
Nonlinear Dyn (2014) 78:2409–2419
DOI 10.1007/s11071-014-1597-5

ORIGINAL PAPER

New globally asymptotical synchronization of chaotic
systems under sampled-data controller

Chao Ge · Zhigang Li · Xiaohong Huang ·
Caijuan Shi

Received: 28 January 2014 / Accepted: 9 July 2014 / Published online: 5 August 2014
© Springer Science+Business Media Dordrecht 2014

Abstract This paper investigates the robust synchro-
nization problem of chaotic Lur’e systems with exter-
nal disturbance using sampled-data H∞ controller. The
new method is based on a novel construction of piece-
wise differentiable Lyapunov–Krasovskii functional
(LKF) in the framework of an input delay approach.
Compared with existing works, the new LKF makes
full use of the information on the nonlinear part of the
system and introduces the novel terms, which guar-
antees the positive of the whole LKF. The output feed-
back H∞ synchronization controller is presented to not
only guarantee stable synchronization, but also reduce
the effect of external disturbance to an H∞ norm con-
straint. The proposed controller can be obtained by
solving the linear matrix inequality problem. The effec-
tiveness of the proposed method is demonstrated by the
numerical simulations of Chua’s circuit.

Keywords Chaotic system · H∞ synchronization ·
Sampled-data control · Linear matrix inequalities
(LMIs)

1 Introduction

Since the pioneering work was introduced by Pec-
ora and Carroll [1], chaos synchronization has been
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a very hot topic in the nonlinearity community and has
attracted much interest of scientists and engineers due
to its potential applications in various fields, include
chaos generator design, secure communication, chem-
ical reaction, biological systems, and information sci-
ence [2–6]. It is well known that a large class of non-
linear systems, such as Chua’s circuit, n-scroll attrac-
tors, and hyperchaotic attractors [7], can be modeled as
Lur’e systems which consist of a linear dynamical sys-
tem and a feedback nonlinearity satisfying sector bound
constraints. For this reason, a lot of attention have been
devoted to the study of the master–slave synchroniza-
tion of Lur’e systems [8–12]. From the control strategy
point of view, a number of methods have been proposed
for the master–slave synchronization of Lur’e systems.
These methods are almost implemented by analog cir-
cuits (such as observer-based control [13], adaptive
control [14], and feedback control [15,16]). During
working in high-quality and high-speed communica-
tion channels, the controllers based on these methods
can provide well control performance, since they can
use continuous feedback signals to tune the optimal
control output in real time. However, it may be difficult
to obtain the accuracy feedback signal in real time due
to the noise corruption [17], especially for the commu-
nication channels are occupied all the time for such type
of control strategies. With the rapid advances in data
communication networks and high-speed computers, it
is preferable to use digital controllers instead of analog
circuits, particularly in aerospace systems and indus-
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tries [18]. These control systems can be modeled by
sampled-data systems, whose control signals are kept
constant during the sampling period and are allowed to
change only at the sampling instant. These samples are
used by sampled-data controllers to control the slave
chaotic system and result in synchronization between
the master and the slave chaotic systems. This dras-
tically reduces the amount of synchronization infor-
mation transmitted from the master chaotic system to
the slave chaotic system and increases the efficiency
of bandwidth usage, which makes this method more
efficient and useful in real-life applications.

During using a sampled-data controller to synchro-
nize the chaotic systems, how to choose the sampling
period is an important issue to be considered. It is clear
that a bigger sampling period will lead to lower com-
munication channel occupying, fewer actuation of the
controller, and less signal transmission [19,20]. There-
fore, it is an important objective to design a controller
which can achieve the synchronization under a bigger
sampling period. In the sampled-data control literature,
a popular analysis approach is the so-called input delay
approach proposed in [21]. This approach is based on
modeling the sampled-and-hold with a delayed con-
trol input. Then, the Lyapunov–Krasovskii functional
(LKF) method can be applied to establish the stability
conditions. Note that recent improvements of the input
delay approach have been obtained in [22]. The work in
[23] and [24] introduced a discontinuous LKF to study
the sampled-data control problem for master–slave syn-
chronization schemes. The authors in [25] introduced
a new LKF for the synchronization of Lur’e systems
with time delays, which was positive definite at sam-
pling times but not necessarily positive definite inside
the sampling intervals.

On the other hand, in the real-world situation, para-
meter uncertainties are unavoidable mainly due to
the modeling inaccuracies, variations of the operating
point, aging of the devices, etc. Therefore, the issue
of robustness analysis has been taken into account in
all sorts of systems by many researchers [26–29]. Hou
et al. [30] firstly adopted the H∞ control concept for
chaotic synchronization problem of a class of chaotic
systems. In [31], a dynamic controller for the H∞
synchronization was proposed. Choon [32] proposes a
new output feedback H∞ synchronization method for
delayed chaotic neural networks with external distur-
bance. Very recently, Lee et al. [33] have investigated
the robust synchronization problem for uncertain non-

linear chaotic systems using stochastic sampled-data
control. To the best of our knowledge, however, for
the robust synchronization of chaotic systems using
sampled-data H∞ control, there is no result in the liter-
ature so far, which still remains open and challenging.

