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Abstract This paper investigates an alternative mass-
sensing technique based on nonlinear micro-/
nanoelectromechanical resonant sensors. The proposed
approach takes advantage of multi-stability and bifur-
cations of the hysteretic frequency responses of the
electrostatically actuated resonator. For this purpose, a
reduced-order model is considered. Numerical results
show that sudden jumps in amplitude make the detec-
tion of a very small mass possible. Moreover, the limit
of detection can be set with the value of the operat-
ing frequency. However, when operating at fixed fre-
quency, the study of basins of attraction indicates that
this bifurcation-based mass detection does not exhibit
the expected robustness. A possible improvement is
proposed, based on the reinitialization of the system
by a forced jump down on the hysteretic response
curve. Using a frequency sweep which varies slowly
in sinusoidal form solves the reinitialization problem
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and enables automatic real-time detection. Finally, the
added mass is located on the beam by using the reso-
nance at the first two natural frequencies.
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1 Introduction

Measuring tiny masses is an important application of
M/NEMS resonant sensors. Mass sensors are used in
biologic environment for DNA hybridization, biomole-
cules, enzymes, proteins [1–3], chemical reactions [4],
mercury’s vapor [5–7], gas concentration [8], explo-
sives [9], etc.

Generally speaking, the principle of a resonant sen-
sor is based on the forcing of a microbeam on its fun-
damental bending mode by means of an electrode that
can also serve as a detection sensor of the frequency
shift induced by an external perturbation (added mass,
acceleration, Coriolis force [10]). The size of the sensor
is conditioned by the mass to be detected. The dynamic
range can theoretically be improved by downsizing the
sensors. However, downsizing is limited by available
manufacturing processes, by the need of detection sur-
faces as large as possible, and by the onset of undesir-
able nonlinear phenomena. A length of 150 nm associ-
ated with a forcing frequency of 2 GHz makes a 1.7 yg
(1 yg = 10−24 g) mass detection possible, see Chaste
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et al. [11], while a length of 4µm limits the detection
to a 0.4 ag (1 ag = 10−18 g) [12]. Hanay et al. [13]
studied the potential of NEMS-based mass spectrom-
etry (NEMS-MS) by measuring the mass of an indi-
vidual protein macromolecules in real time. Such a
NEMS-MS system can access masses above 500 kDa
(1 Da=1.66 × 10−27 kg) and has a sensitivity of a sin-
gle Dalton and an upper limit of detection of hundreds
of MegaDaltons [14]. In [12], the theoretical and exper-
imental fundamental frequency shifts are compared. It
is shown that the relationship between frequency shift
and added mass is linear, i.e., the smaller the added
mass is, the smaller the frequency shift is.

Several techniques have been explored to enhance
the sensitivity. The resonator can be driven in linear or
nonlinear regime. In the linear regime [12], vibrations
are limited to small amplitudes, which may not exceed
thermomechanical noise, thus making the detection dif-
ficult. Exciting the microbeam in the nonlinear regime
can improve the sensitivity of detection, as shown by
Buks and Yurke [15] and Kacem et al. [16], but exposes
the resonator to pull-in, namely the collapse of the mov-
ing structure onto the fixed electrode [17–19]. Another
possibility consists in using higher modes. Narducci
et al. [20] studied the first two modes of a beam and
showed experimentally that the sensitivity is higher for
the second resonance frequency than for the fundamen-
tal one. In [21], the sensitivity of detection is improved
from 23 to 276 times when switching from the second
to the fourth mode. However, exciting higher modes
require much more energy than for the fundamental
mode to obtain the same output signal amplitude. Using
the first torsional mode of microcantilevers rather than
the first bending mode can also improve the resolution
by one order [22,23]. Parametrically excited mechan-
ical systems have also attracted attention [24]. Zhang
et al. [25] and Zhang and Turner [26] concluded that if
the resonator is parametrically excited, its sensitivity is
highly increased. Similarly, Thomas et al. [27] achieved
experimentally a quality factor enhancement by up to
a factor 14 in air by means of parametric amplification.

Recent research has developed alternative sens-
ing approaches exploiting inherent properties of the
nonlinear behavior of MEMS like dynamic instabil-
ities or bistability, and based on amplitude rather
than frequency shifts. Khater et al. [28] showed that
the sensitivity of electrostatically actuated MEMS is
highly enhanced when the sensor is operated close
to pull-in. They proposed a binary sensing mecha-

nism in which the sensor goes to pull-in when the
mass to detect exceeds a given threshold. Younis and
Alsaleem [29] observed that exciting a electrostatically
actuated microbeam close twice its fundamental fre-
quency is very attractive as it provides a sharp tran-
sition from the no-mass to the added-mass response
curve.

