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Abstract This paper discusses the synchronization
problem for a class of reaction–diffusion neural net-
works with Dirichlet boundary conditions. Unlike other
studies, a sampled-data controller with stochastic sam-
pling is designed in order to synchronize the con-
cerned neural networks with reaction–diffusion terms
and time-varying delays, where m sampling peri-
ods are considered whose occurrence probabilities
are given constants and satisfy the Bernoulli distri-
bution. A novel discontinuous Lyapunov–Krasovskii
functional with triple integral terms is introduced based
on the extended Wirtinger’s inequality. Using Jensen’s
inequality and reciprocally convex technique in deriv-
ing the upper bound for the derivative of the Lyapunov–
Krasovskii functional, some new synchronization cri-
teria are obtained in terms of linear matrix inequalities.
Numerical examples are provided in order to show the
effectiveness of the proposed theoretical results.
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1 Introduction

During the past decades, different types of neural net-
work models have been investigated extensively and
have been implemented widely in different areas such
as combinatorial optimization, signal processing, pat-
tern recognition, speed detection of moving objects,
optimization and associative memories, see [1–4]. Such
potential applications strongly depend on the dynami-
cal behaviors of neural networks. Therefore, the study
of dynamical behaviors of neural networks is an essen-
tial step in the practical design of neural networks.
Since neural networks can exhibit some complicated
dynamics and even chaotic behavior, the synchroniza-
tion of neural networks has also become an important
area of study and there have been many investigations,
see [5–10], for instance.

It is well known that in the course of studying
neural networks, time delays are unavoidable, which
is an inherent phenomena due to the finite processing
speed of information, for example, the finite axonal
propagation speed from soma to synapses, the diffu-
sion of chemical across the synapses, the postsynap-
tic potential integration of membrane potential at the
neuronal cell body and dendrites. Moreover, in the
electronic implementation of analog neural networks,
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time delays inevitably occur in the communication
and response of neurons due to the finite switching
speed of amplifiers [11] and transmission of signals
in hardware implementation. In addition, the process
of moving images requires the introduction of delays
in signals transmitted among the cells [12]. Time
delays may lead to undesirable dynamical network
behaviors such as oscillation, divergence or instabil-
ity and thus to manufacture high-quality neural net-
works that it is necessary to study the dynamics of
neural networks with delays. However, there are few
results in the literature for the synchronization issue
of neural networks with time-varying delays, see [13–
16] and references therein. All the aforementioned
works do not take diffusion effects into considera-
tion.

It is common to describe the neural network models
by ordinary differential equations. But in the real world,
the diffusion effects cannot be ignored in the neural net-
work model when electrons are moving in an uneven
electromagnetic field. For instance, it is well known that
the multilayer cellular neural networks which are arrays
of nonlinear and simple computing elements character-
ized by local interactions between cells will well suit to
describe locally interconnected simple dynamical sys-
tems showing a lattice-like structure. In other words,
the whole structure and dynamic behavior of multi-
layer cellular neural networks not only heavily depend
on the evolution time of each variable and its position
but also on its interactions deriving from the space-
distributed structure of the whole networks. Therefore,
it essential to consider the state variables varying with
time and space variables. On the other side, there are
a large number of reaction–diffusion phenomena in
nature and many discipline fields, particularly in chem-
istry and biology. When such phenomena exist in chem-
ical reactions, the interaction between chemicals and
spatial diffusion on the chemical media can be seen
until a steady-state spatial concentration pattern has
completely developed. Thus, it is of great importance
to model both biological and man-made neural net-
works with reaction–diffusion effects. In [17–21], the
authors have investigated the globally exponential sta-
bility and periodicity of reaction–diffusion recurrent
neural networks with Dirichlet boundary conditions.
The globally exponential stability and synchroniza-
tion of delayed reaction–diffusion neural networks with
Dirichlet boundary conditions under the impulsive con-
troller have been studied in [22]. In [23], the authors

have formulated and solved the feedback stabiliza-
tion problem for unstable nonuniform spatial pattern
in reaction–diffusion systems. Boundary control to sta-
bilize a system of coupled linear plant and reaction–
diffusion process has been considered in [24], and
backstepping transformations with a kernel function
and a vector-valued function were introduced to design
control laws. Adaptive synchronization in an array
of linearly coupled neural networks with reaction–
diffusion terms and time delays has been discussed
in [25]. Very recently, the authors in [26] have stud-
ied the synchronization problem for coupled reaction–
diffusion neural networks with time-varying delays
via pinning-impulsive controller, and some novel syn-
chronization criteria have been proposed. Both theo-
retically and practically the models with time delays
and reaction–diffusion terms provide a good approx-
imation for neural networks, and this effect leads
to poor performance of the networks. Therefore, it
becomes a challenging problem for the researchers
to design a controller that completely makes use of
their advantages and also that completely ignores their
disadvantages.

In recent years, the sampled-data-based discrete
control approach has experienced a wide range of appli-
cations than other type of control approaches such as
state feedback control, sliding mode control, fuzzy
logic control and intermittent control. Since the sig-
nals which we use in real world are analog, such as
our voices, in order to process these signals in com-
puters, it is necessary to convert them into digital sig-
nals, which are discrete in both time and amplitude.
Employing the sampling process in which the val-
ues of the signals are measured at certain interval of
time, the continuous signals are converted into dis-
crete ones and this measurement is referred to as a
sample signal. Then, these signals are fed into the
digital controller, which processes and finally trans-
formed into continuous signals from the zero-order
hold device. An application of this technique is in the
radio broadcasts of the live musical program. There-
fore, due to the wide range of applications in the
real world, the controller design problem using the
sampled-data has attracted much attention and corre-
sponding results have been published in the literature,
see [27–34].

Selecting proper sampling period is the most impor-
tant task in sampled-data control systems for designing
suitable controllers. In the last decades, a consider-
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able attention has been paid for constant sampling but
in recent years it is seen that variable sampling peri-
ods are applied to various practical systems [35] due
to their ability in dealing effectively with the prob-
lems such as change in network situation and limi-
tation of the calculating speed of hardware. The sta-
bility problem of feedback control systems with time-
varying sampling periods was discussed in [36,37].
Further extension to the time-varying sampling peri-
ods is the stochastically varying sampling periods, and
it has been used in the control of sampled-data systems
in most recent works. In [38], the problem of robust
H∞ control for sampled-data systems with uncer-
tainties and probabilistic sampling has been investi-
gated. More recently, robust synchronization of uncer-
tain nonlinear chaotic systems has been investigated in
[39] using stochastic sampled-data control, where m
sampling periods are taken into consideration. To the
best of authors’ knowledge, there has been no results
found in the literature regarding the synchronization
problem for reaction–diffusion neural networks with
time-varying delays via a stochastic sampled-data con-
troller.

