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Abstract Tyre behaviour is strongly nonlinear. This
article presents the validation of a new polynomial tyre
model with real test data, analysing the convergence
properties during the optimization process to calcu-
late the values of the parameters. A multivariate model
with 13 parameters is shown, including normal load and
camber angle. The article reviews the methods of get-
ting polynomial approximations of the magic formula
tyre model used to develop the new polynomial model,
the numerical optimization methods which calculate
the parameters of the model from real test data, and it
explains how the terms of the Jacobian matrix are mod-
ified when we impose constraints to the curve; this can
be useful to improve the adjustment in some areas of
the curve. The convergence properties are shown both
for the magic formula tyre model and for this polyno-
mial tyre model. The proposed model presents a fast
convergence both in one and in three variables. This is
an additional advantage to its excellent analytical prop-
erties, and the model is very easy to compute and can
be easily derived and integrated. It is very well adapted
for real-time computing.
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1 Introduction

Tyre models are important to evaluate the behaviour of
such an important component of a car. Those models
calculate forces in the tyre-ground contact. Probably,
the most accurate and widely used by the community of
automotive engineers is the so-called Pacejka’s magic
formula tyre model [7,8] and [9], (see 2.1).

Due to the nonlinear behaviour of the tyre, the opti-
mization procedure required to calculate the parame-
ters of those models for an optimum adjustment to
test data is not a simple problem, because the forces
in the contact depend on slip, slip angle, normal load
and camber angle; thus, the mathematical problem is
a nonlinear multivariate optimization problem. The
complexity of the mathematical formulation of the
model can influence both the easiness of computing the
model and the convergence properties during the non-
linear optimization process. The Pacejka’s magic for-
mula tyre model uses a complex nested inverse tangent
function.

The authors of this paper have been looking for a
simpler expression quicker and easier to process both
during the optimization and during the direct comput-
ing of the model, more suitable for real-time applica-
tions.
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The new polynomial model presented and validated
in this article is obtained from the magic formula
expression, by using theory of approximation, expand-
ing the magic formula in series of Jacobi orthogonal
polynomials. In the following section, we summarize
how that expansion was obtained.

This article validates the new model with real test
data and analyses the convergence properties of the
model during the optimization process, to calculate the
values of the parameters. A multivariate model is pro-
posed including the influence of camber angle and nor-
mal load.

This work is integrated in a more general line of
research, whose goal is to obtain fast computing solu-
tions of the vehicle nonlinear equations, expanding
them in orthogonal polynomial series (Chebyshev and
Jacobi polynomials). The application is saving com-
puting time in pre-collision situations for active safety
devices (see the two PhD Thesis of the authors [1-3]
and the papers of Amirouche [4] and Ferrara [5,6]).

2 Theoretical background
2.1 The magic formula tyre model

The well-known tyre model proposed by Bakker,
Nyborg and Pacejka [7,8] and [9] is a semi-empirical
tyre model based on the “magic” formula:

Y=D -sin[C - arctan(BX —E - [BX —arctan(BX)])]

This model is widely used and accepted by the commu-
nity of automotive engineers and is also considered the
most accurate. For that reason, we use it as the reference
in this paper.

The shape of the curve is controlled by four para-
meters: B, C, D and E. The equation can calculate the
following:

o Lateral forces in a tyre, Fy, as a function of the slip
angle of the tyre, « (in degrees)

e Braking force, F, as a function of longitudinal slip
K (%).

e Self-aligning torque, Mz, as a function of the slip
angle «.

Figure 3 shows the aspect of this magic formula model
in the case of a longitudinal force.

B, C, D and E are constants that describe the incli-
nation of the curve at the origin (BCD), the peak
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value (D), the curvature (£) and the basic form (C) for
each case (lateral, braking or self-aligning torque). In
addition, the curve can have vertical (Sv) or horizon-
tal (Sh) shifts at the origin. The full expression is as
follows:

Y = D -sin[C - arctan(B(X + Sh) —
—arctan(B(X + Sh))])] + Sv

E -[B(X + Sh)

Coefficients B, D and E are functions of the vertical
load in the tyre, F;:

d=ai-F}+ay-F; B=BCD/C-d);
E=a6-FZ2+a7~FZ+a8;
a3-F22+a4~FZ_

’

BCD, = s T
BC D, = a3 - sin(ag(arctan(as - F)));

BCD; is valid for the longitudinal force and the self-
aligning torque with C = 1.65 and C = 2.4, respec-
tively.
BC D is valid for the lateral force with C = 1.3.
The Camber angle y in the wheel modifies the shifts
Sh and Sv and the stiffness BCD:

ASy=ay-y; AS,=(aio- F}+ay - F.)-y;
Eo

(I —aiz-lyl
E is the E value modified by the camber angle in the
self-aligning torque calculation.

In the next two sections, we explain how to obtain
a polynomial approximations to this magic formula
model.

AB = —aypp-|y|-B; El=

2.2 Approximation of a function in Chebyshev series

The Chebyshev polynomials, see [10], of the first
kind are defined by 7, (x) = cos[n arccos(x)] and are
orthogonal regarding the function w(x) = (1 —x2) 172
in the interval [—1, 1].

To work in different [a, b] intervals, shifted polyno-
mials with the following change must be used:

t=1/2[(b—a)x +a+b]
Their general expression [11] is the following:
Ln/2J

— —1)!
T, (x) = Z (-1 )'" Do

)n 2m
—2m)!

n:l,2,3...,To(x):l
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[n/2] is the highest whole number < n/2. They fulfil
the following recursive property:

g1 (x) =2xT0(x) = Th—1(x); n=12,...

Chebyshev polynomials can be computed and manipu-
lated using the MAPLE Orthopoly library. The expan-
sion of a function in Chebyshev series (ACh) has the
following form:

f) =" a, T, (x),
n=0

The single comma in the summation indicates that the
first term must be divided by 2.

This expansion usually converges faster than the
power series and the coefficients get the value:

1
an = rl / W) - FO T, (x)dx
n J—1

Where w(x) is the weight function w (x) = (1 —xz) _1/2.
If we truncate the series in degree N, we get an approx-
imation to the function, the more accurate the higher N
is. Due to properties of Chebyshev polynomials, trun-
cating in N — 1 is the best N — 1 degree polynomial
approximation to the development at N degree. r,, is the
norm of the function (;r /2 for Chebyshev polynomials).

The coefficients a;,, can be assessed with the direct
integration in some functions, but, in general, this is
not possible and the previous integral must be approxi-
mated by some other quadrature formula. This research
work has been implemented in MAPLE, which uses
quadrature algorithms, which first analyse the singular-
ities and then use Clenshaw—Curtis quadrature [12, 13];
if the result is not satisfactory, Newton-Cotes adap-
tive formulae are used. All this is carried out at the
Chebpade function from MAPLE Numapprox library
of approximation of functions.