Very recently, Kumar et al. [30,31] proposed a
bifurcation-based mass-sensing technique and
explained the use of amplitude jumps between multi-
stable states close to a cyclic-fold/saddle-node bifur-
cation in the nonlinear frequency response. Harne
and Wang [32] presented a bifurcation-based cou-
pled linear-bistable system for mass-sensing, provid-
ing experimental results of bifurcations between multi-
stable states. Guo and Fedder [33] introduced the use
of hysteretic cycle in the frame of a bistate control of a
parametric resonance.

In this paper, similar ideas are discussed and
improved taking into account dynamical bifurcations
and transient behaviors in hysteretic cycles. Strate-
gies for detection, quantification, and localization of
an added mass are proposed. Section 2 presents the
model, Sect. 3 the principle of detection, Sect. 4 the
quantification, and Sect. 5 the localization.

2 Model

To describe the principles of detection, quantification,
and localization of a small added mass, a model of
a clamped–clamped beam is studied with or without
added mass. The model considered here permits devel-
oping orders of magnitude of realistic beams. These
developments could be extended to other models.

2.1 Case without added mass

Let the clamped–clamped beam model sketched in
Fig. 1 have its nonlinear behavior in bending governed
by the integro-differential equation [34,35]:

Fig. 1 Schematic of the clamped–clamped microbeam-based
electromechanical resonator
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with w̃(x̃, t̃) the lateral deflexion of the beam along the
axis Ox, I, h, b, and l the moment of inertia, thickness,
height, and length of the beam, respectively, E and
ρ the modulus of elasticity and the mass density of
the material, c̃ the viscous damping coefficient, g the
beam–electrode gap. The axial force Ñ is due to design
and manufacturing, and the bias Vdc and alternative Vac

voltages to the electrode. The coefficient Cn related
to fringing field effect is computed in [36]. By using
nondimensional variables, Eq. (1) becomes
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ω1 and Q are the fundamental frequency and its asso-
ciated quality factor. The eigenmodes of the linear
undamped and unloaded microbeam φk(x) are calcu-
lated, and the following Galerkin expansion is used for
the displacement w(x, t):

w(x, t) =
Nm∑
k=1

φk(x)ak(t), (4)

where ak(t) is the kth time-varying generalized coordi-
nate. Then, Eq. (2) is multiplied by (1−w(x, t))2φi (x)

for i = 1, . . . , Nm and integrated from 0 to 1, and the
second-order differential equation in time is written in
the form of the matrix equation:

[
M0 + M1(a) + M2(a)

]
ä + [

C0 + C1(a) + C2(a)
]
ȧ

+ [
K0 + K1(a) + K2(a)

]
a − (

N + α1T2(a)
)[

KT

+ KT 1(a) + KT 2(a)
]
a = α2

(
Vdc + Vac cos Ωt

)2F.

(5)

The matrices M0, M1(a), M2(a), C0, C1(a), C2(a),
K0, K1(a), K2(a), KT , KT 1(a), KT 2(a), the vector F
and the scalar T2(a) are defined in [35]. In this paper, the
quasi-analytical averaging method as well as a numeri-
cal procedure based on the Harmonic Balance Method
and the Asymptotic Numerical Method (ANM) [37] are
used to solve Eq. (2) as explained in [35]. The results
of the two methods are similar for small amplitude but
the difference is significant for high-vibration ampli-
tude vibration. This is due to the basic assumptions of
the averaging method that limit its use to small non-
linearities. In [35], the influence of higher modes is
also considered, and it is shown that for high-vibration
amplitudes (Wmax > 0.5), the computation must be
carried out with several modes.

2.2 Case with added mass

Let the small and lumped added mass of mass m p and
of tiny size fall onto the beam’s surface. The beam and
the added mass constitute a continuum whose bending
behavior is governed by the following equation applied
to an infinitesimal volume dx̃ , with δx̃0(x̃) the Dirac
function:
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Ñ + Ebh

2l

∫ l

0

[∂w̃(x̃, t̃)

∂ x̃

]2
dx̃

)∂2w̃(x̃, t̃)

∂ x̃2 dx̃

= 1

2
ε0

bCn
[
Vdc + Vac cos Ω̃ t̃

]2

(
g − w̃(x̃, t̃

)2 dx̃ . (6)

By introducing the nondimensional variables (3), Eq. (6)
is written in the form
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Table 1 Designs 1 and 2 of the clamped–clamped microbeam

Design Q h (µm) b (µm) l (µm) g (µm)

1 10,000 10 10 400 2

2 10,000 1.5 1.5 40 0.1

Table 2 Nondimensional and physical values of added mass

Ratio m = m p
ρbhl 10−4 5 × 10−5 10−5

m p (kg) of design 1 9.3 × 10−15 4.6 × 10−15 9.3 × 10−16

m p (kg) of design 2 2.1 × 10−17 1.05 × 10−17 2.1 × 10−18

with m = m p
ρbhl the mass ratio. As in the case without

added mass, the Galerkin expansion (4) is used and the
new matrix equation contains the additional matrices
µ0,µ1(a),µ2(a):