In this paper, a discontinuous Lyapunov functional
approach is proposed to discuss the robust master–
salve synchronization for Lur’e systems by use of a
sampled-data H∞ control in the present of a constant
input delay. In order to make full use of the avail-
able information about the actual sampling pattern, a
novel LKF is proposed. The positive definitiveness of
the given LKF can be guaranteed by only requiring
the sum of several terms of the LKF to be positive.
Different from the LKF introduced in [34], our delay-
dependent LKF adopts some useful information of the
nonlinear function, which makes it possible to deduce
less conservative stability conditions. By means of the
numerical simulations of Chua’s circuit it is shown that
the proposed results are effective and can significantly
improve the existing ones.

Throughout this paper, R
n is the n-dimensional

Euclidean space, R
m×n denotes the set of m × n real

matrix. Xi j denotes the element in row i and column
j of matrix X . I is the identity matrix. The notation ∗
always denotes the symmetric block in one symmetric
matrix. Matrices, if not explicitly stated, are assumed
to have compatible dimensions.

2 Problem statement and preliminary

Consider the following general master–slave type of
time-delay Lur’e systems with parameter uncertainties
using sampled-data feedback controller:

M :
⎧
⎨

⎩

ẋ(t) = (A + ΔA(t))x(t)
+(H + ΔH(t))σ (DTx(t))

y(t) = Cx(t)

S :
⎧
⎨

⎩

ż(t) = (A + ΔA(t))z(t)
+(H + ΔH(t))σ (DTz(t)) + u(t) + Eω(t)

ŷ(t) = Cz(t)

C : u(t) = K (y(tk) − ŷ(tk)), tk ≤ t < tk+1 (1)

which consists of the master system M , the slave sys-
tem S, and the sampled-data feedback controller C .
x(t) and z(t) ∈ R

n are the state vectors of master
and slave systems, respectively, y(t) and ŷ(t) ∈ R

l

are the ouput vectors. u(t) ∈ R
n is the control input,
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Asymptotical synchronization of chaotic systems 2411

ω(t) ∈ R
k is the external disturbance which belongs

to L2[0,∞). A ∈ R
n×n, C ∈ R

l×n, D ∈ R
nh×n, E ∈

R
n×k , and H ∈ R

n×nh are known constant matrices.
K ∈ R

n×l is the sampled-data feedback control gain
matrix to be designed. ΔA(t) and ΔH(t) are unknown
matrices representing time-varying parameter uncer-
tainties. In this paper, the admissible parameter uncer-
tainties are assumed to be of the following form.

[ΔA(t) ΔH(t)] = N F(t)[Na Nh] (2)

in which N , Na, Nh are known constant matrices, and
the time-varying nonlinear function F(t) satisfies

FT(t)F(t) ≤ I, ∀t ≥ 0. (3)

It is assumed that all the elements of F(t) are Lebesgue
measurable. We assume that σ(·):Rnh �−→ R

nh is a
diagonal nonlinearity with σi (·) satisfying the follow-
ing inequality:

[σi (ξ) − �+
i ξ ][σi (ξ) − �−

i ξ ] ≤ 0, ∀ξ, (4)

for all i = 1, 2, . . . , nh . Thus, the nonlinear function
satisfies sector bounding condition and σi (·) is said to
belong in the sector [�−

i ,�+
i ]. Denote the updating

instant time of the ZOH by tk . For sampled-data feed-
back synchronization, only discrete measurements of
y(t) and ŷ(t) can be used for synchronization purposes,
that is, we only have the measurement y(tk) and ŷ(tk)
at the sampling instant tk . Suppose that the updating
signal (successfully transmitted signal from the sam-
pler to the controller and to the ZOH) at the instant tk
has experienced a constant signal transmission delay η.

It is assumed that the sampling intervals are bounded
and satisfy

0 = t0 < t1 < · · · < tk < · · · < lim
k→∞tk = +∞,

tk+1 − tk ≤ hmax, ∀k ≥ 0,

where hmax is a positive scalar and represents the largest
sampling interval.

Thus, we have

tk+1 − tk + η ≤ hmax + η � hM (5)

Here, hM denotes the maximum time span between
the time tk − η at which the next update arrives at the

destination. The main aim of this study is to design
the sampled-data controller C for the synchroniza-
tion between master M and slave S. That is the error
between two dynamics must be equal to zero asymptot-
ically. Let the error between master and slave systems
be e(t) = x(t) − z(t). Moreover, based on the above
sampled-data controller design formulation, the feed-
back controller takes the following form:

u(t) = K e(tk − η), tk ≤ t < tk+1, k = 0, 1, 2, . . .