Chebyshev-Padé functions obtain good approxi-
mations, but not those of minimum—maximum error
(known as minimax). To find the latter, the Remez
algorithm [14] is used, which fine tunes the result by
numeric iterations and converges to an improved min-
imax approximation.

The Remez algorithm produces optimal results at
the approximation. This method allows the calculation
of minimum error of any given function f(t) weighted
with any weight term w(z). If w(¢) = 1/|f(¢)| is used,
the minimum relative error is obtained. These methods
are described in any good book on the approximation
theory [15].

In MAPLE, the Remez algorithm is implemented
by the minimax function included in the Numapprox
library of approximation of functions.

Next, we introduce Jacobi polynomials because they
introduce flexibility in the approximation.

2.3 Expansion in series of Jacobi polynomials

Within the families of classic orthogonal polynomials
generated from the Sturm-Liouville differential equa-
tion, from which Chebyshev polynomials also derive,
we consider now the Jacobi polynomials, see [16].
Jacobi polynomials can also be computed and manipu-
lated using the MAPLE Orthopoly library. The expan-
sion of a function in series of Jacobi polynomials uses a
Jacobi weight function this time. The integral must be
programmed, and a library for expansions of functions
in Jacobi series is not available in MAPLE.

fFO) =D a - Ji(x);

k=0
1

a, = ri/ w(x) - f(x)Jp(x)dx
n J—1

The Jacobi weight function in this type of orthogonal
polynomials is the following:

(1—x)°
(1 +x)Y
This function is controlled by two parameters § and y
that allow choosing the area of a best approximation
at the orthogonality interval. In practice, this is very
interesting as it will allow us to improve the adjust-
ment of the error at any area of the longitudinal force,
lateral force or self-aligning torque curves, depending
on the application in which the approximation is used,
for instance, looking either for a more reduced error in
slip values close to zero or in values close to the maxi-
mum stress or in the maximum slip point (100 %), (see
Fig. 3).

The norm r,, in Jacobi polynomials is not constant,
but it is also a function of §, y and the degree of the n
polynomial.

2T +84+1) -Tn+y+1)
ry, =
"Tnl-@Qn484+y+1) Tn+S+y+1)
The recurrence relation seen for the Chebyshev poly-

nomials now takes a more general expression in the
case of Jacobi polynomials:

w(x) =
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S8, S8, 8,
IOV ) = (an +bp) - 107 @) = e - IO ()

n=1,2,...

Where the recurrence coefficients are now:

_Cn+14+6+y)2n+2+65+y)
2m+1Dn+14+86+y)

B 2 —yH2n+1+8+7y)

2+ DR+ S+ )+ 14+8+y)

. (4 +y)2n+24+5+y)
T4+ D+ 14+8+y)2n+8+y)

dn

n

n

3 The new polynomial tyre model
3.1 General description

As a result of the expansion of the magic formula in
series of Jacobi polynomials, the authors obtained a
very simple mathematical expression to calculate lon-
gitudinal and lateral forces in a tyre [17]:

F=Ag+A ——+ Ay (2 2+A * Y,
-0 "y Fop 2 x+b 3 x+b) "’
(1)

A simple degree N = 3 polynomial in an easy rational
function x/(x+b).

— F:canbe lateral (Fy) or longitudinal (Fy) force, the
expression is valid for both. For self-aligning torque,
a degree four polynomial should be used to obtain
good accuracy.

— x: can be longitudinal slip (s) or slip angle («)
according to what force we are considering.

— Aiandb are the basic parameters of the model. Usual
values of b are between 3 and 8; values around five
are very common.

This model shows excellent coincidence with the orig-
inal magic formula (the maximum difference is lower
than 1% with N = 3), both for F, and F). Self-
aligning torque requires a degree four polynomial. The
model has excellent analytical properties; it is possi-
ble to obtain the position of extreme points, asymp-
totes, analytic derivatives and integrals of this expres-
sion in an easy manner (the last is not possible in
the original magic formula). Finally, the main advan-
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tage is the facility of processing (test showed process-
ing time 20 times faster than the magic formula tyre
model). Obviously, the inverse tangent nested functions
of the magic formula are very inefficient in terms of
computation.

We have to calculate the term v = XXW only once,
including it in the polynomial, for more efficiency, the
Horner polynomial form can be used:

F=A)o+A|-v+Ar- v+ A3-0°
=Ao+ A1+ (A2 +A3-v)-v) -V

The work [17] was based in previous papers of the
authors, [18,19].

In[17], we had published our theoretical polynomial
formula, comparing it with the mathematic expression
of the magic formula, but without any validation with
real test data.

But in the present paper, we tackle the problem of
nonlinear optimization, that is, how to obtain the para-
meters of our model from test data and analysing the
convergence of our model comparing it with the speed
of convergence of the MF Tyre model (this had not been
analysed in [17].

The approximate function proposed by the authors
(1) presents a typical aspect as the one seen in Fig. 1

In the horizontal axis, the graph represents the lon-
gitudinal slip or the lateral slip. The vertical axis shows
the longitudinal force F) or the lateral force F). The
model is valid for both, with different values of the
parameters obviously.

The different curve branches are shown in Fig. 1.
Obviously, and regarding the tyre model, only the
branch from the minimum point to the right is used.

In this useful area, the curve shows two local ends at
the interval 0—100. A typical maximum around x = 15
(for the longitudinal force) and a minimum close to the
origin. Depending on the values of the coefficients, this
minimum point could be in any of the four quadrants.
Asitis a polynomial of a rational function, this function
changes very quickly near the minimum; therefore, we
must be very careful in the process of approximation
to test data in order to keep the curve on the right of
the minimum value. We will see how to achieve this in
Sect. 5.

Depending on the coefficients, the position of both
inflection points allows a very flexible adaptation to the
curvature not only at the ascending branch on the right
of the minimum, but also at the horizontal area on the
right of the maximum.
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Fig.1 Curve of the proposed polynomial model. Lateral or lon-
gitudinal force versus slip angle or slip

Obviously, the use of symmetry will allow symmet-
ric or asymmetric branches describing equal or differ-
ent behaviours in traction or braking or in asymmetric
lateral behaviour on the right or left.

Both vertical and horizontal shifts of the magic for-
mula can evidently be applied in a natural form (already
integrated in the equation itself), but in a more flexible
way as an inflection point can be kept in the upwards
section of every branch when working with two equa-
tions, one for each side of the symmetry, in case the
tyre’s behaviour requires it.

Let us see now the mathematical analysis of the
curve.