[
M0 + M1(a) + M2(a) + µ0 + µ1(a) + µ2(a)

]
ä

+[
C0+C1(a)+C2(a)

]
ȧ+[

K0+K1(a)+K2(a)
]
a

−(
N + α1T2(a)

)[
KT + KT 1(a) + KT 2(a)

]
a

= α2
(
Vdc + Vac cos Ωt

)2F. (8)

µ0, µ1, µ2 are determined as follows, with 1 ≤
i, j, k, l ≤ Nm :

μ0i j = mφi (x0)φ j (x0), (9)

μ1i j = −2m
Nm∑
k=1

(
φi (x0)φ j (x0)φk(x0)

)
ak(t), (10)

μ2i j = m
Nm∑
k=1

Nm∑
l=1

(
φi (x0)φ j (x0)φk(x0)φl(x0)

)
ak(t)al(t),

(11)

In the following sections, two microbeam designs and
three mass ratios (see Tables 1, 2) are tested. The loca-
tion of the added mass is assumed to be known in the
sections dedicated to the detection and to the quan-
tification. The forced frequency–response curves are
computed with the ANM.

3 Detection of the presence of an added mass

3.1 Principle

The detection of added mass is based on the shift of
the forced frequency responses. Two methods are pos-
sible. The first one is based on the frequency shift at
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Fig. 2 Design 2: Vdc = 100 Vac = 1.9 V, without added mass
(solid line), with added mass m = 5 × 10−5 (dashed line)

the maximum of resonance: the presence of the added
mass shifts down the forced frequency response, see
Fig. 2, ΔΩ being the resonant frequency shift. The
second one focuses on the amplitude shift ΔWmax, see
Fig. 2. Unfortunately, at the maximum of resonance,
this shift is too small for an accurate detection. In [31],
the amplitude shift is measured close to a saddle-node
bifurcation instead. This permits to take advantage of
the nonlinear characteristics of the frequency response
and results in a large amplitude jump, thus providing
an efficient mass-sensing approach. This technique also
simplifies the experimental implementation by elimi-
nating the need for complex frequency-tracking hard-
ware [30].

3.2 Softening behavior

Let us consider design 2 exhibiting a softening behav-
ior. In order to identify the presence of the added
mass, the beam is forced at an operating frequency
Ωop close to the bifurcation frequency Ωbif . In practice,
the frequency is first increased from Ω1 to Ω2. When
approaching the bifurcation point Ωbif , the frequency is
fixed to Ωop. Then, as shown in Fig. 2, the sudden pres-
ence of the added mass induces a jump from point A1

on the solid curve (without added mass) to point A2 on
the dashed curve (with added mass). Figure 3 shows the
forced frequency responses due to two different added
masses. A small added mass creates a large jump from
A1 to A3 and a bigger mass, a smaller jump from A1 to
A2. Therefore, the smaller the added mass is, the larger
the amplitude shift will be.
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Fig. 4 Design 1: Vdc = 10Vac = 9 V, without added mass (solid
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3.3 Hardening behavior

Let us consider design 1 exhibiting a hardening
behavior (see Fig. 4). As for the softening behavior,
when approaching the bifurcation frequency Ωbif , the
response jumps from a large amplitude at A1 (solid
curve) to a small amplitude at A2 (dashed curve) with
the added mass. This mass is thus detected by the large
jump A1 → A2.

3.4 Robustness and reinitialization of detection
mechanism

For the softening behavior, with the added mass, the
response stabilizes on the periodic limit cycle corre-
sponding to A2 (see Fig. 2). When the added mass
leaves the microbeam, the solution escapes this limit
cycle and, after some transient motion, reaches the limit
cycle corresponding either to point A1 or to point A3,

W.

A3

Top

A1

Bottom

W

m=0

−4m=10

m=5.10−4 increasing mass

(a)

W.

A1

A3

m=1,5.10−4

m=5.10−4

m=9.10 −5

W

Bottom

Top

(b)

Fig. 5 Basin of attraction of design 2 without added mass, Vdc =
100Vac = 1.9 V. a Ωop = 22.3274, b Ωop = 22.325. Basin of
attraction of point A1 (yellow) and point A3 (blue). (Color figure
online)

depending on the initial conditions. If it returns to A1,
the next added mass is easily detected. Conversely, if
the solution jumps to the upper point A3, the next small
added mass will cause a small, difficult to detect, jump
from A3 to A2. The value of the added mass defines a
unique limit cycle, and the moment of its takeoff defines
a unique point on this limit cycle and thus unique ini-
tial conditions for the escape from A2. Establishing the
basins of attraction of the microbeam without added
mass, and identifying these initial conditions for sev-
eral values of m (indicated by red dots on Fig. 5a), per-
mits to determine which point (A1 or A3) is reached.
It can be shown that, depending on the moment when
the solution escapes the periodic limit cycle, the basin
of attraction and the initial conditions simply undergo
a rotation and keep the same relative position. In other
words, the jump down to A1 or up to A3 does not depend
on the moment when the mass takes off. From the com-
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putations at Ωop = 22.3274, it turns out that for mass
ratios m ≤ 5 × 10−4, i.e., for values m p ≤ 10−16 kg,
the jump always occurs toward the upper solution A3

and consequently the bifurcation-based detection does
not work anymore (see Fig. 5a).