(6)

with tk+1 being the next updating instant time of the
ZOH after tk . Then we obtain the closed loop synchro-
nization error system

ė(t) = Ae(t) + H f (DTe(t)) − K Ce(tk − η)

−Eω(t) + N p(t),

p(t) = F(t)q(t),

q(t) = Nae(t) + Nh f (DTe(t)). (7)

where f (DTe(t)) = σ(DTe(t)+DTz(t))−σ(DTz(t)).
Defining τ(t) = t −tk +η, hτ (t) = hM −τ(t), thus we
have η ≤ τ(t) < tk+1 − tk + η ≤ hM , and τ̇ (t) = 1,

for t 
= tk . It can be easily checked that fi (0) = 0, and
the nonlinearity fi (·) belongs to the sector [�+

i ,�−
i ]

for all i = 1, 2, . . . , nh, and

[ fi (ξ)−�+
i ξ ][ fi (ξ)−�−

i ξ ] ≤ 0, i =1, 2, . . . , nh

(8)

Also, consider K1 = diag{�+
1 ,�+

2 , . . . ,�+
nk

}, and
K2 = diag{�−

1 ,�−
2 , . . . ,�−

nk
}. It is implied from

the above formulation that the synchronization prob-
lem between M and S is converted into an equivalent
absolute stability problem of the error dynamical sys-
tems (7). In this paper, we aim at establishing easily
computable yet less conservative synchronization cri-
teria by finding maximum sampling time hmax. Since
a bigger sampling period leads to lower communica-
tion channel occupying, fewer behaviors of the con-
troller, and less signal transmission, we aim to design
a sampled-data controller C to make slave system S
synchronize with master system M under a sampling
period as big as possible.

Now we state the following definitions and lemmas
which will be used in the sequel.

Definition 2.1 The master system M and slave system
S are said to be asymptotically synchronized if and
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only if the error dynamical systems (7) are globally
asymptotically stable for the equilibrium point e(t) ≡
0. That is, e(t) → 0 as t → ∞.

Definition 2.2 The error system (7) is H∞ synchro-
nized if the synchronization error e(t) satisfies

∫ ∞

0
eT(s)Se(s)ds < γ 2

∫ ∞

0
ωT(s)ω(s)ds

for a given level γ > 0 under zero initial condition,
where S is a positive symmetric matrix. The parame-
ter γ is called the H∞ norm bound or the disturbance
attenuation level.

Lemma 2.3 [34] For any constant matrix X ∈ R
n×n,

X = XT > 0, there exist positive scalar h such that
0 ≤ h(t) ≤ h, and a vector-valued function ẋ :
[−h, 0] → R

n, the integration −h
∫ h

t−h ẋT(s)X ẋ(s)ds
is well defined,

−h
∫ t

t−h
ẋT(s)X ẋ(s)ds

≤
⎡

⎣
x(t)

x(t − h(t))
x(t − h)

⎤

⎦

T ⎡

⎣
−X X 0
∗ −2X X
∗ ∗ X

⎤

⎦

⎡

⎣
x(t)

x(t − h(t))
x(t − h)

⎤

⎦ .

Lemma 2.4 [22] Let there exist positive numbers α, β,

and a functional V : R×W [−τM , 0]×L2[−τM , 0] →
R such that

α |φ(0)|2 ≤ V (t, φ, φ̇) ≤ β ‖φ‖2
W .

Let the function V̄ (t) = V (t, xt , ẋt ), where xt (θ) =
x(t + θ), and ẋt (θ) = ẋ(t + θ) with θ ∈ [−τM , 0]
is continuous from the right for x(t) satisfying the sys-
tem , absolutely continuous for t 
= tk and satisfies

lim
t→t−k

V̄ (t) ≥ V̄ (tk). Through (7),
·

V̄ (t) ≤ −ε |e(t)|2

for t 
= tk and for some scalar ε > 0, hence (7) is
asymptotically stable.

The purpose of this paper is to design the out-
put feedbackcontroller u(t) guaranteeing the H∞ syn-

chronizationif there exists the external disturbance
ω(t). In addition, this controller u(t) will be shown
to guarantee the asymptotical synchronization when
the system uncertainty and external disturbance ω(t)
disappear.

3 Main results

In this section, sufficient conditions will be established
to assure the synchronization between the master–slave
system (1) by employing a new LKF, which captures the
characteristic of sampled-data systems. For simplicity,
the following notations are given:

ei = [0n×(i−1)n In×n 0n×(7−i)n], i =1, 2, 3, 4, 5, 6, 7

ζ(t) = [eT(t) eT(t − η) eT(tk − η) eT(t − hM )

f T(DTe(t)) ėT(t) p(t)]T.