3.2 Function derivatives

F=Ao+A| -u+Ay u>+Az-u’

where

x o, b,  —2-b
I T a2 T aty
F'=A1+2-Ar-u+3-Az-u>)-u

F'=Q - Ao’ +6-Az-u-u) u
(A +2- A u+3-As-u?)u”

’ Ay ” 2
Fo = Ag; F0=7; Fo=ﬁ(A2—A1)M0;
L, 2
0 b’ 0 b2

3.3 Maximum and minimum values

The position of the extrema in function of the coeffi-
cients is easily calculated as follows:

—Ar £ /A — 34143 b -t
343 T T )

Fnax = Ao+ A1+ timax + Az Uy + A -t

The positive value of the root corresponds to the local

minimum close to x = 0 and the negative one to the
maximum close to x = 15.

Umax =

3.4 Inflection points

The position of the inflection points in function of the
polynomial coefficients is the following:
F'=0=2-Ay4+6-A3-u) u”
+(AI+2- Ag - u+3- Az -u?) - u;
b2

2-A)+6-A3z-u) ———

(2- Az 3-u) s
—2-b

(x +b)3
R=—(A14+2A243A3); S=b-(BA3—A2—2A1);
T=b*(A2—A1); R-x*+S-x+T=0

—S++S2—4-R-T
2-R

The negative root corresponds to an inflection point
placed in the ascending section on the right of the min-
imum, and the positive one to the point on the right of
the maximum. R, S and T are intermediate auxiliary
variables used in order to simplify the expressions, but
without any conceptual interest.

=(A1+2 Ay -u+3-Az-u?)

Xinf =

3.5 Asymptotes
The curve represents a vertical asymptote in x = —b

and an horizontal asymptote on the right of the origin
inx =Ag+ A + Ar + Az
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3.6 Symmetries and shifts

The symmetric curve in the second quadrant, which
will be called F2, is obtained by simply changing the
sign of parameter b, making u = x/(x — b). The sym-
metric curve in the third quadrant is — F2, and the sym-
metric function in the fourth quadrant is —F. If the
behaviour of the tyre is symmetric, the same equation
(with the same coefficients) can be used; if it is asym-
metric, coefficients can be changed.

The application of shifts Sx and Sy is also very easy:

Fshifted = F(x 4+ Sx) + Sy

4 Getting coefficients from tests
4.1 Introduction

In [17], this polynomial formulation was achieved from
the magic formula and the approximation theory imple-
mented on symbolic calculation programs, in particular
MAPLE. In this paper, we validate the model with real
test data, using a nonlinear optimization method, in a
multivariate domain, taking into account not only the
slip or slip angle, but also camber angle and normal
load too.

At this point, we review the different methods of
optimization present in the bibliography and we explain
the application to both the proposed new polynomial
model and the magic formula tyre model.

The main methods of nonlinear optimization used
in the approximation of tyre models with test data can
be classified as follows:

— Newton’s methods

e Newton’s method

e Gauss—Newton method and the Marquardt—
Levenberg variant

e Quasi-Newton methods

— SQP methods

— Iterative methods from the simplex method (Nelder—
Mead)

— Genetic algorithms

We describe now the functioning of those methods. All
of them have been applied to the estimation of the para-
meters of the presented polynomial tyre model with
good convergence results. They have been applied to
the magic formula tyre model too.
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4.2 The Newton’s method

The basic tenet of the Newton method for nonlinear
least-squares optimization is the following [20]:

If we have a set of m test points (x;, y;), where, in
general, y; is the longitudinal or lateral force related
to slip or lateral slip, which we also denote x;, as the
m = 55 test points that can be seen in the Fig. 3 of
Sect. 7.

The differences between the value predicted by our
model and that presented in the test make-up a residue
vector r (with a size of 55 in the proposed example)
where every residue has the form:

ri =yi—F = yi—(Ao+Ar-ui+Ar-u? + Az-ud);
being u; = x;/(x; + b), with i= 1...m; (55 points in
our example).

If B(By...B5) is the vector of the parameters of

the model, B;, where (j = 1,...,n) in this case
n = 5, being in our particular model (81 = Ag, B2 =
A1, ..., Bs = b), the sum of the quadratic deviations

will be a function of §:
SB)=>_rFPB) )
i=1

The Newton’s method starts from the Taylor series
expansion of the function, and for simplicity, we
assume that the function depends only on a unique para-
meter § at every point i:

(Xi. B1) & F(xi, BY) + F'(xi, BH)AB
1
5 F (i B (AB) + -
Being AB = (B1 — B})
The Newton’s method establish that the function

reaches its extrema when its derivative with respect to
ApB = 0, that means:

F'(xi, B + F'(xi, B - AB =0

Being as, in our model, the vector 8 contains now sev-
eral parameters, the previous expression becomes:

G+H-AB=0

From the previous equation, we can obtain the step of
the parameter’s vector in every iteration, the so-called
Newton’s step.

AB=-H'1.G (3)
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and calculate the value of B in the next iteration,
ﬂ(s-i-l) — ﬂs + Aﬂ

G is the gradient vector of S(f8), whose terms are as
follows:

m

or;
G/=2any.
J

i=1
H is the Hessian matrix of S, obtained by differentiat-
ing the terms of the gradient:

m 2
ar: or: 927
H]k=2 E (ii—i-rl dl )
9B 9P 9B 9Pk

i=1

This method and all its derived methods are iterative,
and they need an initial value of the parameters’ vector.
The quality of the final result will depend notably on
the goodness of this initial value.

4.3 Gauss—Newton and Marquardt—Levenberg
methods

The Gauss—Newton method approximates the Hessian
matrix, neglecting the second term of the previous
equation as follows.

art

m
Hjp =2 Jij-Jis Jij = FTR
i=1 J

Jij is the Jacobian matrix which contains the partial
derivatives of the vector of residuals with respect of
the parameters of the model. If we write G and H in
matrix notation, we obtain:

G=2-J'r; H~2J! I,
G+H - AB=JF .r+JT.J, - AB=0;
JE g - AB=—JF.r

In every iteration, the new value of the parameters’
vector is the following:

AB =~} I rs
BT =Y — I r

In the most basic tyre polynomial model, which
includes initially five parameters, the Jacobian matrix
is a (NPt x 5) matrix, being NPt the number of data
points (see the data vector in the example of Sect. 5).
For this tyre model, the rows in this Jacobian matrix
have the following shape:

“4)

ar; ar; ar; 2 ar; 3
o=l L= = ——=—ul;
0Ag 0A 0A> 0A3

31’,‘ 1

) A..2.A.,23.A..3]
ab (x,-+b)[1”’+ 20t S A

The Jacobian matrix terms in the magic formula are the
following:

Bri 1 a}’i . (V)
=—1;, — = —smn(V;);
a5, ad !
O [—d - cos(V))] - arctan(W))
Yol - cos(V; arctan(W;
ar,  ar; Vi AW,
a0 O d i cos (V)] | s
9B 0V, oW; 0B 14+ W7
Xi + Sy
Axi+8, —Elx: +5, —
|:X1 + h (Xz + v 1+ B2 } (xi +Sh)2)i|

ari - 3}”,' 3Vi 8Wi
OE ~ 9V W, OE 1+ w?
-[=B (xj + Sp) + arctan (B - (x; + Sp))];

8ri 81’5 3Vi BWI' . C
=—- . [-d-cos (V)] | ——
oS, oV, oW; 9aS, 14+ w2

B
'[B_E(B_1+BZ~(xi+Sh)2)]’

Being:

[—d -cos (Vi)]- |:

Wi = B (xi + Sp) — E - [B (xi + Sn)
—arctan(B (x; +Sp,))] and V; =C - arctan(W;)

If convergence problems appear, there are several meth-
ods which modify the Gauss—Newton method. The first
and most simple method consists of reducing the length
of the step of the parameters’ vector AS, by multiplying
it by a constant « lower than 1.

B =8O —a.gTy Ty

In this manner, we can solve situations, in which, the
step of the parameters’ vector Af points to the right
direction (which reduces the addition of quadratic devi-
ations), but it is too long.

The second method is the so-called Marquardt—
Levenberg method, [21], in which, the step A is modi-
fied by adding the term A.D, where D is a positive diago-
nal matrix and A is the so-called Marquardt’s parameter.
Itis also called the trust region method. The addition of
this term rotates the vector AB towards the maximum
descending slope.

BEtD =W —gly, +1- D) yIr
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In point 7, we will see the convergence of the
Gauss—Newton method in our tyre example, which
is very fast. The convergence of our model is com-
pared with the convergence of the magic formula tyre
model.

4.4 Quasi-Newton methods

According to [22], in order to estimate the parameters
of the magic formula tyre model, the research team of
the TNO (the research organization at the Netherlands),
used the so-called quasi-Newton method [23] and [24],
implemented by the EO4FDF subroutine of the NAG
(Numerical Analysis Group) [25] (see http://www.nag.
co.uk/). This method is similar to the Gauss—Newton
method, but its application is not specific for least-
squares problems, but its application field is wider,
actually it can be used to optimize any function.

The family of quasi-Newton methods avoids the
inversion of the Hessian matrix H in Eq. 2, by calcu-
lating directly the inverse of a pseudo-Hessian matrix
B, which is obtained by successive approximations
of the gradient G in a generalization of the secant
method to the multivariate domain. In this way, these
methods improve the computational efficiency of the
whole calculation. In order to estimate the pseudo-
Hessian B, different iterative algorithms have been
used and published along the history, DFP (Davidon—
Fletcher—-Powell), [26,27], BFGS (Broyden—Fletcher—
Goldfarb—Shanno), see [20], SR1 (Symmetric Rank 1),
see [28] and [20] and the class of Broyden methods,
see [29,30] and [20]. All of them use the Sherman-
Morrison formula to invert the pseudo-Hessian matrix
B, see [20].

4.5 The sequential quadratic programming (SQP)
method

SQP method [31] poses the general problem of nonlin-
ear optimization for a given target function S(8) of a
parameters’ vector 8, but now with a set of constraint
equations G(f) > 0, which can be both equality or
inequality functions of the parameters’ vector too.

G(B) = (G1(B), ..., Gm(B))

SQP is an iterative method, and it models the nonlinear
problem for a given iteration by a quadratic program-
ming (QP) sub-problem, solves that QP sub-problem
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and then uses the solution to find a new parameters’
vector B&HD.

To find the solution, SQP uses the Lagrangian func-
tion that combines the objective function S(8) and the
constraints G(f) properly. The Lagrangian function of
our problem is the following:

L(8,u) =S(B) —u'G(B)

where u is the vector of Langrange’s multipliers of the
nonlinear problem. SQP replaces the objective function
S(B) by its local quadratic approximation, expanding
it in a Taylor series, and the constraint functions G(f)
are replaced by their local linear approximations. This
construction is done in such a way that the algorithm
sequence converges to a local minimum. Modern opti-
mization textbooks have chapters devoted to SQP meth-
ods, see [31].

4.6 The Nelder—-Mead method

This method was proposed by [32], see also [33,34]
and [35], and it allows to minimize a target function in
a multidimensional space. The method uses the “sim-
plex” concept which uses elements of N 4 1 vertices,
in a N-dimensional space. In a one-dimensional space,
the simplex element is just a line. In a bi-dimensional
one, the simplex element is a triangle, and in a tri-
dimensional space, the element is a tetrahedron and so
on.

The algorithm generates a new test position by
extrapolating the behaviour of the target function in
every vertex of the simplex. One of these vertices is
replaced with a new point, and it progresses in this way.
The easiest step is to replace the worst point with a new
one obtained by reflecting it across the centroid of the
N remaining points. If this new point is better than the
best of all the current points, we can try to extend out-
wards the simplex element along this line. If the new
point is not better than the previous one, it will proba-
bly be in a valley area and we should compress the sim-
plex towards a better point. It is known that the method
can converge at nonstationary points. This method in
implemented in the fminsearch library of MATLAB.

4.7 Genetic algorithms

Recently, the group of the Department of Mechanical
Engineering of the University of Malaga (IMMA) has
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developed a new optimization method to calculate the
coefficients of the magic formula tyre model, see [36]
and [37]. They propose the use of genetic algorithms,
which work with high accuracy and efficiency, avoiding
the use of initial values for the parameters. Genetic
algorithms’ techniques were presented initially by [38]
and [39]. The IMMA applied them to tyre models first.

An interesting hybrid approach can be found in [40]
that combines genetic algorithms with classic gradient
search methods applied to multiparametric nonlinear
systems.

Several authors who have worked in nonlinear
multivariate optimization in tyre models agree that
when using Newton, Gauss—Newton, quasi-Newton
and Nelder—Mead methods, the selection of an ade-
quate initial point of the parameters’ vector is an impor-
tant issue for the quality of the final solution, and minor
variations in this initial point can produce different final
results, see for example [22,36,37] and [20].

The reason for this is the nonlinear condition of
the problem and the subsequent need for an iterative
method with an initial point.

During this research work, we have programmed
tyre models optimizations (by hand, writing the code
in a low level software) using Newton, Gauss—Newton
and Marquardt-Levenberg methods, both for the poly-
nomial and for magic formula models, with and with-
out constraints. We have also used the libraries of
MAPLE and MATLAB which combine Nelder—Mead
and Quasi-Newton methods with the previous ones,
and the results are always coincident; we could observe
many times this problem, in certain combination of the
parameters, a slight change in the initial point can yield
different results.