In Fig. 5b, with the forcing frequency Ωop =
22.325, the basin of attraction of the bottom stable solu-
tion is larger and A1 is reached when m > 1.5 × 10−4,
i.e., m p > 3×10−17 kg. Since the masses of interest are
much lower than this value, it can be concluded that the
system never returns to its initial stable position, i.e.,
it is not reinitialized, and thus the bifurcation-based
detection only works once.

A reinitialization solution, see Fig. 2, consists in first
decreasing the operating frequency Ωop until point B2,
then jumping down to point B1, and finally, increasing
the frequency again up to point A1.

For the hardening behavior, the reinitialization is
also presented in Fig. 4. After the takeoff of the added
mass, the response arrives at A3 (close to A2) and it
cannot return to A1, see Fig. 4. Thus, the reinitializa-
tion is necessary to return to the operating point A1.
Firstly, the frequency is decreased from ΩA3 to ΩB1 .
Here, the response jumps to B2 and then the frequency
is increased up to the operating frequency ΩA1 .

However, some drawbacks arise: because of the
small jump from A2 to A3 (Figs. 2 or 4), the “takeoff”
moment of the added mass is difficult to detect. So the
moment when the reinitialization must be performed
remains unknown.

3.5 Automatic reinitialization

The aforementioned problems of reinitialization can
be overcome by using a slow time-varying frequency
sweep such as

Ω(t) = Ωop + δ cos(επ t + φ) (12)

with the sweep velocity ε � Ωop. Ωmax = Ωop+δ and
Ωmin = Ωop − δ are the frequency-sweep boundaries.

In Fig. 6a, several successive frequency sweep-up
and sweep-down according to Eq. (12) are performed,
and W (respectively, Ω) is plotted versus nondimen-
sional time t (Fig. 6a, respectively b).

In Fig. 6a, variations in W versus t permit to dis-
tinguish some phases 1–2–3–4–5/1–2–3–4–5/…of the
behavior, which are presented in Fig. 6c as a frequency–
amplitude plot. This sequence of phases defines the

0 1 2 3 4 5 6 7 8 9

x 10
4

−0.5

0

0.5

Non−dimensional time

A
m

pl
itu

de
 W

m
ax

1
2

3

4

5

P
0

0 1 2 3 4 5 6 7 8 9

x 10
4

22.3

22.32

22.34

Non−dimensional time

fr
eq

ue
nc

y 
Ω

1

2

3
4

5

1

P
0

(a)

(b)

22.295 22.3 22.305 22.31 22.315 22.32 22.325 22.33 22.335 22.34
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

frequency Ω

A
m

pl
itu

de
 W

m
ax

P
0

1 2

3

4

5 (c)

Fig. 6 Determination of the frequency-sweep response. a ampli-
tude W (t), b frequency Ω(t), c frequency-sweep response

hysteretic cycle obtained by a dynamical variation in
Ω: in the limit case of quasi-static evolution of Ω

(ε → 0+), the hysteretic cycle corresponding to the
theoretical response curve of Fig. 2 with added mass is
obtained.

3.5.1 Frequency-sweep principle for the softening
behavior

This subsection presents the principle of the frequency
sweep for the softening behavior. It is illustrated with
theoretical response curves determined by the ANM.

The frequency sweep Ω(t) is illustrated in Fig. 7.
Ω0

bif1 and Ω0
bif2 are the two bifurcation frequencies of

the response without added mass, and the maximum
and minimum frequencies Ωmin and Ωmax are set below
Ω0

bif1 and Ω0
bif2, respectively. ΔΩ = Ω0

bif1 − Ωmin

defines the frequency shift of the maximal added mass
to be detected. Ω0

bif1 − Ωmax = ΔΩ − 2δ defines the
threshold of mass detection.
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Fig. 7 Principle of frequency sweep without added mass. The
response goes back-and-forth between points A and B

Figure 7 illustrates specifically the cycle without
added mass. The response follows the curve between
points A and B. There is no hysteretic cycle nor asso-
ciated amplitude jump.

The detection of a mass variation, for instance a
bioparticle falling on the microbeam, is illustrated in
Fig. 8 where the frequency sweep defines hysteretic
cycles corresponding to the two following cases:

• In the first case, shown in Fig. 8a, the particle falls
at the moment (point 1) when the sweep frequency
Ω remains lower than Ωm

bif1. So the response goes
through the hysteretic cycle according to the path
joined by the succession of the following points: 1–
2/3–4–5–6–7–8/3–4–5–6–7–8/…, there are ampli-
tude jumps from 3 to 4 and from 6 to 7 in a cyclic
manner.