Theorem 3.1 For given positive scalars hM , η, ε,
μ, and γ , the master system M and the slave sys-
tem S in (1) are synchronous if there exist matrices
P > 0, Q1 > 0, Q2 > 0, S > 0, S1 > 0, S2,
Λ = diag(λ1, λ2, . . . , λnh ) > 0,Δ = diag(δ1,
δ2, . . . , δnh ) > 0, K1 = diag(�+

1 ,�+
2 , . . . ,�+

nk
),

K2 = diag(�−
1 ,�−

2 , . . . ,�−
nk

), Ti ≥ 0, i = 1, 2,

W̄ =
[

W11 W12

∗ W22

]

> 0, R̄ =
[

R11 R12

∗ R22

]

> 0,

and any appropriately dimensioned matrices X̄ =[
X1 + XT

1 −X1 − X2

∗ X2 + XT
2

]

, G, L, and M = [MT
1 ,

MT
2 , MT

3 , MT
4 , MT

5 , MT
6 , MT

7 ]T, such that

Φ =
[

P + hM (X1 + XT
1 ) −hM (X1 + X2)

∗ hM (X2 + XT
2 )

]

> 0,

(9)

⎡

⎣
Ξ1 μΥ T

1 ΠT
1

∗ −μI 0
∗ ∗ −γ 2 I

⎤

⎦ < 0, (10)

⎡

⎣
Ξ2 μΥ T

2 ΠT
2

∗ −μI 0
∗ ∗ −γ 2 I

⎤

⎦ < 0, (11)

where
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Ξ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 + Π11 Ξ12 Ξ13 MT
4 Ξ15 + Π12 Ξ16 + Π13 Ξ17

∗ Ξ22 Ξ23 0 0 0 0
∗ ∗ Ξ33 + hM R11 Ξ34 Ξ35 Ξ36 + Π14 Ξ37

∗ ∗ ∗ Ξ44 0 0 0
∗ ∗ ∗ ∗ −2T2 Ξ56 0
∗ ∗ ∗ ∗ ∗ Ξ66 + hM R22 εG N
∗ ∗ ∗ ∗ ∗ ∗ −μI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 + Π21 Ξ12 Ξ13 MT
4 Ξ15 + Π22 Ξ16 Ξ17 −hM M1

∗ Ξ22 Ξ23 0 0 0 0 −hM M2

∗ ∗ Ξ33 − hM R11 Ξ34 Ξ35 Ξ36 Ξ37 Π23

∗ ∗ ∗ Ξ44 0 0 0 −hM M4

∗ ∗ ∗ ∗ −2T1 Ξ56 0 −hM M5

∗ ∗ ∗ ∗ ∗ Ξ66 εG N −hM M6

∗ ∗ ∗ ∗ ∗ ∗ −μI −hM M7

∗ ∗ ∗ ∗ ∗ ∗ ∗ −hM R22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Υ1 = [Na 0 0 0 Nh 0 0],
Υ2 = [Υ1 0],
Π1 = [ETGT 0 ETGT 0 0 ε ETGT 0],
Π2 = [Π1 0],
Π11 = −2DT K1T2 K2 D,

Π12 = DT(K1 + K2)T2,

Π13 = hM (X1 + XT
1 ),

Π14 = hM (R12 − XT
1 − XT

2 ),

Π21 = −2DT K1T1 K2 D,

Π22 = DT(K1 + K2)T1,

Π23 = −hM (M3 + R12),

Ξ11 = −(X1 + XT
1 ) + S + S1 − S2

+M1 + MT
1 + G A + ATGT,

Ξ12 = S2 + MT
2 ,

Ξ13 = X1 + X2 + MT
3 − M1 − LC + ATGT,

Ξ15 = MT
5 + G H,

Ξ16 = MT
6 + DT K1ΛD − DT K2ΔD

+P − G + ε ATGT,

Ξ17 = MT
7 + G N ,

Ξ22 = −S1 − S2 + Q1 − Q2 + W22,

Ξ23 = W T
12 + Q2 − M2,

Ξ33 = −(X2 + XT
2 ) + W11 − Q2 − QT

2

−M3 − MT
3 − LC − CT LT,

Ξ34 = Q2 − MT
4 ,

Ξ35 = −MT
5 + G H,

Ξ36 = −MT
6 − G − εCT LT,

Ξ37 = −MT
7 + G N ,

Ξ44 = −Q1 − Q2,

Ξ56 = −DΛ + DΔ + εHTGT,

Ξ66 = η2S2 + (hM − η)2 Q2 − εG − εGT.

Moreover, the sampled-data controller gain matrix in
(1) is given by K = G−1L.