Motivated by the above discussions, in the present
work, we have studied the synchronization prob-
lem for reaction–diffusion neural networks with time-
varying delays by designing a suitable sampled-data
controller with stochastic sampling. We have consid-
ered m sampling periods, whose occurrence probabil-
ities are given constants and satisfy Bernoulli distribu-
tion. By constructing a new discontinuous Lyapunov–
Krasovskii functional with triple integral terms and by
employing Jensen’s inequality and reciprocally con-
vex technique, some novel and easily verified syn-
chronization criteria are derived in terms of LMIs,
which can be solved using any of the available stan-
dard softwares. Numerical simulations are provided
in order to show the efficiency of our theoretical
results.

The rest of the paper is organized as follows: Nota-
tions that we carry out throughout this paper and some
necessary lemmas are given in Sect. 2. In Sect. 3,
the considered model of reaction–diffusion neural net-
works with time-varying delays is presented. In Sect. 4,
asymptotic synchronization of the proposed model in
mean-square sense is studied by designing a sampled-
data controller with stochastic sampling. Numerical
simulations are presented in Sect. 4, and conclusions
are drawn in Sect. 5.

2 Notations and preliminaries

Let Rn denotes the n-dimensional Euclidean space and
Rn×m denotes the set of all real n ×m matrices. P > 0
(P ≥ 0) means that the P is symmetric and positive
definite (positive semi-definite). In symmetric matri-
ces, the notation (�) represents a term that is induced
by symmetry. Let Prob{α} denotes the occurrence prob-
ability of an event α. The conditional probability of
α and β is denoted by Prob{α|β}.E{x} and E{x |y} are
the expectation of a stochastic variable x and the expec-
tation of the stochastic variable x conditional on the sto-
chastic variable y, respectively. Ξ(i, j) denotes the i th
row, j th column element of a matrix Ξ. A = (ai j )N×N

denotes a matrix of N -dimension. T denotes the trans-
position of a matrix. C = diag(c1, c2, . . . , cn) means
that C is a diagonal matrix.

Before proceeding further, it is necessary to intro-
duce the following Lemmas.

Lemma 1 [40,41] For any constant matrix X ∈
Rn×n, X = X T > 0, two scalars h1 > 0, h2 ≥ 0
such that the integrations concerned are well defined,
then

− h2
2 − h2

1
2

∫ t−h1

t−h2

∫ t

t+θ
xT (s)X (s)x(s)dsdθ

≤−
(∫ t−h1

t−h2

∫ t

t+θ
x(s)dsdθ

)T

X

(∫ t−h1

t−h2

∫ t

t+θ
x(s)dsdθ

)
, (1)

− (h2 − h1)

∫ t−h1

t−h2

xT (x)X x(s)ds

≤ −
(∫ t−h1

t−h2

x(s)ds

)T

X

(∫ t−h1

t−h2

x(s)ds

)
. (2)

Lemma 2 [42] For any vectors δ1, δ2, constant matri-
ces R, S and real scalars α ≥ 0, β ≥ 0 satisfying

that

[
R S
� R

]
≥ 0, and α + β = 1, then the following

inequality holds:

− 1

α
δT

1 Rδ1− 1

β
δT

2 Rδ2 ≤−
[

δ1

δ2

]T [
R S
� R

] [
δ1

δ2

]
. (3)

3 Problem formulation

Generally, neural network models are described by
ordinary differential equations. But in the real world,
diffusion effect cannot be avoided in the neural network
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model when electrons are moving in asymmetric elec-
tromagnetic field. Due to this phenomenon, we intro-
duce a single neural network with reaction–diffusion
terms and time-varying delays as follows:

∂ym(t, x)

∂t
=

q∑
k=1

∂

∂xk

(
dmk

∂ym(t, x)

∂xk

)
− cm ym(t, x)

+
n∑

j=1

amj f j (y j (t, x))

+
n∑

j=1

bmj f j (y j (t−d(t), x))

+ Jm, m = 1, 2, . . . , n, (4)

where x = (x1, x2, . . . , xq)T ∈ Ω ⊂ Rq , where Ω =
{x ||xk | ≤ lk, k = 1, 2, . . . , q} and lk is a positive con-
stant. dmk ≥ 0 means the transmission diffusion coeffi-
cient along the mth neuron, ym(t, x)(m = 1, 2, . . . , n)

is the state of the mth unit at time t and in space x .
n corresponds to the number of neurons. f j (y j (t, x))

denotes the neuron activation function of the j th unit
at time t and in space x . cm > 0(m = 1, 2, . . . , n)

represents the rate with which the mth unit will reset
its potential to the resting state in isolation when dis-
connected from the network and external inputs. amj

and bmj denotes the strength of the j th unit on the mth
unit at time t and in space x and the strength of the j th
unit on the mth unit at time t − d(t) and in space x ,
respectively. d(t) denotes the time-varying transmis-
sion delay along the axon of the j th unit from the mth
unit and satisfies d1 ≤ d(t) ≤ d2, ḋ(t) ≤ μ, where
d2 > d1 > 0, μ are real constants. Jm is the external
input.

Assumption 1 For any u, v ∈ R, the neuron activation
function gi (·) is continuously bounded and satisfy

F−
i ≤ gi (u) − gi (v)

u − v
≤ F+

i , i = 1, 2, . . . , n. (5)

where F−
i and F+

i are some real constants and may be
positive, zero or negative.