It is very difficult to give a general rule of when the
optimization will not converge. A first factor is how big
are the residues, that is, how far from the final curve is
the initial values curve. But this is not the only factor,
the shape of the initial values curve can also influence
the possibility of convergence. In addition, the final
result of the optimization can be apparently good, but
actually, it could be a local minimum, and we could
find a near combination of parameters with better opti-
mization results (a lower sum of quadratic deviations)
if we start with different initial values. Most optimiza-
tion methods find local minima. Those problems are
bigger when the number of parameters and the number
of variables increases, because the number of possi-
ble combinations of data is bigger and we could find

minima very close. As usual, a good knowledge of the
physical phenomenon (the tyre behaviour in this case)
and the previous experience in optimization of similar
tyres can help a lot.

Therefore, this is not a well-solved problem or at
least not in a fully automatic way.

From this point of view, the genetic algorithms
method, whose approach is probabilistic, nondetermin-
istic and very different from the rest, is very interesting
because it does not need an initial point.

Added to the previous methods, we can mention
the work of [41] and [42] who estimates the values of
the Pacejka’s magic formula tyre model, using the so-
called TS (two stage) technique and compares it with
different methods of observation and parameters esti-
mation based on Kalman filters, using data obtained
along the life time of the vehicle.

If we want to obtain a fast convergence in the opti-
mization algorithms, the initial point should not be far
from the optimum. The first step in a nonlinear opti-
mization process is the search of a reasonably good
initial point. We can use the previous results of a dif-
ferent tyre under similar load conditions to obtain this
initial point.

5 Optimization with constraints to the model
coefficients

Sometimes, it may be necessary to obtain the optimum
curve under certain constraints, because we are more
confident in some points of the test than in others or
because we want to equate the value of the curve, or
the value of its derivatives, at both sides of the origin, or
because we want to give a fixed value to the derivative
at the origin. If we have equality constraints, a direct
and effective technique is to include the constraints in
the original equation, before starting the optimization
process, as we show below, instead of formulating the
constraint equations added, and using SQP algorithms,
perhaps more adequate for inequality constraints.

If no constraints are imposed, the optimization algo-
rithms will calculate the coefficients so that the value
of the sum of the quadratic deviations is the minimum.
As constraints are imposed, the quadratic deviation will
be bigger and bigger, but the curve will comply those
constraints. As our model has five basic coefficients, in
theory, we could impose up to five constraints, although
we must always keep in mind that the less constraints
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we impose, the better the adjustment of the test data
and the lesser the sum of the quadratic deviations will
be.

Letus see now some typical constraint examples. All
of them have been tested both with our polynomial tyre
model and with the magic formula tyre model. We have
obtained a fast convergence and moderate variations of
the sum of quadratic deviations.

R1. The curve passes exactly through point (x,, y,).

yp = Ao+ Ay 'up+A2'u%,+A3'u:;;;
being u, = x,/(xp + b)

The resulting equation is the following:
ri=yi—Fi=yi—yp+(A1-up+Az- u?,+A3 : M?))
—(A1 - ui + Ay uf + Az - ud)

The terms of the Jacobian matrix for our tyre model are
modified as follows:

ori I S T VR
=Up—Uj; —— =U,—Uj; =u,—u;
94, dA, P dA; P
ob (x; +b) ! !
1

2 3
_(xpr) [A] 'Mp+2'A2 'up+3'A3 'up]

This constraint calculates the optimal value of the coef-
ficients so that the curve passes through a given point,
for example, the end point (s = 100) or through the first
data of the series at F, = 0, which can be very reliable
data from the test perspective: those two points can
have a better measurement reliability than the points
between the maximum value and the full slip point
(s = 100 %).

It can also be interesting that the curve passes exactly
through the maximum test point. Generally, these three
situations generate a small increase at the quadratic sum
and adjust the curve at those points accurately.

Nevertheless, if the chosen point is the maximum
one (Xmax, Ymax), this constraint does not guarantee
Ymax to be the curve maximum value, as it could have
an anterior or posterior maximum.

The curve can be forced to pass exactly through up
to five points, as it has five coefficients.

Particularly, the curve can be forced to pass through
(0, fy). Naturally, combined constraints can be
imposed, so that they can pass through (x,, y,) and
(0, fy). Thisis acombination of the two previous ones.
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R2. The curve takes F = ypn,x as maximum value
(even if it does not pass through xmax exactly).

—Ay — /A3 — 34145

Umax = ’

3A3
Finax = Ymax = Ao+A1 - max+A2 - Mﬁqax+A3 : u3max

The resulting equation will be the following:

ri =i — Fi = yi — Ymax
+(A1 - Umax + Az - urZHaX + Az - u13rlax)
—(Aq -ui+A2~u%+A3"4?)

Let:
K=\/AJ =3 A1 Ay =—A—3 A3 Umax;
37‘,’ :r{
aumax 1, Umax
= A +2'A2'umax+3A3'ur2nax
3”max_ , _ 1 L __k_Az.
oA, | manAr T o tmaxdr T 3T
u' = Al + Az +k
M k- Ay 3 A2
ari ’ 2
ﬁ =ri’ui =_(A] +2A2M,+3A3ul),
1
ou; , —X

W =T G

The terms of the Jacobian matrix will be as follows:

ar; _ R ’ .
9A; Umax — Ui Ty Umax, Ap>
8}’,'

—_ 2 _ .2 / /
3A2 = Umax uj _’_ri,um;AX umax,Az
3]’,’

_ .3 3 i i .
3A3 = Umax u; + ri,umax Mmax,Ag’
arl‘ , ,

ab - ri,u,- : ui,b

R3. The curve reaches its maximum value at x,x
(even if it does not take value ymax)

The resulting equation will be the following: r; =
yi—Fi=yi—(Ao+ A1 ui+Ax-uf + Az -u7); b =
—(2-A2+A1+3-A3) /(A2 +A1+K); u; = x; /(x; +D)
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ou; ,
9A, Al
232 Ar+ A +3-43) - (<2-k+3-A3)

N 2(A24 A1 +K)-K

3Mi ,
8A2 =ui’A2
_ (A1 +3-A3) K+ (6-A3+ Ay)- A1 +-A3- Ay

(A2 +A1+K)-K

ou; ,

9A; A

_ 3 3-2- A2+ A1 +3-A3) - A
A+ A +K (A2+ A +K)?- K

The terms of the Jacobian matrix will be as follows:
3}’,'

dAg

8}’5 u /
_BAI :—ui—(A]+2-A2-ui+3~A3~ui)~uiAl;
8)’[ 2 2 /
A, i — (A1 +2-Ap - ui +3- A3 ui) - up 43
or; 3 2 ’
8—A3=—ui — (A1 +2- Ay ui +3-A3-ui) - u; 4,