Proof Consider the following LKF for the synchro-
nization error system (7):

V (t) =
6∑

i=1

Vi (t), t ∈ [tk, tk+1), (12)

where

V1(t) = 2
nh∑

i=1

∫ dT
i e

0
[λi (�

+
i s − fi (s))

+δi ( fi (s) − �−
i s)]ds,

V2(t) = eT(t)Pe(t) + hτ (t)ε
T(t)X̄ε(t),

V3(t) =
∫ t

t−η

eT(s)S1e(s)dds

+η

∫ 0

−η

∫ t

t+θ

ėT(s)S2ė(s)dsdθ,
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V4(t) =
∫ t−η

t−hM

eT(s)Q1e(s)ds

+(hM − η)

∫ −η

−hM

∫ t

t+θ

ėT(s)Q2ė(s)dsdθ,

V5(t) =
∫ t−η

tk−η

[
e(tk − η)

e(s)

]T

W̄

[
e(tk − η)

e(s)

]

ds,

V6(t) = hτ (t)
∫ t

tk−η

[
e(tk − η)

ė(s)

]T

R̄

[
e(tk − η)

ė(s)

]

ds,

ε(t) =
[

e(t)
e(tk − η)

]

.

From the assumption, we know that V1(t), V3(t), V4(t),
V5(t), and V6(t) are positive. If V2(t) is positive, we can
guarantee the positive of the LKF V (t). We can get

V2(t) =
(

τ(t)

hM
+ hτ (t)

hM

)

eT(t)Pe(t)

+hτ (t)

hM
εT(t)hM X̄ε(t)

= τ(t)

hM
eT(t)Pe(t) + hτ (t)

hM

∫ t

tk−η

εT(t)
Φ

t − tk + η
ε(t).

If the LMI(9) holds, then V2(t) > 0, and the
LKF(12) is positive. Then calculating the derivatives of
V (t). It is noted that the V (t) is continuous on [0,∞)

except the sampling instants tk (k = 0, 1, 2, . . .). When
t = tk, V5(t) vanishes. Hence, the condition

lim
t→t−k

V (t, et , ėt ) ≥ V (tk)

holds. Calculating the time derivation of V (t) along the
trajectories of (7), we have

V̇1(t) = 2[(eT(t)DT K1 − f T(DTe(t)))ΛDė(t)

+ ( f T(DTe(t)) − eT(t)DT K2)ΔDė(t)],
(13)

V̇2(t) = 2eT(t)Pė(t) − εT(t)X̄ε(t)

+ 2hτ (t)ε
T(t)X̄

[
ė(t)

0

]

, (14)

V̇3(t) = eT(t)S1e(t) − eT(t − η)S1e(t − η)

+ η2ėT(t)S2ė(t) − η

∫ t

t−η

ėT(s)S2ė(s)ds,

(15)

V̇4(t) = eT(t − η)Q1e(t − η) − eT(t − hM )

Q1e(t − hM ) + (hM − η)2ėT(t)Q2ė(t)

−(hM − η)

∫ t−η

t−hM

ėT(s)Q2ė(s)ds, (16)

V̇5(t) =
[

e(tk − η)

e(t − η)

]T

W̄

[
e(tk − η)

e(t − η)

]

, (17)

V̇6(t) = −
∫ t

tk−η

[
e(tk − η)

ė(s)

]T

R̄

[
e(tk − η)

ė(s)

]

ds

+ hτ (t)

[
e(tk − η)

ė(t)

]T

R̄

[
e(tk − η)

ė(t)

]

. (18)

By using Lemma 2.2 to (15) and (16) , we have

− η

∫ t

t−η

ėT(s)S2ė(s)ds

≤ −
[

e(t)
e(t − η)

]T [
S2 −S2

∗ S2

] [
e(t)

e(t − η)

]

, (19)

−(hM − η)

∫ t−η

t−hM

ėT(s)Q2ė(s)ds

≤−
⎡

⎣
e(t−η)

e(t−τ(t))
e(t−hM )

⎤

⎦

T ⎡

⎣
Q2 −Q2 0
∗ 2Q2 −Q2
∗ ∗ Q2

⎤

⎦

⎡

⎣
e(t−η)

e(t−τ(t))
e(t−hM )

⎤

⎦ .

(20)

Applying (19) and (20) to (15) and (16), we can get

V̇3(t) = eT(t)S1e(t) − eT(t − η)S1e(t − η)

+ η2ėT(t)S2ė(t)

−
[

e(t)
e(t − η)

]T [
S2 −S2

∗ S2

] [
e(t)

e(t − η)

]

, (21)

V̇4(t) = eT(t − η)Q1e(t − η) − eT(t − hM )Q1e(t − hM )

+ (hM − η)2ėT(t)Q2ė(t)

−
⎡

⎣
e(t − η)

e(t − τ(t))
e(t − hM )

⎤

⎦

T ⎡

⎣
Q2 −Q2 0
∗ 2Q2 −Q2

∗ ∗ Q2

⎤

⎦

⎡

⎣
e(t − η)

e(t − τ(t))
e(t − hM )

⎤

⎦ .