• In the second case, shown in Fig. 8b, the particle
falls at the moment (point 1) when the sweep fre-
quency is between Ωm

bif1 and Ω0
bif . The response

path is 1–2/3–4–5–6–7–8/3–4–5–6–7–8/…. When
the particle falls on the beam, the amplitude first
jumps from 1 to 2. Then, there are two amplitude
jumps from 7 to 8 and from 4 to 5 in a cyclic manner.

When the particle takes off, the response is presented
in Fig. 9. The two following cases are distinguished as:

• In the first case, shown in Fig. 9a, the particle
takes off at the moment when the sweep frequency
is lower than Ω0

bif2. The starting point is 1 or 1′
depending on whether the response starts from the
top or the bottom of the curve FM and the response
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Fig. 8 Responses with added mass. An added mass arrives when
Ω < Ωm

bif1 (a) or when Ω ≥ Ωm
bif1 (b). The response follows

hysteretic cycles

path is then 1 or 1′–2/A–B/A–B/…. After a jump to
point 2, the response follows the curve F0 between
points A and B, i.e., the response curve without
added mass of Fig. 7. There is no hysteretic cycle
nor amplitude jump.

• In the second case, shown in Fig. 9b, the particle
takes off at the moment when the sweep frequency
is higher than Ω0

bif2: the starting point is 1 or 1′,
and the response jumps to top point 2′ or bottom
point 2. If there is a jump down to 2, the response
path is then 1 or 1′–2/B–A/B–A/…. After a jump
to point 2, the response is the part of the curve F0

between points A and B. If there is a jump up to
2′, the response path is then 1 or 1′–2′–3′–4′–4/A–
B/A–B/…. After two successive jumps up to 2′ and
down to 4, the response also goes back-and-forth
between A and B as in Fig. 7.
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Fig. 9 Responses after mass takeoff triggered when Ω < Ω0
bif2

(a) or when Ω ≥ Ωm
bif1 (b)

Hence when varying the frequency from Ωmin up to
Ωmax, the steady response path presents a maximum
of amplitude Wmax > 0.5 with added mass (Fig. 8),
whereas Wmax < 0.2 without added mass (Fig. 7). The
detection principle is based on this difference.

3.5.2 Numerical example of the frequency sweep
for the softening behavior

In order to validate the frequency-sweep principle pre-
sented in Sect. 3.5.1, a numerical example with a given
ε is presented in what follows.

Let us consider design 2 and the following frequency
sweep:

Ω(t) = 22.317 + 0.01 sin(10−5π t), (13)
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Fig. 10 Frequency sweep for design 2. a response Wmax − t , b
response Wmax −Ω . Without added mass (solid line), with small
added mass (dashed line), and big added mass (dotted line)

corresponding to the physical values:

Ω̃(t̃) = 8.1866 × 106 + 3.67 × 103 sin(23π t̃) (Hz).

(14)

Let the added mass remain on the beam during two
sweep periods in such a way that no additional added
mass falls on the beam in the mean time.

Figure 10a shows the evolution of Wmax versus time
for several periods of the frequency sweep. The fol-
lowing scenario is considered: from an initial position
P0, the microbeam vibrates without added mass. The
steady-state regime is reached after transient regime
from P0 to P1 (see Fig. 10b). Then, at point 1, the added
mass m1 falls on the microbeam (dashed line) and the
response path is 1/2–3–4–5–6/2–3–4–5–6…. After two
sweep periods, this added mass leaves the microbeam
at point 7 and the beam continues to vibrate without
added mass. Finally, the process is iterated from point
8, with another mass m2.

In Fig. 10a, the time history response shows that in
the presence of the added mass on the beam, the peaks
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are larger than 0.5 for two successive periods. Hence,
for the softening behavior, the detection principle is
based on amplitude jumps and on the change in maxi-
mum amplitude.

In Fig. 10b, the transient regime and the correspond-
ing steady-state response curve are plotted, providing
the hysteretic cycle described by the sequence of num-
bered points. This curve is used again in the next section
to quantify the added mass.

3.5.3 Frequency-sweep principle for the hardening
behavior

Similarly to Sect. 3.5.1, the frequency-sweep principle
is illustrated with the theoretical response determined
by the ANM.

The frequency varies slowly according to (12), with
Ωmin < Ω0

bif2 and Ωmax < Ω0
bif1. Without added mass,

the steady response is A − B/A − B/ . . .. When the
particle falls on the beam, the two following cases are
distinguished as:

• In the first case, shown in Fig. 11a, the particle
arrives when the sweep frequency is lower than
Ωm

bif1. The response path is 1–2/3–4–5–6–7–8/3–4–
5–6–7–8/…or 1–2′/4–5–6–7–8–3/4–5–6–7–8–3/…

• In the second case, shown in Fig. 11b, the particle
arrives when the sweep frequency is larger than
Ωm

bif1. The response curve is 1–2/3–4–5–6–7–8/3–
4–5–6–7–8/…

So, the response with added mass is the hysteretic cycle
with two amplitude jumps at the bifurcation frequen-
cies.

