(19) is firstly developed for possi-
ble circuit implementation and also for the final pur-
pose of practical application. Then, two examples are
presented to illustrate the exponential convergence per-
formance and substantiate the efficacy of the proposed
NGDSs. Based on the comparative results of the pro-
posed six different NGDSs, the readers or practitioners
can find respective usages of such NGDSs and choose
a suitable NGDS for real problem solving.

The Simulink modeling can be viewed as a virtual
implementation of a real system satisfying a set of
requirements. Besides, the dynamic model developed
in MATLAB Simulink environment can be extended
to the hardware description language (HDL) code and
then to the final FPGA and ASIC realization [36].
In view of this point, we develop the corresponding
MATLAB Simulink modeling of the proposed NGDSs
(14)–(19), which is shown in Figs. 1 and 2. As seen
from Figs. 1 and 2, the structural complexities of
NGDSs (14)–(19) are different from each other. Gener-
ally speaking, for the purpose of hardware implemen-
tation, it is desirable for practitioners to develop a sim-
ple system owning relatively low structural complexity.
For a better illustration of the structural complexities
of NGDSs (14)–(19), the number of components of
NGDSs (14)–(19) in MATLAB Simulink modeling is
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Fig. 1 Overall MATLAB
Simulink modeling of
NGDSs (14), (15) and (16).
a Simulink modeling of
NGDS (14). b Simulink
modeling of NGDS (15).
c Simulink modeling of
NGDS (16)
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Fig. 2 Overall MATLAB
Simulink modeling of
NGDSs (17), (18) and (19).
a Simulink modeling of
NGDS (17). b Simulink
modeling of NGDS (18).
c Simulink modeling of
NGDS (19)

Adder 1

Adder 2

Out
1

−C−

Scope

Norm

MATLAB
Function

Multiplier 3

Multiplier 2
Integrator

1
s

Gain 2

−2
Gain 1

Divider 1

  Multiplier 1a

Adder 1

Adder 2

Multiplier 2

Out
1

−C−

Scope

Norm

MATLAB
Function

Integrator

1
s

Gain 2

−1

Gain 1Divider 1

  Multiplier 1

     Multiplier 3

a

Adder 1

Adder 2

Out
1

−C−

Scope

Norm

MATLAB
Function

Multiplier 5
Multiplier 4

Multiplier 3

Multiplier 2

Integrator

1
s

Gain 2

−1

Gain 1Divider 1

  Multiplier 1a

(a)

(b)

(c)

listed in Table 1. Evidently, in terms of structural com-
plexity, NGDS (14) requires less components and thus
is a simpler model in terms of implementation com-
pared with other NGDSs.

To illustrate the efficacy of the proposed NGDSs
(14)–(19) for solving the scalar square root problem,
the ensuing numerical example is presented.
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Table 1 Number of components of NGDSs (14)–(19) in MAT-
LAB Simulink modeling

Component NGDS

(14) (15) (16) (17) (18) (19)

Multiplier 2 2 2 3 3 5

Divider 0 1 2 1 1 1

Adder 1 1 2 2 2 2

Example 1 Let us consider the square root problem (5)
with a = cos(sin(10))+log10(414). Then, we have the
following nonlinear equation:

x2 − cos(sin(10)) − log10(414) = 0. (63)

The proposed NGDSs (14)–(19) are firstly developed
as MATLAB Simulink modeling and then exploited
to solve problem (63). Corresponding results are illus-
trated in Figs. 3, 4, 5. Note that the numerical exam-
ple is performed on a personal digital computer with
a Pentium E5300 2.6 GHz CPU, 2 GB DDR3 mem-
ory and a Windows XP Professional operating system.
Besides, positive and negative initial states x(0) = 1
and x(0) = −1 are set, respectively, for each NGDS.
As shown in Fig. 3, the x(t) trajectories of each pro-
posed NGDS denoted by solid curves all exponen-
tially converge to the theoretical solutions denoted by
dashed curves. In addition, we monitor the residual
error ‖ε‖2 = ‖x2(t) − cos(sin(10)) − log10(414)‖2

Fig. 3 State x(t)
trajectories of NGDSs
(14)–(19) for solving (63)
with γ = 10. a via NGDS
(14). b via NGDS (15).
c via NGDS (16). d via
NGDS (17). e via NGDS
(18). f via NGDS (19)
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Fig. 4 Residual errors ‖ε‖2
of NGDSs (14)–(19) for
solving (63) with γ = 10.
a via NGDS (14). b via
NGDS (15). c via NGDS
(16). d via NGDS (17).
e via NGDS (18). f via
NGDS (19)
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during the scalar square root finding process. Figure
4 shows that the residual error ‖ε‖2 of each NGDS
exponentially converges to zero, which coincides with
the theoretical analyses given in the previous sections.
Moreover, from Figs. 3 and 4, one can readily find that
NGDSs (14)–(19) possess different convergent perfor-
mance for solving problem (63) in the perspective of
computing time (or termed, convergent time) consump-
tion . It needs about 0.05 s for NGDS (14) to solve scalar
square root problem (63), while it consumes more than
0.05 s for other NGDSs [e.g., more than 4 s for NGDS
(15)] to solve the same problem. Therefore, in terms of
computing time complexity, it would be more desirable
for practitioners to choose NGDS (14) to solve this type
of scalar square root problems.