System (4) is supplemented with the following
Dirichlet boundary condition

ym(t, x) = 0, (t, x) ∈ [−d2,+∞] × ∂Ω. (6)

Also, system (4) has a unique continuous solution for
any initial condition of the form

ym(s, x) = φm(s, x), (s, x) ∈ [−d2, 0] × Ω,

m = 1, 2, . . . , n, (7)

whereφm(s, x)=(φ1(s, x), φ2(s, x), . . . , φn(s, x))T ∈
C([−d2, 0] × Ω, Rn), in which C([−d2, 0] × Ω, Rn)

stands for the Banach space of all continuous functions
from [−d2, 0] × Ω to Rn with the norm

‖φ(s, x)‖ =
[∫

Ω

φT (s, x)φ(s, x)dx

]1/2

. (8)

Rewriting system (4) in a compact form, we obtain

∂y(t, x)

∂t
=

q∑
k=1

∂

∂xk

(
Dk

∂y(t, x)

∂xk

)
− Cy(t, x)

+ A f (y(t, x)) + B f (y(t − d(t), x)) + J,

(9)

where y(t, x) = (y1(t, x), y2(t, x), . . . , yn(t, x))T, Dk

= diag(d1k, d2k, . . . , dnk), f (y(t, x))=( f1(y1(t, x)),

f2(y2(t, x)), . . . , fn(yn(t, x)))T, C=diag(c1, c2, . . . ,

cn), A = (amj )n×n , and B = (bmj )n×n, J = (J1, J2,

. . . , Jn)T . It is a common fact that neural networks may
lead to bifurcation, oscillation, divergence or instability
if the networks’ parameters and time delays are appro-
priately chosen. In this case, those networks become
unstable. Thus, in order to control the dynamic behav-
iors of system (9), we introduce the control model of
system (9) as

∂ui (t, x)

∂t
=

q∑
k=1

∂

∂xk

(
Dk

∂ui (t, x)

∂xk

)
− Cui (t, x)

+ A f (ui (t, x)) + B f (ui (t − d(t), x))

+ J + Ui (t, x), i = 1, 2, . . . , N , (10)

where ui (t, x) = (ui1(t, x), ui2(t, x), . . . , uin(t, x))T

∈ Rn is the state vector of the i th node at time t and
space x, Ui (t, x) is the controller of the i th node at time
t and space x . Define the error vector as ei (t, x) =
ui (t, x) − y(t, x), i = 1, 2, . . . , N . Thus, we get the
error dynamical system from (9) and (10) as
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∂ei (t, x)

∂t
=

q∑
k=1

∂

∂xk

(
Dk

∂ei (t, x)

∂xk

)
− Cei (t, x)

+ Ag(ei (t, x)) + Bg(ei (t − d(t), x))

+ Ui (t, x), i = 1, 2, . . . , N , (11)

where g(ei (t, x)) = f (ui (t, x)) − f (y(t, x)). It is
obvious that (11) satisfies the Dirichlet boundary con-
dition and its initial condition is given by

ei (s, x) = ϕi (s, x) − φ(s, x)

:= ϕ̄i (s, x) ∈ C([−d2, 0] × ∂Ω, Rn),

i = 1, 2, . . . , N .

Controllers which we use nowadays are mostly digi-
tal controllers or networked to the system. These con-
trol systems can be modeled by sampled-data control
systems. Thus, the sampled-data control approach has
received much attention, and in this paper, the con-
troller design using sampled-data signal with stochas-
tic sampling is investigated. For this purpose, assume
the control input to be in the form,

Ui (t, x) = Ki ei (tk, x), tk ≤ t < tk+1,

k = 0, 1, 2, . . . , (12)

where Ki is the gain matrix, tk is the updating instant
time and the sampling interval is defined as h =
tk+1 − tk . Under the controller (12), system (11) can be
represented as

∂ei (t, x)

∂t
=

q∑
k=1

∂

∂xk

(
Dk

∂ei (t, x)

∂xk

)
− Cei (t, x)

+ Ag(ei (t, x)) + Bg(ei (t − d(t), x))

+ Ki ei (tk, x), i = 1, 2, . . . , N . (13)

The sampling period is denoted by h and is assumed
to take m values such that tk+1 − tk = h p, where the
integer p take values randomly in a set {1, 2, . . . , m}.
The occurrence probability of each sampling period is
given by

Prob{h = h p} = βp, p = 1, 2, . . . , m

where βp ∈ [0, 1], p = 1, 2, . . . , m are known con-
stants and such that

∑m
p=1 βp = 1. Also, 0 = h0 <

h1 < · · · < hm .

Further, time delays in the control input are often
encountered in many real-world problems, which may
cause poor performance or instability of the system, and
hence, the presence of time delays should be considered
in control input. Moreover, it should be mentioned that
time delays in the control input may be variable due to
the complex disturbance or other conditions. Motivated
by this fact, in this paper, we introduce the time-varying
delay in the control input, and thus, the controller (12)
takes the form

Ui (t, x) = Ki ei (tk, x)

= Ki ei (t − τ(t), x), tk ≤ t ≤ tk+1, (14)

where we write tk = t − (t − tk) = t − τ(t). Here,
τ(t) is the time-varying delay and satisfies τ̇ (t) = 1.

The probability of the time-varying delay is defined as
follows:

Prob{0 ≤ τ(t) < h1} = h1

hm
,

Prob{h1 ≤ τ(t) < h2} = h2 − h1

hm
,

...

Prob{hm−1 ≤ τ(t) < hm} = hm − hm−1

hm
.

The stochastic variables αp(t) and βp(t) are defined as

αp(t) =
{

1, h p−1 ≤ τ(t) < h p

0, otherwise
, p = 1, 2, . . . , m,

βp(t) =
{

1, h = h p

0, otherwise
, p = 1, 2, . . . , m.

The probability of these stochastic variables are given
by,

Prob{αp(t) = 1} = Prob{h p−1 ≤ τ(t) < h p}

=
m∑

r=p

βr
h p − h p−1

hr
= αp, (15)

Prob{βp(t) = 1} = Prob{h = h p} = βp, (16)

where p = 1, 2, . . . , m and
∑m

p=1 αp = 1. Since αp(t)
satisfies the Bernoulli distribution as reported in [38],
we have

E{αp(t)} = αp and E{(αp(t) − αp)
2} = αp(1 − αp).
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Therefore, system (11) with m sampling intervals can
be expressed as

∂ei (t, x)

∂t
=

q∑
k=1

∂

∂xk

(
Dk

∂ei (t, x)

∂xk

)
− Cei (t, x)

+ Ag(ei (t, x)) + Bg(ei (t − d(t), x))

+
m∑

p=1

αp(t)Ki ei (t − τp(t), x), (17)

where i = 1, 2, . . . , N and h p−1 ≤ τp(t) < h p.

Definition 1 [38] The error system (17) is said to be
mean-square stable if for any ε > 0, σ (ε) > 0 such
that E{‖ei (t, x)‖2} < ε, t > 0 when E{‖ei (0, x)‖2 <

σ(ε). In addition, if limt→∞ E{‖ei (t, x)‖2} = 0, for
any initial condition, the system (17) is said to be glob-
ally mean-square asymptotically stable.

In the following theorem, asymptotic stability of the
error system (17) in the sense of mean square is inves-
tigated based on a novel Lyapunov–Krasovskii func-
tional, and sufficient conditions that ensure the sys-
tem stability are derived by employing some inequality
techniques. We establish our main result based on the
LMI approach.