When the added mass takes off, the two following
cases are distinguished as:

• In the first case, shown in Fig. 12a, the added mass
takes off at the moment when the sweep frequency
is lower than Ω0

bif2. The starting point is 1 or 1′ and
the response path is then 1 or 1′–2/A–B/A–B/…

• In the second case, shown in Fig. 12b, the added
mass takes off at the moment when the sweep fre-
quency is larger than Ω0

bif2. The starting point is 1
or 1′. If jumping to 2, the response path is then 1
or 1′–2/3–4–4′/A–B/A–B/…. If jumping to 2′, the
response path is then 1 or 1′–2′/B–A/B–A/…

Hence, when sweeping from Ωmin to Ωmax, the
steady-state response without added mass is the branch
A − B, with no hysteretic cycle. So there is no ampli-
tude jump, and the minimum amplitude is obtained
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Fig. 11 Responses with an added mass arriving when Ω <

Ωm
bif1 (a) or when Ω ≥ Ωm

bif1 (b)

at point A (Wmax(A)). The steady-state response with
added mass follows the hysteretic cycle of Fig. 11, with
two amplitude jumps. The minimum amplitude is very
small. Its measurement could be difficult in the pres-
ence of noise.

3.5.4 Numerical example of the frequency sweep
for the hardening behavior

Let us consider the following frequency sweep for
design 1 exhibiting the hardening behavior

Ω(t) = 22.3956 + 0.0256 sin(5 × 10−5π t), (15)

corresponding to the physical values

Ω̃(t̃) = 5.477 × 105 + 620 sin(7.68π t̃) (Hz). (16)

In Fig. 13a, without added mass, the response (solid
line) does not show any amplitude jump. Once the
steady-state regime has been reached, the response is
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Fig. 12 Responses after mass takeoff triggered when Ω < Ω0
bif2

(a) or when Ω ≥ Ωm
bif1 (b)

the branch A − B, see Fig. 13b with a change in ampli-
tude from Wmax = 0.49 at point B to Wmax = 0.14
at point A. At moment 3, an added mass m1 = 10−5

falls on the beam. The response (dashed line) jumps
from a maximum amplitude Wmax � 0.49 (point 4) to
a minimum amplitude Wmax � 0.01 (point 5). After
two sweep periods, the added mass takes off at point
8, the response goes back to the branch A − B with
no jump. At point 9, another mass m2 = 10−4 arrives,
and the response jumps from a maximum amplitude
Wmax � 0.49 (point 13) to a minimum amplitude
Wmax � 0.01 (point 10).

Hence, for the hardening behavior, the detection
principle is based on amplitude jumps and on the
change in minimum amplitude.

From a theoretical point of view, there is no real
advantage in using either softening or hardening behav-
ior for mass detection. The respective hysteretic cycles
are basically reversed, with similar properties. As
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Fig. 13 Frequency sweep for design 1: without added mass
(solid line), with small mass m1 = 10−5 (dashed line) and bigger
mass m2 = 10−4 (dotted line). a response Wmax − t , b response
Wmax − Ω

shown in Figs. 10a and 13a, an event is characterized by
a clear change in the maximum/minimum amplitude in
the case of softening/hardening behavior, respectively,
and by large jumps in both cases.

3.6 Mass-detection threshold

Theoretically, if it is possible to set exactly Ωmax =
Ω0

bif1, then any mass without any lower limit will
cause a jump in amplitude. However, in practice, this is
either not possible because of the limited resolution of
the instrumentation or not desirable in order to avoid
unwanted jumps due to noise-related perturbations. As
a consequence, Ωmax is set such that Ωmax < Ω0

bif1,
and the difference between Ωmax and Ω0

bif1 governs
the threshold providing the minimal mass that can be
detected.

For example, in Fig. 14, at Ωop = 22.325, a large
jump from P0 (Wmax = 0.09) to P2 on the dotted line
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(Wmax = 0.42) indicates the presence of masses m ≥
9 × 10−5. For masses m < 9 × 10−5, for instance
m = 8 × 10−5, there is only a small jump from P0 to
P1 instead of the upper point near P2, as confirmed by
a study of the basin of attraction.

4 Quantification of an added mass

4.1 Quantification via frequency shift

Let x0 be the position of the added mass on the beam.
If φ(x0) �= 0, there is always a frequency shift of the
response curve depending on the added mass. Hence,
the frequency shift ΔΩ is measured to identify the
mass (see Fig. 15). Though it is commonly used in the
linear regime, this type of quantification is even more
interesting in the nonlinear regime since Wmax is larger
and easier to discriminate from the measurement noise.
However, in both cases, the relationship between ΔΩ

and the added mass m is linear; thus, the quantification
becomes all the more difficult as the mass decreases.