R4. The inflection point is located at the origin.
The inflection point is at the point xju¢
The condition of the inflection point at the origin is
as follows:

(FO" =0); Ay = Ay;
F=Ao+Ar-u-(1+u)+ Az -u3

The terms of the Jacobian matrix this time will be as

follows:

or; ar; ar; 3
——=-1 ——=—ui-(l+u); —— =-uj;
0Ag 0A1 0A3

dri [A $2-A1-ui+3-A 2] all

b 1 1 Uj 3 U; i+ b)2

R5. The slope at a given point x, takes a given value

Yp

Vp = (A1 42 Axeup+3- Ay ) s

U =xp/(xp +b)iu, = b/(x, +b)%

Ar=(ypfu,) —2-Ar-up—3-Az-ul

ri=yi—Fi =y — (Ao + [y, /u,) =2 Ay up
=3 As-uy]ui 4+ Ay up + Az - uy)

ar; _y;,'ui' 8u/p_ xXp—b

du, w2 7 b (xp+b)

ar; oup —Xp
ou, (2-A2+ 3-Up) - U o~ (v, +b)

I g w43 A
8u,-_u/P 2% 37 %
—2-Ax-u; —3- Az -uk;
au,-_ —X;
b (x; +b)?

The terms of the Jacobian matrix this time are:

ﬁ=—1; ﬂ=2~up'u,~—ui2;
dAo dA,

87‘,’
943
or; _ or; au/p or; Bup or; ou;
W ~aw, ob Ty ob ow b

Particular case: the slope at the origin takes a given
value.

Fé = A1/b; In this case, the equation is F = Ao +
b-Fj-u+Aj- u? + Az - u. The terms of the Jacobian
matrix are slightly modified:

ari  —Fy-xi b Fi-xi 2-Ay-x}
Wb itb) @D (5 +b)
3-A3-x?
(xi +b)*

The rest of the terms remains equal than in the equation
without constraints, except A that disappears.

We could use this constraint to force the slope at
the origin, to take the same value BCD of the magic
formula tyre model.

A combination could be imposed, so that the inflec-
tion point is at the origin and also at F;) takes a given
value.

As a final consideration related to the constraint
imposition, it must be stated that optimization algo-
rithms converge when the imposed constraints make
sense. If conditions are imposed to the curve that are
far from the initial ones with the result of very distorted
curve shapes, no final solution will be achieved.

6 Stability of the polynomial at the origin

The main drawback of using polynomials, especially
rational polynomials, is their trend to oscillation, in
other words, their possible instability. If the distribution
of real points shows an inflection point at the rise, the
polynomial with the best interpolation by least-squares
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Fig. 2 Oscillation at the origin

can have its minimum in the first quadrant (see Fig. 1)
between two test points, something definitely unwanted
(see Fig. 2).

To avoid it, we have to impose the constraint of a
given value of the derivative at the origin, A} = Fé -b.
F{; can be estimated by means of a parabolic regression
from the first 4 points and calculating the derivative of
this parabola at the origin. This increases slightly the
addition of quadratic deviations, but it solves in a simple
manner the problem because it moves the minimum
point to a different quadrant and stabilizes the curve in
the first quadrant. The correct value of Fj may also be
calculated by imposing the same value of the function,
and its derivative, at both sides of the origin if we have
data of forces in both sides. Figure 8 shows the solution
in the multivariate case too.

7 Results of the model with real tests and accuracy

In [17], the adjustment of the proposed polynomial
model was compared with the magic formula model
in relation to both the longitudinal and lateral forces
for different normal load values, and it could be seen
that the deviations regarding that model were always
very low, keeping a relative value below 1 %.

Now, we analyse the optimization to real test data,
not the adjustment to a theoretical model. The results in
real tests present the typical instability of the tyre mate-
rial inequalities, the instruments measurement uncer-
tainty and the difficulty to stabilize the longitudinal or
lateral slip at some areas of the curve. For this reason,
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mathematical models are exactly that models adjusted
to each type of tyre, but the resulting points always
present the variability specific of tests, so that individ-
ual deviations may be produced at some point.

Next, some modelling results from tests on areal tyre
are presented, showing the test points, the polynomial
modelling proposed in this article and its comparison
with the magic formula model.

Longitudinal force.

data = [[0, 2761, [1, 824], [2, 1742], [3, 2930], [4,
41461, [5, 4913], [6, 52441, [7, 5492], [8, 5693], [9,
58447, [10, 5987], [11, 6097], [12, 6155], [13, 6193],
[14, 6226], [15, 6253], [16, 6269], [17, 6277], [18,
62691, [19, 6243], [20, 6226], [21, 6202], [22, 6171],
[23, 6152], [24, 6125], [25, 6101], [26, 6072], [27,
60481, [28, 6017], [29, 5978], [30, 59441, [31, 5918],
[32, 58871, [33, 58601, [34, 5831], [35, 57971, [36,
57681, [37, 57231, [38, 56911, [39, 56621, [40, 56331,
[41, 5597], [45, 5506], [50, 5404], [55, 5261], [60,
51861, [65, 5115], [70, 5028], [75, 4999], [80, 4954],
(85, 4929], [90,4915], [95, 4882], [99, 4827], [100,
4796]]:

These are data from real longitudinal force tests on
a 175/70 R13 tyre. Normal load = 6 kN. Camber angle
= 0 and pure slip conditions.

In our model, we adjust the slope at the origin to the
value 408 which is the value for the slope at the origin
in a parabolic interpolation of the first 4 points. The
obtained result in the optimization is the following:

Fy = —6.33 +2199.78 - u + 28102.83 - u*
—26462.59 - u’; beingu = /(s + 5.391)

The adjustment to the magic formula is the following:

fy = 2035.56; fx = —2.055; B = 0.13915;

d =4226.87; E =0,7019; C = 1,766

F,=4226.87*sin(1.766*arctan(0.13915* (x —2.055)
—0.7019*(0.13915%(x — 2.055)
—arctan(0.13915%(x — 2.055))))) + 2035.56

Let us see now the convergence of both models using
the Gauss—Newton’s method for our example tyre with
the previous data.

In Table 1, we show the calculation of the parameters
for the longitudinal braking force F.