For representation convenience, the following nota-
tions are introduced:

F1 = diag{F−
1 F+

1 , F−
2 F+

2 , . . . , F−
n F+

n },

F2 = diag

{
F−

1 + F+
1

2
,

F−
2 + F+

2

2
, . . . ,

F−
n + F+

n

2

}
.

Theorem 1 For given positive constants αp, λp, h p

(p = 1, 2, . . . , m), μ, system (17) is globally mean-
square asymptotically stable, if there exist matrices
P > 0, Q > 0, G > 0, W > 0, H > 0, S >0, X >0,

T̃ > 0, G1 > 0, G2 > 0, Z p > 0, Up > 0, X p > 0,

Yp > 0, Mp > 0, Sp > 0(p = 1, 2, . . . , m), sym-
metric matrices Tp > 0, Wp > 0(p = 1, 2, . . . , m),

diagonal matrices Λ1 > 0,Λ2 > 0,Λ3 > 0,Λ4 > 0,

and any matrices H, Vp(p = 1, 2, . . . , m) with appro-
priate dimensions satisfying the following LMIs:

Φ =
⎡
⎣Φ1 Ξ1 Σ1

� Ξ2 Ξ3

� � Σ2

⎤
⎦ < 0, (18)

[
Up Vp

� Up

]
≥ 0, (19)

[
X p Tp

� Yp

]
> 0, (20)

[
X p Wp

� Yp

]
> 0, (21)

Σ1 = [
0 0 0 Φ2 Φ3 0 BG 0 0 d1G1 0

]

Σ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ4 0 0 0 0 F2Λ3 0 0 0 0 Φ5

� Φ6 0 0 0 0 F2Λ2 0 0 0 0

� � Φ7 0 0 0 0 F2Λ4 0 0 0

� � � Φ8 G A 0 G B 0 0 0 0

� � � � −Λ1 0 0 0 0 0 0

� � � � � −Λ3 0 0 0 0 0

� � � � � � −Λ2 0 0 0 0

� � � � � � � −Λ4 0 0 0

� � � � � � � � Φ9 0 0

� � � � � � � � � Φ10 0

� � � � � � � � � � Φ11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

Φ1 = Q + W + d2
1 X + α1 Z1 − α1U1 + α1T1

− S̄1 + 2CG − 2D̃ − F1Λ1i − α1c2
1 M1

−α2c2
2 M2 +

m∑
i=1

αpcp X p,

Φ2 = P − G − CG,

Φ3 = AG + F2Λ1i ,

Φ4 = −Q + H + d3
12

2
T̃ − (−d1 + d2)

2G2 − F1Λ3i ,

Φ5 = (−d1 + d2)G2,

Φ6 = −(1 − μ)W − F1Λ2i ,

Φ7 = −H − F1Λ4i ,

Φ8 = S +
(

d2
1

2

)2

G1

+
m∑

p=1

(
αpc2

pUp + αpcpYp + βph2
p Sp

)
,

S̄i =
m∑

r=1

(
βr

π2

4

cp

cr
Sr

)
,

cp = h p − h p−1,

κ =
(

−d1 − d2
1

2
− d2

2

2

)
,
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Ξ1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1, 1) = α1U1 − α1V1 + S̄1 + α1 H̃ ,

(1, 2) = α1V1,

(1, p) = α p
3

c p
3

M p
3
, p = 3, 6, . . . , 3m

(1, p) = α p+2
3

H̃ , p = 4, 7, . . . , 3m − 2,

otherwise = 0,

Ξ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p, p)=α p+2
3

(
−2U p+2

3
+V p+2

3
+V T

p+2
3

+W p+2
3

−T p+2
3

)
− S̄ p+2

3
, p=1, 4, 7, . . . , 3m−2

(p, p) = −α p+1
3

(
Z p+1

3
+ U p+1

3
+ W p+1

3

)

+α p+4
3

(
Z p+4

3
− U p+4

3
+ T p+4

3

)
− S̄ p+4

3
,

p = 2, 5, . . . , 3m − 1
(p, p) = −α p

3
M p

3
, p = 3, 6, . . . , 3m

(p, p + 1) = α p+2
3

(
U p+2

3
− V p+2

3

)
,

p = 1, 4, . . . , 3m − 2

(p, p + 2) = α p+4
3

(
U p+4

3
− V p+4

3

)
+ S̄ p+4

3
,

p = 2, 5, . . . , 3m − 1
(p, p + 3) = α p+4

3
V p+4

3
,

p = 2, 5, . . . , 3m − 1
otherwise = 0,

Ξ3(p, 1) = α p+2
3

H̃ , p = 1, 4, . . . , 3m − 2 (22)

and other entries of Ξ1, Ξ2, Ξ3 are zero, h0 = 0 and
αp, Z p, Up, S̄p = 0, for p > m. Then, the desired
gain is given by K = G−1 H̃ .

Proof Consider the following discontinuous Lyapunov
functional for the error system (17):

V (t) =
10∑

ν=1

Vν(t), (23)

where

V1(t) =
∫
Ω

N∑
i=1

eT
i (t, x)Pei (t, x)dx+

∫
Ω

N∑
i=1

q∑
k=1

Dk

×
(

∂ei (t, x)

∂xk

)T
G

(
∂ei (t, x)

∂xk

)
dx, (24)

V2(t) =
∫
Ω

N∑
i=1

∫ t

t−d1

eT
i (s, x)Qei (s, x)dsdx

+
∫
Ω

N∑
i=1

∫ t

t−d(t)
eT

i (s, x)W ei (s, x)dsdx

+
∫
Ω

N∑
i=1

∫ t−d1

t−d2

eT
i (s, x)Hei (s, x)dsdx

+
∫
Ω

N∑
i=1

∫ t

t−d1

ėT
i (s, x)Sėi (s, x)dsdx, (25)

V3(t)= d1

∫
Ω

N∑
i=1

∫ 0

−d1

∫ t

t+θ
eT

i (s, x)Xei (s, x)dsdθdx,

(26)

V4(t) = d2
12
2

∫
Ω

N∑
i=1

∫ −d1

−d2

∫ t−d1

t+θ
eT

i (s, x)

× T̃ ei (s, x)dsdθdx, (27)

V5(t) = d2
1
2

∫
Ω

N∑
i=1

∫ 0

−d1

∫ 0

θ

∫ t

t+λ
ėT

i (s, x)

× G1ėi (s, x)dsdλdθdx, (28)