4.2 Quantification via amplitude jumps

4.2.1 Using fixed frequency

For the hardening behavior, with a large or small added
mass, there is always a jump from a large value to a
small value of Wmax, see Figs. 11 and 13. The detection
of the added mass is possible but its quantification is
difficult with a fixed frequency Ωop since the amplitude
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Fig. 15 Design 2: quantification with frequency shift, for Vdc =
100Vac = 1.9 V, without added mass (solid line), m = 5 × 10−4

(dashed line); m = 10−3 (dotted line)

of the jump is almost the same whatever the value of
the added mass.

For the softening behavior, at a fixed frequency Ωop,
the amplitude of the jump depends on the value of
the mass: a small mass induces a large jump and vice
versa. Using only one fixed frequency is not sufficient
to quantify a large range of added masses. Using sev-
eral fixed frequencies changes the threshold of detec-
tion (see Sect. 3.6) and permits to improve this range
of quantifiable masses or to set the upper and lower
bounds of masses to be detected.

In Fig. 16, at Ωop = 22.317, the masses 3.8 ×
10−4 ≤ m ≤ 5 × 10−4 are quantified by jumps from
Wmax = 0.02 to Wmax = 0.25 or 0.4. When Ωop

approaches Ωbif more closely, i.e., Ωop = 22.325,
masses 9 × 10−5 ≤ m ≤ 2 × 10−4 are quantified
by the jumps from 0.1 to 0.25 or 0.4.

4.2.2 Quantification via frequency sweep and
hysteretic cycles

In the case with added mass, for the softening behav-
ior (respectively, for the hardening behavior), ΔW
and ΔΩ are the amplitude and frequency differences
between two points, one point having the maximal
amplitude and other the maximal frequency Ωmax

(respectively, the minimal frequency), as represented
in Fig. 17.

Similarly to Sects. 3.5.2 and 3.5.4, the frequency
sweep can be used to quantify the added mass. In
Fig. 10b, the quantification can be carried out using
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Fig. 16 Design 2: quantification with amplitude jumps at two
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the values ΔW1, ΔW2 or ΔΩ1, ΔΩ2. So, in com-
parison with quantification at fixed frequency, the fre-
quency sweep is more interesting: the added mass
can fall at any moment and the quantification is
automatic.

However, for the frequency sweep, the accuracy
of the quantification depends on the nondimensional
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Fig. 18 Influence of ε on the response. a For ε = 5×10−6 (solid
line) and reference response with ANM (dashed-dotted line), b
ε = 5 × 10−6 (solid line) and ε = 5 × 10−5 (dashed line)

sweep velocity ε of Eq. (12). Since the frequency sweep
is essentially transient, numerical results are computed
by means of a time integration scheme (Runge–Kutta).
Two cases of frequency sweep with different sweep
velocity ε are compared with the reference steady-state
response curve obtained with the ANM. In Fig. 18a, the
response curve for ε = 5×10−6 and the ANM is simi-
lar. However, for a large ε (ε = 5×10−5), the response
is strongly modulated (see Fig. 18b). The jumps are not
vertical and do not coincide precisely with the bifurca-
tion position S1 and S2. Choosing a small ε is therefore
required but ε also decides the quantification time. If ε

is too small, the quantification time is very long; thus,
there is a risk that the added mass takes off before the
quantification end.

5 Localization of an added mass

For a clamped–clamped microbeam, the frequency
shift is determined by (see “Appendix”):

Δ fi = ωi − ωi0

ωi0
≈ −1

2
mφ2

i (x0), (17)

with x0 the position of the added mass, ωi0 and ωi the
resonant frequencies of the ith mode without and with
the added mass, respectively. There are one equation
and two unknowns; thus, the resonance at the frequency
of another mode has to be considered. Due to the sym-
metry of the clamped–clamped beam, let the first and
third mode shapes be selected. Considering the reso-
nance at the frequencies of the first and third modes
permits to determine x0 and m:
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Δ f 1
.

(18)

The principle of localization is illustrated in Fig. 19.
First, the frequency shifts Δ f 1 and Δ f 3 between curves
with and without added mass are determined at the res-

onant frequency of the first and third modes. Then, the
position of the added mass is located from the ratio√

Δ f 3/Δ f 1.
For example, let us consider design 1 (hardening

behavior) with Vdc1 = 10Vac1 = 9 V at the resonant
frequency of the first mode and Vac2 = 1.5Vdc2 =
67.5 V for the third mode. Several arbitrary values for
m0, x0 are first used to generate the responses with
added mass. Then, the principle of localization is used
to identify the values of m0, x0 from the knowledge of
these curves only. To this end, Δ f 1 and Δ f 3 are mea-
sured on the responses, and two couples of solutions
(m1, x1), (m2, x2) are calculated from the system (18).
Incorrect values (m2, x2) can be eliminated by consid-
ering the resonance at the frequency of the higher mode.
Table 3 shows that the localization is exact for positions
close to the middle of the beam. For positions close to
the ends of the beam, the deviation is large because
φk(x0) is small at these positions, yielding a small fre-
quency shift.