(22)
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For any appropriately dimensioned matrix M , the fol-
lowing equation is true:

0 = 2ζT(t)M[e(t) − e(tk − η) −
∫ t

tk−η

ė(s)ds].

(23)

On the other hand, according to (7), for any appropri-
ately dimensioned matrices G and scalar ε, the follow-
ing equation is true:

0 = 2[eT(t) + eT(tk − η) + εėT(t)][−Gė(t)

+ G Ae(t) + G H f (DTe(t)) − G K Ce(tk − η)

− G Eω(t) + G N p(t)]
= 2[eT(t) + eT(tk − η) + εėT(t)][−Gė(t)

+ G Ae(t) + G H f (DTe(t))

− G K Ce(tk − η) + G N p(t)] − 2[eT(t)

+ eT(tk − η) + εėT(t)]G Eω(t). (24)

If we use the inequality −2XTY ≤ XTΛX +Y TΛ−1Y ,
which is valid for any matrices X ∈ R

n×m , Y ∈ R
n×m ,

Λ = ΛT > 0,Λ ∈ R
n×n , we have

− 2[eT(t) + eT(tk − η) + εėT(t)]G Eω(t)

≤ 1

γ 2 ζT(t)ΠT
1 Π1ζ(t) + γ 2ωT(t)ω(t). (25)

Also, from (2) and (3), we have

pT(t)p(t) ≤ qT(t)q(t). (26)

Then, there exists a positive constant, μ, satisfying the
following equation:

μ[ζTΥ T
1 Υ1ζ − pT(t)p(t)] ≥ 0. (27)

Moreover, for any Ti = diag(t1i , t2i , . . . , tnhi ) ≥
0, i = 1, 2, it follows form (8) that

g(i, t) = 2[eT(t)DT K1 − f (DTe(t))]
Ti [ f (DTe(t)) − e(t)DT K2] ≥ 0

then

τ(t)

hM
g(1, t) + hτ (t)

hM
g(2, t) ≥ 0. (28)

By using (13), (14), (17), (18), and (21)–(28), letting
L = G K , we obtain

V̇ (t) = ˙̂V (t) − eT(t)Se(t) + γ 2ωT(t)ω(t),

where

˙̂V (t) = ζT(t)

[

Φ0 + τ(t)

hM
Φ1 + hτ (t)

hM
(Φ2 + hMΦ3)

]

ζ(t) −
∫ t

tk−η

[
ζ(t)
ė(s)

]T

Φ4

[
ζ(t)
ė(s)

]

ds

= hτ (t)

hM
ζT(t)(Ξ1 + μΥ T

1 Υ1 + γ −2ΠT
1 Π1)ζ(t)

+ 1

hM

∫ t

tk−η

[
ζ(t)
ė(s)

]T

(Ξ2 + μΥ T
2 Υ2

+ γ −2ΠT
2 Π2)

[
ζ(t)
ė(s)

]

ds.

Ξ1, Ξ2 are given in (10) and (11), and

Φ0 = Φ11 + Φ12 + ΦT
12,

Φ11 = eT
1 Se1 − μeT

7 e7 + eT
1 S1e1 − eT

2 S1e2

+ η2eT
6 S1e2 + eT

2 Q1e2 − eT
4 Q1e4

+ (hM − η)2eT
6 Q2e6 −

[
e1

e3

]T

X̄

[
e1

e3

]

−
[

e1

e2

]T [
S2 −S2

∗ S2

] [
e1

e2

]

+
[

e3

e2

]T

W̄

[
e3

e2

]

−
⎡

⎣
e2

e3

e4

⎤

⎦

T ⎡

⎣
Q2 −Q2 0
∗ 2Q2 −Q2

∗ ∗ Q2

⎤

⎦

⎡

⎣
e2

e3

e4

⎤

⎦,

Φ12 = eT
1 Pe6 + (eT

1 DT K1 − eT
5 )ΛDe6

+ (eT
5 − eT

1 DT K2)ΔDe6

+ (eT
1 M1 + eT

2 M2 + eT
3 M3 + eT

4 M4

+ eT
5 M5 + eT

6 M6 + eT
7 M7)(e1 − e3)

+ (eT
1 + eT

3 + εeT
6 )(−Ge6 + G Ae1

+ G He5 − LCe3 + G Ne7),
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Φi =
[

e1

e5

]T [−2DT K1Ti K2 D DT(K1 + K2)Ti

∗ −2Ti

]

[
e1

e5

]

, i = 1, 2

Φ3 =
[

e3

e6

]T

R̄

[
e3

e6

]