As we can see in Table 2, the magic formula model
also converges using the Gauss—Newton’s method, but
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Table 1 Convergence of

the polynomial tyre model Step Ao Al A2 A3 b

parameters Initial value 0 1,000 45,000 —40,000 5.5
1st —8.06629 2,212.796 28,016.681 —26,384.933 5.42352
2nd —6.91953 2,198.965 28,104.114 —26,461.747 5.38962
3rd —6.29362 2,199.826 2,810.723 —26,462.611 5.39173
4th —6.33480 2,199.777 28,102.837 —26,462.591 5.39161
5th —6.33248 2,199.781 28,102.831 —26,462.592 5.39162
Final value —6.33261 2,199.781 28,102.831 —26,462.592 5.39162

e omee S A (R

model parameters Initial value 6,000 1.5 0.1 0.5 0 0
1st 5,391.76309 1.55625 0.10651 0.57746 629.05012 —0.68770
2nd 5,095.2668 1.59421 0.11195 0.60858 952.19540 —1.03375
5th 4,649.90929 1.66874 0.12350 0.64867 1,481.00715 —1.55596
10th 4,380.61616 1.73016 0.13279 0.67963 1,834.55287 —1.87485
25th 4,237.11611 1.76466 0.13870 0.70050 2,023.81211 —2.04387
50th 4,226.99866 1.76624 0.13914 0.70194 2,035.43956  —2.05542
75th 4,226.87976 1.76625 0.13915 0.70195 2,035.56032  —2.05555
100th 42,26.87842 1.76625 0.13915 0.70195 2,035.56163 —2.05555
Final value 4,226.87840 1.76625 0.13915 0.70195 2,035.56164  —2.05555

very much slowly and the use of a step’s reduction 10%

factor o = 1/5 in this case for a correct convergence. 6 ] Fx‘

Anyway, the time of computing is very reduced. f,“’\

Then, we show the curves with the results. Firstly,
we can see the longitudinal force; in Fig. 3, we present
the test points, and the curves of our polynomial model
(dotted thick line) and the magic formula tyre model
(thin line). Both models approximate the test points
quite well.

If we analyse the deviations in Fig. 4, we can observe
that our polynomial model (circles) presents a better
adjustment in the high area of the curve and in the
final part, with moderate, medium and high values of
slip. Pacejka’s magic formula tyre model (cross marks)
presents a better adjustment in the first points of the
test. The behaviour of the polynomial tyre model is
especially accurate in the area of the maximum value
of the curve.

Y
I
{
{

3] —— Magic formula tyre model
— — = Polynomial tyre model

2 -

1 4

Longitudinal slip (%)

04V """

0 10 20 30 40 50 60 70 80 90 100

Fig. 3 Longitudinal force (N) interpolation
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Fig. 4 Absolute deviations (N). Longitudinal force

Lateral Force

Data test for the same previous tyre is the following:
Slip Angle = —15... 15 (In this test, we have taken
the right-hand side of the file from 0 to 15° (0,262 rad)
Camber Angle = 0°. Normal load F, = 6 kN. Pure
Lateral Force F), is measured.

Data =[[0, —98], [0.004, 108], [0.009, 253],[0.013,
4801, [0.017,700], [0.022, 912], [0.026, 1094], [0.031,
1275], [0.035, 1441], [0.039, 1641], [0.044, 1820],
[0.048, 1984], [0.052, 2163], [0.057, 2357], [0.061,
2531], [0.065, 2675], [0.07, 2823], [0.074, 2970],
[0.079, 3108], [0.083, 3251], [0.087, 3373], [0.092,
3500], [0.096, 3603], [0.1, 3694], [0.105, 3790],
[0.109, 3877], [0.113, 3957], [0.118, 4031], [0.122,
4097], [0.127, 4159], [0.131, 4203], [0.135, 4256],
[0.14, 4293], [0.144, 4329], [0.148, 4366], [0.153,
4411], [0.157, 4438], [0.161, 4475], [0.166, 4505],
[0.17, 4527], [0.174, 4566], [0.192, 4646], [0.209,
4725], [0.227, 47801, [0.244, 4773], [0.262, 4752]:

As we can see in Fig. 5, the curves show a good
adjustment to data test for both models. In the poly-
nomial model, we have not imposed constraints. If we
look at the deviations in Fig. 6, we can appreciate a
slightly better result of the polynomial model, espe-
cially in the starting and final areas.

8 Multivariate analysis

The main variables influencing the behaviour of a tyre
are typically normal load (F;), camber angle (a.) and
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of course longitudinal slip or slip angle. We will have a
set of m = mj.my.m3 test points in the variables x, F;
and a, being x longitudinal slip or slip angle. Every
test point is a vector of four elements (x;, F;;, aci, yi).
From the observation of the cloud of test points, we
build a model in which the normal load and camber
influence the peak value and the shape factor b; in the
multivariate domain we will denote it as B*.

X
x + B*(Fz, ac)

2 3
X X
My (——) 42 (———) )
e (x—{—B*(Fz,aC)) i (x+B*(FZ,aC)))

F*(Fz, ac) = F1(Fy) - Fa(ac);
B*(F,, ac) = B|(F;) - Ba(ac) 5)

Fi(x, F,ac) = F*(sz ac) - (AO +Ap-
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Fig. 7 Longitudinal force
(N), in pure slip conditions,
versus slip. Multivariate
model

Camber=-5

Longitudinal Slip (%)

Initially, we assume a parabolic model for every fac-
tor of influence. After an analysis, we could simplify
the models of F; and B; to linear, and we make the
mathematic development with degree 2. We have to
avoid redundancy of parameters in the possible inde-
pendent terms (dp and eg, bg and go), with the A; terms
because the optimization algorithms cannot converge if
the parameters are redundant, for that reason, we pro-
pose finally the following models:

FI(F)=1+d-F, +d> FZ
Fr(ac) = 1+ei-ac+er-ak;

Bi(F,) = 1+by - F, +by- FZ;
By(ac) =go+g1-ac+ & -a?;

The whole model includes 13 parameters.

There is not a theoretical limit in the number of vari-
ables and parameters. The limit can be imposed by the
computation times and the problem of finding a good
initial point with a big number of variables and para-
meters.

The residuals’ vector in this case is r; = y; — F/;
withi = 1...m (495 test points in our tyre example).
We will have 55 points in each of the three values of
normal load (2 kN, 4 kN y 6 kN) and in each of the
three values of camber angle (-5°, 0°y5°). In total, m
=55.3.3=495. The parameters’ vector will have 13 ele-
ments: B (B1, ... B13). The addition of quadratic devi-

T T T T T T T T T T T

T 1
40 50 60 70 80 90 100

ations S(B) will have the same expression, (2) but now
m=495.

The expressions of the Gradient, Jacobian matrix
and Hessian matrix are the same too (but now with j =
13 parameters and m = 495 points). See expression (4)
is the same. All methods described in Sect. 3 are valid.

In Fig. 7, we present the results obtained with the
same example tyre. Longitudinal force in pure slip con-
ditions is presented with values of F, equal to 2, 4 and
6 kN and camber angles of —5°, 0°y5°. Figure 8 shows
the adjustment of longitudinal force near the origin.