V6(t) = d2
2 − d2

1
2

∫
Ω

N∑
i=1

∫ −d1

−d2

∫ −d1

θ

∫ t−d1

t+λ
ėT

i (s, x)

× G2ėi (s, x)dsdλdθdx, (29)

V7(t) =
∫
Ω

N∑
i=1

m∑
p=1

αp(t)

(∫ t−h p−1

t−h p

eT
i (s, x)Z pei (s, x)ds

+cp

∫ −h p−1

−h p

∫ t

t+θ
ėT

i (s, x)Upėi (s, x)dsdθ

)
dx,

(30)

V8(t) =
∫
Ω

N∑
i=1

m∑
p=1

αp(t)

(∫ −h p−1

−h p

∫ t

t+θ

(
eT

i (s, x)X p

× ei (s, x) + eT
i (s, x)Ypei (s, x)

)
dsdθ

)
dx,

(31)

V9(t) =
∫

Ω

N∑
i=1

m∑
p=1

αp(t)

(
h2

p − h2
p−1

2

)

×
∫ −h p−1

−h p

∫ 0

θ

∫ t

t+λ

ėT
i (s, x)Mėi (s, x)dsdλdθdx, (32)

V10(t) =
∫

Ω

N∑
i=1

m∑
p=1

V10p(t)dx, (33)

V10p(t) = βp(t)

(
h2

p

∫ t

tk
ėT

i (s, x)Spėi (s, x)ds

− π2

4

∫ t

tk
(ei (s, x) − ei (tk, x))T

× Sp(ei (s, x) − ei (tk, x))ds

)
. (34)

Obviously, V10p(t) can be easily computed by
Wirtinger’s inequality. Also, since V10p(t) will disap-
pear at t = tk, we obtain limt→t−k

V (t) ≥ V (tk).
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Define the infinitesimal operator L of V (t) as follows:

LV (t) = lim
h→0+

1

h
{E{V (et+h)|et } − V (et )}. (35)

It can be derived that

E{LV (t)} =
10∑

ν=1

E{LVν(t)}, (36)

where

E{LV1(t)}=
∫

Ω

N∑
i=1

E

{
2eT

i (t, x)Pėi (t, x)

+ 2
q∑

k=1

Dk
∂eT

i (t, x)

∂xk
G∂ ėi (t, x)∂xk

}
dx, (37)

E{LV2(t)}=
∫

Ω

N∑
i=1

E

{
eT

i (t, x)Qei (t, x)−eT
i (t−d1, x)

× Qei (t−d1, x)+eT
i (t, x)W ei (t, x)

− (1−ḋ(t))eT
i (t−d(t), x)W ei (t−d(t), x)

+ eT
i (t−d1, x)Hei (t−d1, x)−eT

i (t−d2, x)

× Hei (t−d2, x)+ėT
i (t, x)Sėi (t, x)

− ėT
i (t−d1, x)Sėi (t−d1, x)

}
dx, (38)

E{LV3(t)}=
∫

Ω

N∑
i=1

E

{
d2

1 eT
i (t, x)Xei (t, x)

−
(∫ t

t−d1

ei (s, x)ds

)T

×
(∫ t

t−d1

ei (s, x)ds

)
ds

}
dx, (39)

E{LV4(t)}=
∫

Ω

N∑
i=1

E

{
d3

12

2
eT

i (t−d1, x)T̃ ei (t−d1, x)

− d12

2
×
(∫ t−d1

t−d2

ei (s, x)ds

)T

× T̃

(∫ t−d1

t−d2

ei (s, x)ds

)
ds

}
dx, (40)

E{LV5(t)} =
∫

Ω

N∑
i=1

E

{(
d2

1

2

)2

ėT
i (t, x)G1ėi (t, x)

− d2
1 eT

i (t, x)G1ei (t, x)

+ d1

∫ t

t−d1

eT
i (s, x)dsG1ei (t, x)

+ d1

∫ t

t−d1

eT
i (s, x)dsG1ei (t, x)

−
∫ t

t−d1

eT
i (s, x)ds

× G1

∫ t

t−d1

ei (s, x)ds

}
dx, (41)

E{LV6(t)}

=
∫

Ω

N∑
i=1

E

{
d2

2 −d2
1

2
κ ėT

i (t−d1, x)G2ėi (t − d1, x)

−(−d1+d2)
2eT

i (t−d1, x)G2ei (t−d1, x)

+2(−d1+d2)

∫ t−d1

t−d2

eT
i (s, x)dsG2ei (t−d1, x)

−
∫ t−d1

t−d2

eT
i (s, x)dsG2

∫ t−d1

t−d2

ei (s, x)ds

}
dx,

(42)

E{LV7(t)} =
∫

Ω

N∑
i=1

E

{ m∑
p=1

αp

(
eT

i (t − h p−1, x)

× Z pei (t − h p−1, x)

− eT
i (t − h p, x)Z pei (t − h p, x)

+ c2
pėT

i (t, x)Upėi (t, x)

− cp

∫ t−h p−1

t−h p

ėT
i (s, x)Upėi (s, x)dθ

)}
dx,

(43)

Applying Lemma 1 to the last integration term, it
follows that

− αpcp

∫ t−h p−1

t−h p

ėT
i (s, x)Upėi (s, x)ds

= −αp

[(
1 + h p − τp(t)

τp(t) − h p−1

)
δT

1p(t)Upδ1p(t)

+
(

1 + τp(t) − h p−1

h p(t) − τp(t)

)
δT

2p(t)Upδ2p(t)

]
, (44)

δ1p(t)= ∫ t−h p−1
t−τp(t) ėi (s, x)ds, δ2p(t)= ∫ t−τp(t)

t−h p
ėi (s, x)

ds. Combining (19) and Lemma 2, we obtain

h p − τp(t)

τp(t) − h p−1
δT

1p(t)Upδ1p(t)

+ τp(t) − h p−1

h p − τp(t)
δT

2p(t)Upδ2p(t)

≥ δ1p(t)Vpδ2p(t) + δ2p(t)V T
p δ1p(t). (45)
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Substituting (45) into (44) yields

− αpcp

∫ t−h p−1

t−h p

ėT
i (s, x)Upėi (s, x)ds

≤ −αp

(
δT

1p(t)Upδ1p(t) + δT
2p(t)Upδ2p(t)

+ δT
1p(t)Vpδ2p(t) + δ2p(t)V T

p δ1p(t)

)

= αp

⎛
⎜⎝
⎡
⎣ ei (t − h p−1, x)

ei (t − τp(t), x)

ei (t − h p, x)