+
[

e1

e3

]T

X̄

[
e6

0

]

+
[

e6

0

]T

X̄

[
e1

e3

]

,

Φ4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 M1

∗ 0 0 0 0 0 0 M2

∗ ∗ R11 0 0 0 0 R12 + M3

∗ ∗ ∗ 0 0 0 0 M4

∗ ∗ ∗ ∗ 0 0 0 M5

∗ ∗ ∗ ∗ ∗ 0 0 M6

∗ ∗ ∗ ∗ ∗ ∗ 0 M7

∗ ∗ ∗ ∗ ∗ ∗ ∗ R22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

If ˙̂V (t) < 0, we have

V̇ (t) < −eT(t)Se(t) + γ 2ωT(t)ω(t). (29)

Integrating both sizes of (29) from 0 to ∞ gives

V (∞) − V (0) < − ∫ ∞
0 eT(s)Se(s)ds

+γ 2
∫ ∞

0 ωT(s)ω(s)ds.

From Schur complement, ˙̂V (t) < 0 is equivalent to the
LMI (10) and (11), since V (∞) > 0 and V (0) = 0,
then, by Definition 2.2, the error systems (7) are H∞
synchronized. This implies that the synchronization
between the master and slave systems is achieved by the
designed controller (6), and the sampled-data controller
gain matrix is given by K = G−1L . This completes the
proof.

Remark 3.2 It is noted that the characteristic of sam-
pling instants has been considered for the construction
of the LKF, which makes full use of the available infor-
mation about the actual sampling pattern. Compared
with the LKF used in [35], V2(t) and V6(t) are intro-
duced to take the fact into account. As a consequence,
the proposed synchronization criterion has less conser-
vatism.

Remark 3.3 Through introducing Lyapunov matrices
X̄ -dependent term, the constraint conditions of the
matrices in the LKF have been relaxed. In the above
criterion, this constraint is replaced by a more relax-
able condition (9) to keep V2(t) positive.

Remark 3.4 The information of the slope of the non-
linear function has been used. The slope ω+

i , ω−
i is

applied to construct the first term of the LKF, while the
LKFs used in [34] ignore this information.

To the end of this section, when the system uncer-
tainty and external disturbance disappear, lettingη = 0,
by using the method employed in the proof of Theo-
rem 3.1, we have the following corollary.

Corollary 3.5 For given scalars hmax > 0,and ε,
the master system M and the slave system S in
(1) are synchronous if there exist matrices P >

0, Q1 > 0, Q2 > 0,Λ = diag(λ1, λ2, . . . , λnh ) >

0,Δ = diag(δ1, δ2, . . . , δnh ) > 0, K1 = diag(�+
1 ,

�+
2 , . . . ,�+

nk
), K2 = diag(�−

1 ,�−
2 , . . . , �−

nk
), Ti ≥

0, i = 1, 2, W̄ =
[

W11 W12

∗ W22

]

> 0, R̄ =
[

R11 R12

∗ R22

]

>

0, and any appropriately dimensioned matrices X̄ =[
X1 + XT

1 −X1 − X2

∗ X2 + XT
2

]

, G, L and M = [MT
1 , MT

2 ,

MT
3 , MT

4 , MT
5 ]T, such that

Φ =
[

P + hmax(X1 + XT
1 ) −hmax(X1 + X2)

∗ hmax(X2 + XT
2 )

]

> 0,

(30)

Ξ3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ξ̂11 + Π11 Ξ̂12 MT
3 Ξ̂14 + Π12 Ξ̂15 + Π̂13

∗ Ξ̂22 + hmax R11 Ξ̂23 −MT
4 Π̂14 − MT

5
∗ ∗ Ξ̂33 0 0
∗ ∗ ∗ −2T2 Ξ̂45

∗ ∗ ∗ ∗ Ξ̂55 + hmax R22

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (31)
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Ξ4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ̂11 + Π21 Ξ̂12 MT
3 Ξ̂14 + Π22 Ξ̂15 −hmax M1

∗ Ξ̂22 − hmax R11 Ξ̂23 −MT
4 −MT

5 Π̂23

∗ ∗ Ξ̂33 0 0 −hmax M3

∗ ∗ ∗ −2T1 Ξ̂45 −hmax M4

∗ ∗ ∗ ∗ Ξ̂55 −hmax M5

∗ ∗ ∗ ∗ ∗ −hmax R22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (32)

where

Π̂13 = hmax(X1 + XT
1 ),

Π̂14 = hmax(R12 − XT
1 − XT

2 ),

Π̂23 = −hmax(M2 + R12),

Ξ̂11 = −(X1 + XT
1 ) + M1 + MT

1 + G A + ATGT

+Q1 − Q2 + W22,

Ξ̂12 = X1 + X2 + W T
12 + Q2 − M1 − LC

+ATGT + MT
2 ,

Ξ̂14 = MT
4 + G H,

Ξ̂15 = MT
5 + DT K1ΛD − DT K2ΔD + P − G

+ε ATGT,

Ξ̂22 = −(X2 + XT
2 ) + W11 − Q2 − QT

2

−M2 − MT
2 − LC − CT LT,

Ξ̂23 = Q2 − MT
3 ,

Ξ̂33 = −Q1 − Q2,

Ξ̂45 = −DΛ + DΔ + εHTGT,

Ξ̂55 = h2
max Q2 − εG − εGT.

and the other parameters are given in Theorem 3.1.
Moreover, the sampled-data controller gain matrix in
(1) is given by K = G−1L .