Moreover, we can improve the exponential conver-
gence performance of the proposed six NGDSs (14)–
(19) by increasing the value of design parameter γ . As
seen from Fig. 5, the convergence time of NGDS (15)
can be expedited from around 0.4 s to 0.04 s and to
0.004 s, as the value of γ is set from 102 to 103 and
to 104, respectively. Note that the convergence perfor-
mance of other NGDSs can also be improved by setting
the design parameter γ properly. That is to say, all the
proposed NGDSs (14)–(19) are efficacy for solving the
specific scalar square root problem if only the value of
γ is set appropriately in practical application.

In order to further investigate the benefits and disad-
vantages as well as respective usages of the proposed
NGDSs (14)–(19), we present another numerical exam-
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Fig. 5 Residual error ‖ε‖2 of NGDS (15) for solving (63) with
different values of γ (a) with γ = 100 (b) with γ =1,000 (c)
with γ =10,000

ple, in which we find the application background and
condition for each proposed NGDS.

Example 2 Let us consider the following nonlinear
equations:

x2(t) − 2.5 × 10−5 = 0, (64)

x2(t) − 2.5 × 10−3 = 0, (65)

x2(t) − 2.5 × 10−1 = 0, (66)

x2(t) − 2.5 × 101 = 0, (67)

x2(t) − 2.5 × 103 = 0, (68)

x2(t) − 2.5 × 105 = 0. (69)

As for the above nonlinear equations, the theoretical
solutions x∗ of each scalar square root problem are
±5×10−3, ±5×10−2, ±5×10−1, ±5×100, ±5×101

and ±5×102, respectively. In this numerical example,
the scalar square root problems are investigated under
the same conditions (with γ =1,000 and with the same
initial states being set as x∗ ± 1) for comparative pur-
pose.

Table 2 shows the computing time consumption for
solving different scalar square root problems (64)–(69)
via NGDSs (14)–(19) with γ =1,000. As seen from
Table 2, the computing time of NGDS (14) decreases, as
the absolute value of theoretical solutions to each scalar
square root problem (denoted by SSRP) increases, for
the reason that the NGDSs (14)–(19) have different
parameters βi with i = 1, 2, . . . 6 (investigated in Sect.
4), which scale the exponential convergence rates. Such
a numerical result shows that NGDS (14) is more suit-
able for the SSRP with a relatively large absolute value
of solution in the practical applications. On the con-
trary, NGDS (15) is more suitable for the SSRP with a
relatively small absolute value of solution in the practi-
cal applications, for the reason that the computing time
of NGDS (15) decreases, as the absolute value of the-
oretical solutions of each SSRP decreases accordingly.
In addition, NGDSs (16) and (19) have similar numeri-
cal results just like NGDS (15), which can also be seen
from Table 2. Besides, NGDSs (17) and (18) both have
a relatively stable computing performance; especially,
NGDS (18) has the computing time of the order of
10−3 s for solving all of the six different SSRPs. Thus,
NGDS (18) should have wider range of applications in
real world.

In summary, the above numerical verification and
comparison illustrated by two examples have fully

Table 2 Computing time consumption (in seconds) for solving different SSRPs via NGDSs (14)–(19) with γ =1,000

SSRP NGDS

(14) (15) (16) (17) (18) (19)

(64) 4.0 × 10−1 3.2 × 10−9 6.0 × 10−11 5.0 × 100 3.0 × 10−3 1.8 × 10−12

(65) 4.0 × 10−2 3.8 × 10−7 3.0 × 10−7 6.0 × 10−1 3.0 × 10−3 1.8 × 10−8

(66) 4.0 × 10−3 2.1 × 10−4 2.2 × 10−4 3.3 × 10−3 2.0 × 10−3 1.2 × 10−4

(67) 5.0 × 10−5 2.6 × 101 3.4 × 10−2 4.2 × 10−2 1.6 × 10−3 1.0 × 100

(68) 8.0 × 10−7 2.2 × 107 3.5 × 100 3.6 × 100 1.5 × 10−3 1.0 × 104

(69) 8.0 × 10−9 2.2 × 1013 3.5 × 102 3.6 × 102 1.5 × 10−3 1.0 × 108
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shown the efficacy of the proposed six NGDSs (14)–
(19) for scalar square root finding. Moreover, the main
differences, benefits and disadvantages, as well as the
application background and condition, have been dis-
cussed in detail for practitioners to choose a suitable
NGDS for the specific scalar square root problem solv-
ing in practical applications.

6 Conclusions

In this paper, the GDSs, i.e., LGDS and NGDS, with
their exponential convergence theories have been inves-
tigated. Based on different EFs [i.e., (8)–(13)], different
NGDSs [i.e., (14)–(19)], which are different from the
earlier-presented LGDSs, have been novelly designed,
proposed and investigated in the form of the first-order
nonlinear differential equations for square root find-
ing. More importantly, theoretical analyses of the expo-
nential convergence theorems of the proposed NGDSs
have been proved based on Lyapunov theory, which
has substantiated well the feasibility and validity of the
proposed NGDSs for square root finding. Numerical
verification and comparison including two illustrative
examples have fully shown the efficacy of the proposed
six NGDSs, in which the main differences and respec-
tive usages, as well as the application background and
condition, have been discussed in detail.

As potential applications and a future research direc-
tion, we expect to investigate microprocessors which
contain the square root implementation in the opera-
tion set based on the elegant NGDSs proposed in this
paper.
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