⎤
⎦

T

×
⎡
⎣−Up Up − Vp Vp

� −2Up + Vp + V T
p Up − Vp

� � −Up

⎤
⎦

×
⎡
⎣ ei (t − h p−1, x)

ei (t − τp(t), x)

ei (t − h p, x)

⎤
⎦
⎞
⎠ . (46)

Furthermore,

E{LV8(t)}=
∫

Ω

N∑
i=1

E

{ m∑
p=1

αp

(
cpeT

i (t, x)X pei (t, x)

−
∫ t−h p−1

t−h p

eT
i (s, x)X pei (s, x)

+ cpėT
i (t, x)Ypėi (t, x)

−
∫ t−h p−1

t−h p

ėT
i (s, x)Ypėi (s, x)ds

)}
dx,

(47)

Consider the following two zero equalities,

0=αp

(
eT

i (t−h p−1, x)Tpei (t−h p−1, x)

−eT
i (t−τp(t), x) × Tpei (t−τp(t), x)

−2
∫ t−h p−1

t−τp(t)
eT

i (s, x)Tpėi (s, x)ds

)
,

0= αp

(
eT

i (t−τp(t), x)Wpei (t−τp(t), x)

− eT
i (t−h p, x) × Wpei (t−h p, x)

−2
∫ t−τp(t)

t−h p

eT
i (s, x)Wpėi (s, x)ds

)
,

where Tp and Wp are any symmetric matrices. By
adding the above zero equalities to the left-hand side
of LV8(t), we get

E{LV8(t)}

=
∫

Ω

E

⎧⎨
⎩

m∑
p=1

αp

[
cpeT

i (t, x)X pei (t, x)

+ cpėT
i (t, x) × Ypėi (t, x)

+ eT
i (t − h p−1, x)Tpei (t − h p−1, x)

+ eT
i (t − τp(t), x)(Wp − Tp)ei (t − τp(t), x)

− eT
i (t − h p, x)Wpei (t − h p, x)

−
∫ t−h p−1

t−τp(t)

[
ei (s, x)

ėi (s, x)

]T [
X p Tp

� Yp

] [
ei (s, x)

ėi (s, x)

]
ds

−
∫ t−τp(t)

t−h p

[
ei (s, x)

ėi (s, x)

]T[
X p Wp

� Yp

]

−
[

ei (s, x)

ėi (s, x)

]
ds

]}
dx

≤
∫

Ω

E

⎧⎨
⎩

m∑
p=1

αp

[
cpeT

i (t, x)X pei (t, x)

+ cpėT
i (t, x)

× Ypėi (t, x)

+ eT
i (t − h p−1, x)Tpei (t − h p−1, x)

+ eT
i (t − τp(t), x)(Wp − Tp)ei (t − τp(t), x)

− eT
i (t − h p, x)Wpei (t − h p, x)

]⎫⎬
⎭ dx . (48)

Also, we have

E{LV9(t)}

=
∫

Ω

N∑
i=1

E

⎧⎨
⎩

m∑
p=1

αp

⎡
⎣
(

h2
p−h2

p−1

2

)2(
− ėT

i (t, x)

× Mpėi (t, x)
)− c2

peT
i (t, x)Mpei (t, x)

+ cp

∫ t−h p−1

t−h p

eT
i (s, x)Mpei (t, x) + cpeT

i (t, x)

× Mp

∫ t−h p−1

t−h p

ei (s, x)ds −
∫ t−h p−1

t−h p

eT
i (s, x)ds

× Mp

∫ t−h p−1

t−h p

ei (s, x)ds

]}
dx, (49)
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In order to obtain LV10p(t), we do the following to the
last integration term of V10p(t) :
The definition of τp(t) = t − tk shows that the last
integration term of V10p(t) is

− π2

4

∫ t

tk
(ei (s, x)−ei (tk, x))T

× Sp (ei (s, x)−ei (tk, x)) ds

=−
p∑

r=1

αr (t)
π2

4

∫ t−hr−1

t−τr (t)
(ei (s, x)−ei (t−τr (t), x))T

× Sp (ei (s, x) − ei (t − τr (t), x)) ds. (50)

Using fully the information of stochastically varying
interval delay τ(t), the stochastic variables ρpr (t) (r ≤
p = 1, 2, . . . , m) are introduced and such that

ρpr (t) =
{

1, βp(t)αr (t) = 1
0, otherwise r ≤ p = 1, 2, . . . , m

with the probability,

Prob{ρpr (t) = 1} = βp
hr − hr−1

h p
= ρpr ,

where
∑m

p=1
∑p

r=1 ρpr = 1. Then, V10p(t) can be
rewritten as the following:

V10p(t) =
∫

Ω

{
βp(t)h

2
pėT

i (t, x)Spėi (t, x)

−
p∑

r=1

(
ρpr

π2

4

∫ t−hr−1

t−τ(t)
(ei (s, x)

− ei (t − τ(t), x))T

× Sp(ei (s, x) − ei (t − τ(t), x))ds
)}

dx .

(51)

By (51), we can easily get

E{LV10p(t)} =
∫

Ω

E

{
βph2

pėT
i (t, x)Spėi (t, x)

−
p∑

r=1

(
ρpr

π2

4

[
ei (t − hr−1, x)

ei (t − τr (t), x)

]T

×
[

Sp −Sp

� Sp

] [
ei (t − hr−1, x)

ei (t − τr (t), x)

])}
dx,

p = 1, 2, . . . , m. (52)

According to the error system (17), we can have

∫
Ω

N∑
i=1

E

⎧⎨
⎩2[eT

i (t, x)G + ėT
i (t, x)G] [−ėi (t, x)

+
q∑

k=1

∂

∂xk

(
Dk

∂ei (t, x)

∂xk

)
−Cei (t, x)+ Ag(ei (t, x))

+ Bg(ei (t − d(t), x))

+
m∑

p=1

αp(t)Ki ei (t − τp(t), x)

⎤
⎦
⎫⎬
⎭ = 0, (53)

with H̃ = G Ki .