Remark 3.6 Corollary 3.5 provides a new synchroniza-
tion criterion for the master system M and the slave
system S in (1). It should be pointed out that the term
V1(t), V2(t), and V6(t) are neglected in [34], which
will reduce the conservatism of the LKF.

The objective of this paper is to calculate the maxi-
mum admissible sampling period and the corresponding
control gains based on the conditions given in Theo-
rem 3.1 and Corollary3.5 for the preset ε. The major
difference lies in V2(t) and V6(t) by making use of the
actual pattern of the sampling time and delay induced
in ZOH.

4 Numerical examples

In this section, we provide one illustrative example to
show the validity and reduced conservatism of the pro-
posed new synchronization scheme.

Example 4.1 Consider the following time-delay Chua’s
circuit via sampled-data feedback control. The equa-
tion of Chua’s circuit can be expressed as

ẋ1(t) = a(x2(t) − m1x1(t) + σ(x1(t))) − cx1(t)

ẋ2(t) = x1(t) − x2(t) + x3(t) − cx1(t)

ẋ3(t) = −bx2(t) + c(2x1(t) − x3(t))

with the nonlinear characteristics

σ(x1(t)) = 1

2
(m1 − m0)(|x1(t) + 1| − |x1(t) − 1|)

belonging to sector [0, 1], and parameters m0 =
−1/7, m1 = 2/7, a = 9, b = 14.28, c = 0.1.

Obviously, the system can be rewritten as the Lur’e
form with the following parameters:

A =
⎡

⎣
−am1 a 0

1 −1 1
0 −b 0

⎤

⎦ , H =
⎡

⎣
−a(m0 − m1)

0
0

⎤

⎦ ,

C = D = [
1 0 0

]
,

The initial conditions of the master and slave sys-
tems are chosen as x(t) = [0.2 0.3 0.2]T andz(t) =
[−0.3 − 0.1 0.4]T , respectively.

By setting η = 0, ε = 2 using Matlab LMI Tool-
box, we obtain the maximum values of the sampling
period hmax = 0.5147 using Corollary 3.5 given in
this paper, the maximum value of the sampling period
that allows the synchronization of the master and slave
systems is 0.5147 and the corresponding gain matrix
is K = [3.1272 0.0982 − 2.9132]T . Our result and
some other results are listed in Table 1.
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Table 1 Maximum value of sampling period for Chua system
with η = 0

hmax

[24] 0.3914

[35] 0.3981

[25] 0.48

Corollary 3.5 0.5147
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(t
)

x1(t)
z1(t)
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1
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z2(t)
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0
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x3
(t

) 
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d 
z3

(t
)

x3(t)
z3(t)

Fig. 1 Response of x(t) and z(t) with the sampling period of
0.5147

The responses of the states x(t) and z(t), the error
signal e(t), for the system under the controller K with
the sampling period of 0.5147 are shown in Figs. 1
and 2, which show that the controller can effectively
achieve the master–slave synchronization. For different
values of η and ε, the obtained hM results are listed in
Table 2. The results shows that the controller obtained
by the proposed criterion can achieve the master–slave
synchronization under a bigger sampling period.

5 Conclusion

It this paper, a sampled-data H∞ control approach is
proposed for the robust synchronization problem of
chaotic Lur’e system. A new discontinuous LKF is
introduced for the synchronization error system, which
takes the information of the nonlinear function into
account. A new term has been applied to guarantee the
non-negative of the LKF by making the sum of sev-
eral terms be positive. The explicit expression of the

0 2 4 6 8 10 12
−5

−4

−3

−2

−1

0

1

2

3

4

Time(s)

e1(t)
e2(t)
e3(t)

Fig. 2 Response of e(t) with the sampling period of 0.5147

Table 2 Maximum value of the sampling period with different
η

η ε hmax

0.1 [34] 0.63 0.22

Theorem 3.1 2 0.41

0.2 [34] 0.63 0.064

Theorem 3.1 2 0.31

desired sampled-data controller obtained via the pro-
posed criterion can provide a bigger value of the upper
bound in achieving synchronization compared with the
published results.
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