The obtained values of the parameters are the fol-
lowing:

Ap =4.672; A} = —11.387; Ay = 322.675;

Az = —277.546;

by = —0.2928e — 1; bp = —0.86e — 3;

e; = —0.460e — 2; ep = 0.113¢ — 2;

d; = 18.455; dy = —.2288;

g0 = 6.22766; g1 = —0.4696e — 1;

g2 = —0.248%¢ — 1;

The initial point has been the following:

Ag=5; A1 = —10; A, = 300; Az = —300;
bi=by=0;d1 =20;dy=e1 =er =81 =g =0;
go = 10;

The addition of quadratic deviations is = 2.695 - 10°
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Fig. 8 Adjustment of the slope at the origin

To obtain those results, we have used Quasi-Newton,
Gauss—Newton, Nelder—Mead and genetic algorithms,
without constraints; all of them converge correctly,
but the first three are sensitive to the initial point.
The quadratic components of Fj(F;) and By (F;) are
very low compared with the linear term, so that we
could simplify the model, assuming a linear behav-
iour for those two functions, by eliminating d> and
b, and repeating the optimization; however, the com-
plete quadratic formulation is presented for a more
general expression. We can observe a very good
adjustment of the model in respect of test with this
real tyre. Then, we present the convergence of those
data, using the Gauss—Newton method without step
modification.

As we can see in Table 3, we can observe that the
proposed model converges easily, and in the eighth step,
the error is already under 1%. This is an additional
advantage of the use of polynomials.

If we need to adjust the slope at the origin, according
to the point 5, we would apply the constraint pointed in
5-RS, but for the multivariate case. The coefficient Al
would be modified with Fj calculated from a parabolic
regression with the first 4 points and calculating the
slope at the origin. We repeat this three times, one for
each of the values of normal load with camber zero, and
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finally, a linear regression of the slope at the origin is
obtained in function of F_, with the three values of the
slope. We assume that the slope at the origin changes
with normal load F,, but not with camber angle, for
every value of F,. A zoom of the slope at the origin is
presented:

We apply the condition of fixed positive derivative
for every value of F; in Eq. (5).
(BF*) _F_*.A =F . F.: A —F’.F.B_*

ax ), B Tl oAl m R0
F(’) F, = 90. F, is the estimation, for this tyre, of the
slopes at the origin from the first 4 points of every curve
(ac = 0). The final model is the following:

B*
Fex, Feoa)=F* - (Ag+F) - F. - — - (—
F* x + B*

2 3

X X
A - Ay - ;
A (x+B*) A (x+B*))

This constraint adds very few computing load because
B* and F* are used in the rest of the model too.

9 Conclusion

In this article, a new tyre model is validated using test
data of real tyres. Initially, it has been presented the the-
oretical background of approximation of functions that
allow to come up with the model, and the mathematical
analysis of the curve proposed as a tyre model by the
authors, a degree three polynomial in a simple ratio-
nal function (1). Then, the article reviews the nonlinear
numerical optimization methods, which calculate the
model parameters from real test data. Initially, a basic
model in five parameters was used, and then, the com-
plete model in 13 parameters, including the effect of
normal load and camber angle was also optimized. We
could observe a very fast convergence in both cases.
The technique of optimization with constraints in the
function or its derivatives is applied to the tyre opti-
mization, which it have to be used to avoid strange
values of the slope at the origin.

As a conclusion, it can be stated that, during the
process of nonlinear multivariate optimization, to cal-
culate its parameters, the new polynomial tyre model
presents very good conditions of convergence, faster
and simpler than in the magic formula tyre model.

As we could see at Sect. 4.3, there is a huge dif-
ference in the simplicity and computational efficiency
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e mativarite polnomial | SeP____C0 Cpl G2 Gp3 h b
tyre model Initial value 5 ~10 300 —300 0 0
1 2.3278 75.761 38.233 —78.112 —0.0291  0.000379
2 3.8508 —35.201 342.114 —-273.317 —-0.02874 —-0.001214
3 5.2796 151.061 —44.590 —-59.817 —0.00789 —0.004034
4 4.5607 —16.555 334262 —285.345 —0.02974 —0.000796
5 4.5253 —3.505 296.722 —259.620 —0.03175 —0.000460
6 4.7024 —10.901 323.034 —278.253 —0.02885 —0.000918
7 4.6706 —11.413 322.679 —277.527 —-0.02931 —0.000857
8 4.6721 —11.386 322.677 —277.549 —0.02927 —0.000861
9 4.6720 —11.388 322.675 —277.547 —0.02928 —0.000861
10 4.6720 —11.387 322.675 —277.547 —0.02928 —0.000861
50 4.6720 —11.387 322.675 —277.547 —0.02928 —0.000861
Step el e d dy 20 g 2
Initial value 0 0 20 0 10 0 0
1 —0.006569 0.001446 24.717 —0.36417 8.2915 —0.02256  —0.01780
2 —0.005044 0.001039 19.637 —0.26208 2.6606 —0.05481 —0.02375
3 —0.004386 0.000992 13.518 —0.14467 6.0431 —0.11890 —0.04808
4 —0.004694 0.001068 17.817 —0.21798 7.5201 —0.07438  —0.03072
5 —0.004569 0.001127 18.767 —0.23390 6.1952 —0.03589  —0.02262
6 —0.004589 0.001134 18.351 —0.22721 6.2423 —0.04775  —0.02515
7 —0.004599 0.001131 18.458 —0.22886 6.2267 —0.04693  —0.02488
8 —0.004599 0.001131 18.455 —0.22882 6.2277 —0.04696  —0.02489
9 —0.004599 0.001131 18.456 —0.22883 6.2277 —0.04696  —0.02489
10 —0.004599 0.001131 18.456 —0.22883 6.2277 —0.04696  —0.02489
50 —0.004599 0.001131 18.456 —0.22883 6.2277 —0.04696  —0.02489

between the Jacobian matrix terms of the polynomial
model and the magic formula model, and this is the
reason why the observed convergence of the method is
much faster in the polynomial model (see for example
Tables 1, 2 in Sect. 7, the MF model requires 10 times
more steps to obtain stable values of the parameters)
and of course, every step is computed very much faster
because the terms are much simpler.

This is an additional advantage added to its obvious
properties of mathematical simplicity.

As itis a polynomial, the computing is very fast and
easy, as we could see in Sects. 4.3 and 3.1; itis also very
accurate as we shown in the figures of Sects. 7 and 8.
The error relative to the magic formula tyre model is
always very reduced, the reduced difference between

the two mathematical formulae had been provenin [17],
and in this paper, we can see the similar optimization
results compared with real test data, in the figures of
Sect. 7.
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