For positive diagonal matrices Λ1,Λ2,Λ3 and Λ4,
we can get from Assumption 1 that
[

ei (t, x)

g(ei (t, x))

]T [
F1Λ1 −F2Λ1

� Λ1

]

[
ei (t, x)

g(ei (t, x))

]
≤ 0, (54)

[
ei (t − d(t), x)

g(ei (t − d(t), x))

]T [
F1Λ2 −F2Λ2

� Λ2

]

[
ei (t − d(t), x)

g(ei (t − d(t), x))

]
≤ x0, (55)

[
ei (t − d1, x)

g(ei (t − d1, x))

]T [
F1Λ3 −F2Λ3

� Λ3

]

[
ei (t − d1, x)

g(ei (t − d1, x))

]
≤ 0, (56)

[
ei (t − d2, x)

g(ei (t − d2, x))

]T [
F1Λ4 −F2Λ4

� Λ4

]

[
ei (t − d2, x)

g(ei (t − d2, x))

]
≤ 0. (57)

From Eqs. (37)–(48) and adding (53)–(57) to LV (t),
we obtain

∫
Ω

N∑
i=1

E{LV (t)} ≤
∫

Ω

N∑
i=1

E{ζ T
i (t, x)Φζi (t, x)},

(58)

where the matrix Φ is defined in Theorem 1 and
ζi (t, x) = [eT

i (t, x)eT
im(t, x)eT

i (t − d1, x)eT
i (t −

d(t), x)eT
i (t −d2, x)ėT

i (t, x)gT (ei (t, x))gT (ei (t −d1,

x))gT (ei (t − d(t), x))gT (ei (t − d2, x))ėT
i (t − d1, x)∫ t

t−d1
eT

i (s, x)ds
∫ t−d1

t−d2
eT

i (s, x)ds]T with eim(t, x) =
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[eT
i (t−τ1(t), x)eT

i (t−h1, x)
∫ t−h0

t−h1
eT

i (s, x)ds · · · eT
i (t

− τm(t), x)eT
i (t − hm, x)

∫ t−hm−1
t−hm

eT
i (s, x)ds]T .

By (58) and (18)–(21), we obtain

∫
Ω

N∑
i=1

E{LV (t)} ≤ 0,

which together with Definition 1 implies that the error
system (17) is mean-square stable. This completes the
proof.

Remark 1 In Theorem 1 taking m = 2, we obtain the
matrix Φ as

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

� Γ7 Γ8 Γ9 Γ10 Γ11

� � Γ12 Γ13 Γ14 Γ15

� � � Γ16 Γ17 Γ18

� � � � Γ19 Γ20

� � � � � Γ21

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (59)

where

Γ1 =
⎡
⎣Φ1 Ξ1

11 Ξ1
12

� Ξ2
11 Ξ2

12
� � Ξ2

22

⎤
⎦ Γ2 =

⎡
⎣Ξ1

13 Ξ1
14 0

0 0 0
Ξ2

23 Ξ2
24 Ξ2

25

⎤
⎦

Γ3 =
⎡
⎣Ξ1

16 0 0
0 0 0
0 0 0

⎤
⎦ Γ4 =

⎡
⎣0 Φ2 Φ3

0 Ξ3
11 0

0 0 0

⎤
⎦

Γ5 =
⎡
⎣0 G B 0

0 0 0
0 0 0

⎤
⎦ Γ6 =

⎡
⎣0 d1G1 0

0 0 0
0 0 0

⎤
⎦

Γ7 =
⎡
⎣Ξ2

33 0 0
� Ξ2

44 Ξ2
45

� � Ξ2
55

⎤
⎦ Γ8 =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦

Γ9 =
⎡
⎣0 0 0

0 Ξ3
14 0

0 0 0

⎤
⎦ Γ10 =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦

Γ11 =
⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ Γ12 =

⎡
⎣Ξ2

66 0 0
� Φ4 0
� � Φ7

⎤
⎦

Γ13 =
⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ Γ14 =

⎡
⎣ 0 0 0

Φ5 0 0
0 Φ8 0

⎤
⎦

Γ15 =
⎡
⎣0 0 0

0 0 Φ6

0 0 0

⎤
⎦ Γ16 =

⎡
⎣Φ9 0 0

� Φ11 G A
� � −Λ1

⎤
⎦

Γ17 =
⎡
⎣0 0 Φ10

0 0 0
0 0 0

⎤
⎦ Γ18 =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦

Γ19 =
⎡
⎣−Λ3 0 0

� −Λ2 0
� � −Λ4

⎤
⎦ Γ20 =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦

Γ21 =
⎡
⎣Φ12 0 0

� Φ13 0
� � Φ14

⎤
⎦

The Lyapunov functional (23) is discontinuous due
to the presence of the Lyapunov functional V10(t). If
Sp = 0 in (23), the Lyapunov functional becomes con-
tinuous and the following can be obtained as a conse-
quence of the above theorem.

Corollary 1 For given positive constants αp, λp, h p

(p = 1, 2, . . . , m), μ, the system (17) is globally mean-
square asymptotically stable, if there exist matrices,
P > 0, Q > 0, G > 0, W > 0, H > 0, S > 0, X >

0, T̃ > 0, G1 > 0, G2 > 0, Z p > 0, Up > 0, X p >

0, Yp > 0, Mp > 0(p = 1, 2, . . . , m), symmetric
matrices Tp > 0, Wp > 0(p = 1, 2, . . . , m), diag-
onal matrices Λ1 > 0,Λ2 > 0,Λ3 > 0,Λ4 > 0, and
any matrices H, Vp(p = 1, 2, . . . , m) with appropri-
ate dimensions satisfying the LMIs (18) such that (18)
|Sp=0(∀p = 1, 2, . . . , m) and (19)–(21). Moreover, the

desired control gain matrix is given by Ki = G−1 H̃ .

Proof The proof of this corollary is similar to that of
Theorem 1 without considering the discontinuous Lya-
punov functional.

Remark 2 In this paper, the discontinuous Lyapunov
functional approach, which makes full use of the saw-
tooth characteristic of the sampling input delay, has
been handled, and for this purpose, the stochastic vari-
ables βp(t) and ρpr (t) are introduced. This gives the
significance of this present work. To the best of authors’
knowledge, this procedure for the synchronization of
reaction–diffusion neural networks with time-varying
delays has not yet been studied in the literature.

Remark 3 The effects of time delays and diffusion in
the real world cannot be avoided in modeling neural
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networks, and thus, the neural networks with reaction–
diffusion terms and time-varying delays have been con-
sidered rigorously, and numerous results have been
proposed in the existing literature, see for example
[17,22,25,26,43,44]. In [43], the authors have dis-
cussed the synchronization scheme for a class of
delayed neural networks with reaction–diffusion terms
using inequality techniques and Lyapunov method.