This procedure only depends on the experimental
measure of Δ f 1 and Δ f 3, and is therefore identical for
both softening and hardening behaviors.

6 Conclusion

An alternative mass-sensing technique based on non-
linear micro-/nanoelectromechanical resonant sensors

Table 3 Design 1: example of localization. At Ω ≈ ω10, Vdc = 10Vac = 9 V; at Ω ≈ ω30, Vac = 1.5Vdc = 67.5 V

m0 × 10−4 x0 Δ f 1 × 104 Δ f 3 × 104 |φ3/φ1|
5 0.5 6.089 4.987 0.9051

1 0.5 1.2182 0.997 0.904

1 0.35 0.86 0.0132 0.1239

1 0.2 0.185 1.141 2.484

0.5 0.2 0.0928 0.574 2.488

10 0.1 0.133 3.101 4.823

m1 × 10−4 x1 m2 × 10−4 x2
x1 − x0

x0

m1 − m0
m0

4.83 0.5 10 0.2926 Exact 3.4 %

0.96 0.5 2.15 0.2926 Exact 4 %

1.03 0.348 0.92 0.3697 0.5% 3 %

1.009 0.197 – – 1.45 % 0.9 %

0.5078 0.1969 – – 1.55 % 1.56 %

0.0125 0.0472 – – Large Large
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has been numerically investigated. The detection takes
advantage of bistability and bifurcations of the hys-
teretic nonlinear responses of the electrostatically actu-
ated resonator. Contrary to the classical detection based
on the frequency shift induced by an additional mass,
sudden jumps in amplitude make the detection of a very
small mass possible. Another interesting feature lies in
the fact that the limit of detection can be set with the
value of the operating frequency. However, when oper-
ating at fixed frequency, it appears that this bifurcation-
based mass detection does not exhibit the expected
robustness. A possible improvement has been pro-
posed, based on a frequency sweep that varies slowly
in sinusoidal form around the resonance and automat-
ically forces the reinitialization of the detection, thus
enabling real-time ultrasensitive detection and quantifi-
cation. The localization of an added mass is very sat-
isfactory for positions far enough from clamped ends
of the sensor. This bifurcation-based mass detection
will be investigated experimentally in a near future in
order to validate the numerical results presented in this
paper. This single sensing device is a first step toward
the use of NEMS arrays [38]. In the long term, it could
lead to new mass measurement architectures and open
prospect to miniaturized mass spectrometers with very
high analysis rate. In this perspective, robustness to
noise of the proposed bifurcation-based sensing tech-
nique will be of prime interest. Some works address the
problem of noise sensitivity of the systems when one
adds a small mass and consider noise-induced switch-
ing near bifurcation points [32,39–44]. These develop-
ments will be needed but are beyond the goal of this
paper.
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Appendix

Let m p and x0 be the physical mass and position of
the added mass, and ωm

i , φm
i (x) and ω0

i , φ
0
i (x) the fre-

quencies and eigenmodes corresponding to cases with
and without added mass. The equation of motion for an
infinitesimal volume dx̃ without excitation and damp-
ing force is

∂

∂2 x̃2

(
E I

∂2w̃

∂ x̃2

)
dx̃ + ρS

∂2w̃

∂ t̃2
dx̃ + m pδx̃0(x̃)

∂2w̃

∂ x̃2 = 0

(19)

Using the nondimensional variables of Sect. 2, Eq. (19)
becomes

∂4w

∂x4 dx + ∂2w

∂t2 dx + m p

ρbhl
δx0(x)

∂2w

∂t2 = 0. (20)

Let m = m p/ρbhl. Assuming that eigenmodes are
unchanged with an added mass, thenφm(x) = φ0(x) =
φ(x). Expressing the displacement as w(x, t) =
φm(x)am(t) = φ(x)am(t), Eq. (20) becomes for the
ith mode

dx

dx + mδx0(x)
× 1

φi (x)
× d4φi (x)

dx4

= − 1

am
i (t)

d2am
i (t)

dt2 = (ωm
i )2 (21)

So,

φ
(I V )
i (x)dx−(ωm

i )2φi (x)dx−m(ωm
i )2δx0 (x)φi (x)=0.

(22)

Without added mass, let

φ
(I V )
i (x) = (ω0

i )
2φi (x), (23)

be replaced in Eq. (22). Multiplying this equation by
φi (x), integrating from x = 0 to x = 1, and using the
normalization condition∫ 1

0
φi (x)2dx = 1, (24)

we obtain

(ω0
i )

2 − (ωm
i )2

(ωm
i )2 = mφi (x0)

2. (25)

This can be rewritten as follows by introducing Δωi =
ωm

i − ω0
i :

Δωi

ω0
i

= −1

2
mφi (x0)

2 (26)
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