In [44], the problem of asymptotic synchronization
for a class of neural networks with reaction–diffusion
terms and time-varying delays has been investigated.
Very recently, in [26], the synchronization problem
for coupled reaction–diffusion neural networks with
time-varying delays has been proposed and a pinning-
impulsive control strategy has been developed. How-
ever, the problem of synchronization for reaction–
diffusion neural networks with time-varying delays
through sampled-data controller with stochastic sam-
pling has not yet been investigated in the literature. A
discontinuous Lyapunov approach, that uses the saw-
tooth structure characteristic of the sampling input
delay, has been employed, and the synchronization cri-
terion depending on the lower and upper delay bounds
has been derived in terms of LMIs using some inequal-
ity techniques. Numerical simulations were provided
to illustrate the effectiveness of the proposed synchro-
nization criteria.

Remark 4 We can easily see that the results and
research method obtained in this paper can be eas-
ily extended to many other types of neural networks
with reaction–diffusion effects and the Dirichlet bound-
ary conditions, for example, chaotic continuous-time
neural networks [45], recurrent neural networks [46]
and fuzzy cellular neural networks [47].

4 Numerical examples

In this section, two numerical examples are provided to
demonstrate the effectiveness of the proposed results.
For convenience, let us choose the number of sampling
periods to be two, i.e., m = 2.

Example 1 Consider the following reaction–diffusion
neural network with the time-varying delay

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂y(t,x)
∂t = ∂

∂x

(
D ∂y(t,x)

∂x

)
−Cy(t, x)+ Atanh(y(t, x))

+B tanh(y(t − d(t), x)) + J,

y(t, 0) = y(t, 20) = 0, t ≥ 0,

y(s, x) = sin(0.2πx), (s, x) ∈ [−1, 0] × [0, 20],
(60)

where y(t, x) = (y1(t, x), y2(t, x))T , tanh(y(t, x)) =
(tanh(y1(t, x)), tanh(y2(t, x)))T , D = diag(0.1, 0.1),

J = 0 and with

C =
(

1 0
0 0.95

)
, A =

(−2.8 0.9
2.7 −4.3

)
,

B =
(−4.5 −0.7

−4.4 −0.5

)
.

Also the activation function satisfies Assumption 1 with
F−

1 = F−
2 = 0 and F+

1 = F+
2 = 0.5. Thus,

F1 =
(

0 0
0 0

)
, F2 =

(
0.25 0

0 0.25

)
.

The neural network (60) exhibits chaotic behav-
ior as shown in Fig. 1. Under the stochastic sampled-
data controller U , the system (60) can be rewritten as

Fig. 1 Chaotic behavior of
the states y1(t, x) and
y2(t, x) in system (60)
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∂ui (t, x)

∂t
= ∂

∂x

(
D

∂ui (t, x)

∂x

)
− Cui (t, x)

+ A tanh(ui (t, x))+B tanh(ui (t−d(t), x))

+ J + Ui , (61)

Then, the error system can be obtained as

∂ei (t, x)

∂t
= ∂

∂x

(
D

∂ei (t, x)

∂x

)
− Cei (t, x)

+A tanh(ei (t, x))+B tanh(ei (t−d(t), x))

+
2∑

p=1

αp(t)Ki ei (t − τp(t), x), (62)

Let h0 = 0, h1 = 0.2, h2 = 0.4, β1 = 0.25 and
the time-varying delay d(t) = et/(1 + et ). With these
parameters, using the Matlab LMI toolbox, sufficient
conditions in terms of LMIs in Theorem 1 are found to
be feasible for the given values of d1 = 0.5, d2 = 1,
and the control gain matrix is obtained as

Ki =
[−0.2129 −0.3399

−0.0159 −1.0633

]
.

The simulation results are shown in Fig. 2, where
e1(t, x) and e2(t, x) are very close to zero when time
increases gradually to 0.5 under the stochastic sampled-
data controller (14) and those states are maintained
along with the increasing of t, which imply that sys-
tem (62) is globally asymptotically stable under the
stochastic sampled-data controller (14).

Example 2 Consider the same reaction–diffusion
neural network (60) with the time-varying delay and
with the parameters

C =
(

1 0
0 1

)
, A =

(
2.1 −0.12

−5.1 3.2

)
,

B =
(−1.6 −0.1

−0.2 −2.4

)
.

and correspondingly the same error system (62). Obvi-
ously, Assumption 1 holds with F−

1 = F−
2 = 0 and

F+
1 = F+

2 = 0.5. Thus, we have

F1 =
[

0 0
0 0

]
, F2 =

[
0.25 0

0 0.25

]
.

For the aforementioned parameters, system (60)
behaves chaotically and it is shown in Fig. 3.

Let h0 = 0, h1 = 0.2, h2 = 0.4 and β1 = 0.8.

Using the Matlab LMI toolbox, sufficient conditions
of Theorem 1 are verified and found to be feasible for
the given values of d1 = 0.7, d2 = 1.3. In this case,
the controller gain is obtained as

Ki =
[−1.2005 0.9574

−0.2745 −1.7610

]
.

Thus, we conclude that the error system (62) is
asymptotically stable in the sense of mean square for
the aforementioned parameters. The simulation results
that show the chaotic behavior of system (60) is given
in Figs. 3 and 4 describes that the error system with
aforementioned gain of stochastic sampled-data con-
troller (14) is asymptotically stable as time increases
gradually.

The numerical simulations clearly verify the effec-
tiveness of the developed stochastic sampled-data con-
troller with m sampling intervals to the asymptotical
synchronization of neural networks with time-varying
delays and reaction–diffusion effects.

Fig. 2 Dynamical behavior
of synchronization errors
ei1(t, x) and ei2(t, x)

between (61) and (60)
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Fig. 3 Chaotic behavior of
states y1(t, x) and y2(t, x)

of system (60)

Fig. 4 Dynamical behavior
of synchronization errors
ei1(t, x) and ei2(t, x)

between (61) and (60)

5 Conclusions

In contrast to the studies on design of controllers for
synchronization of reaction–diffusion neural networks
with time-varying delays, in this paper, we have used
the sampled-data controller with stochastic sampling
for the synchronization process. The sampling peri-
ods are assumed to be m in number, whose occurrence
probabilities are given constants and satisfy Bernoulli
distribution. The discontinuous Lyapunov functional
with triple integral terms that capture the information
on the upper and lower bounds of time-varying delays
has been constructed based on the extended Wirtinger’s
inequality to fully use the sawtooth characteristic of the
sampling delay. Sufficient conditions have been derived
in terms of LMIs and have been proved to be less con-
servative due to the use of the discontinuous type Lya-
punov functional. The obtained LMIs were easily ver-
ified for their feasibility using the Matlab LMI toolbox
and the corresponding results are presented with two
numerical examples.
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