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Abstract This paper concerns the problem of robust
stabilization of autonomous and non-autonomous
fractional-order chaotic systems with uncertain para-
meters and external noises. We propose a simple
efficient fractional integral-type sliding surface with
some desired stability properties. We use the fractional
version of the Lyapunov theory to derive a robust slid-
ing mode control law. The obtained control law is sin-
gle input and guarantees the occurrence of the slid-
ing motion in a given finite time. Furthermore, the
proposed nonlinear control strategy is able to deal
with a large class of uncertain autonomous and non-
autonomous fractional-order complex systems. Also,
Rigorous mathematical and analytical analyses are pro-
vided to prove the correctness and robustness of the
introduced approach. At last, two illustrative examples
are given to show the applicability and usefulness of the
proposed fractional-order variable structure controller.

Keywords Fractional Lyapunov stability theorem ·
Variable structure control · System uncertainty ·
Single input

1 Introduction

Fractional-order differential equations have been intro-
duced since 300 years ago. In fractional-order calculus
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theory, non-integer order differentiations and integra-
tions are allowed. In fact, fractional-order differential
equations use arbitrary orders of the differentiations
and integrations instead of integer ones. In recent years,
applications of fractional calculus in real world sys-
tems, such as viscoelastic materials [1], energy supply–
demand system [2], mechanical systems [3,4], med-
ical modeling [5], optimization tool [6], and electronic
circuit [7], have been successfully reported in the
literature. Moreover, applications of fractional-order
control techniques in heat diffusion systems [8] and
control systems [9–11] have been addressed in the
literature. And, it has been shown that the fractional
calculus can be applied as an important mathematical
tool for exact modeling of practical systems. There-
fore, the consideration and analysis of fractional-order
dynamical systems are essential in both research and
practice.

Chaos is a complex nonlinear phenomenon which
is frequently observed in physical, biological, electri-
cal, mechanical, economical, and chemical systems. A
chaotic system is a nonlinear deterministic dynamical
system that exhibits special attributes including extra-
ordinary sensitivity to system initial conditions, broad
band Fourier spectrum, strange attractor, and fractal
properties of the motion in phase space. Due to the exis-
tence of chaos in real world systems and many valuable
applications in engineering and science, synchroniza-
tion and stabilization of chaotic systems have attracted
significant interests among the researchers in the last
decades [12–15].
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Nowadays, it has been revealed that several
fractional-order systems exhibit chaotic behaviors [16–
21]. In this regard, some scholars have proposed var-
ious control methods for control and synchroniza-
tion of fractional-order chaotic systems. In [22], the
problem of stabilization of fractional-order systems
using a finite number of state feedback laws has been
addressed. Hamamci [23] has proposed fractional-
order PI and PID controllers for stabilization of a
given fractional dynamical system. An adaptive con-
troller has been reported in [24] to synchronize chaotic
fractional-order systems. In [25], an adaptive sliding
mode control schema has been introduced for synchro-
nizing two different uncertain fractional-order chaotic
systems. In [26], the problem of decentralized control
of fractional-order large-scale nonlinear systems has
been solved. The work [27] has used an active control
method for anti-synchronization between identical and
non-identical fractional-order chaotic systems. Li and
Chen [28] have applied traditional Lyapunov theory
to synchronize a class of fractional-order chaotic sys-
tems via a fractional-order controller approach. Feed-
back synchronization of the fractional-order reverse
butterfly-shaped chaotic system has been studied in
[29] and its application to digital cryptography has been
demonstrated. Recently, Aghababa [30–38] has used
the fractional Lyapunov theorem to design some non-
linear controllers for synchronization and stabilization
of fractional chaotic systems.

However, most of the aforementioned papers either
have not considered the effects of model uncertain-
ties and external disturbances or they are specific and
multi-input. On the other hand, in practical situations,
the system uncertainties and external disturbances exist
in the chaotic systems’ dynamics. In addition, realiz-
ing control of the chaotic systems by designing a sin-
gle input controller is a significant problem in prac-
tical applications, where the single input controller is
cheaper and easier to be implemented than a multi-
input controller. Thus, it is more valuable to stabilize
fractional-order chaotic systems via a single control
input. Furthermore, with the discovery of applied non-
autonomous fractional-order chaotic systems, such
as fractional gyroscope and fractional flywheel gov-
ernor systems, the stabilization of non-autonomous
fractional-order chaotic systems has become as a chal-
lenging and open problem to be solved by the control
community.

In this paper, we propose an alternative control
scheme which utilizes a fractional integral-type slid-
ing surface as well as a single input control law. The
proposed fractional sliding mode control is applied for
stabilization of uncertain fractional-order autonomous
and non-autonomous chaotic systems. First, a novel
simple fractional integral-type switching manifold is
introduced and it is shown that the resulting sliding
mode dynamics is asymptotically stable. Then, using
the variable structure control theory, a robust sliding
mode switching control law is derived to force the
system states to attain the designed fractional sliding
manifold in a given finite time and stay on it forever
(i.e., to ensure the existence of the sliding motion in
a finite time). The finite-time stability of the reaching
phase is proved using the fractional Lyapunov stabil-
ity theorem. Finally, we present two illustrative exam-
ples to show the applicability and efficiency of the
proposed fractional control technique and to validate
the theoretical results of this paper. The main high-
lights and contributions of this paper are as follows:
(1) design of a novel fractional integral-type sliding
manifold which is applicable for fractional-order sys-
tems; (2) considering the effects of both model uncer-
tainties and external noises in the system dynamics; (3)
stabilization of both fractional-order autonomous and
non-autonomous chaotic systems; (4) realization of the
proposed fractional variable structure control via a sin-
gle input controller; and (5) guaranteeing the finite-time
stability of the reaching phase of the sliding mode con-
troller.

The rest of this paper is organized as follows.
In Sect. 2, preliminaries of fractional calculus are
included. In Sect. 3, the formulation of the robust con-
trol problem of uncertain fractional-order dynamical
systems is given. In Sect. 4, the design procedure of
the proposed fractional-order variable structure control
approach is presented. Some numerical simulations are
provided in Sect. 5. At last, Sect. 6 ends this paper with
conclusions.

2 Preliminaries of fractional-order differential
equations

Up to now, several definitions for the fractional deriv-
atives have been proposed. However, the definition of
the fractional-order integration is unique and is given
as follows [39]:
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Definition 1 The αth-order Riemann–Liouville frac-
tional integration of function f (t) is given by

t0 It
α f (t) = D−α

t f (t) = 1

�(α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ,

(1)

where α ∈ R+, t0 is the initial time and �(.) is
the Gamma function which is defined by � (z) =∫ ∞

t0
t z−1e−t dt .

Two important and commonly used definitions of
fractional derivatives are listed below [39].

Definition 2 Let m − 1 < α ≤ m, m ∈ N , the
Riemann–Liouville fractional derivative of order α of
function f (t) is defined as follows:

RL
t0 Dα

t f (t) = dα f (t)

dtα

= 1

�(m − α)

dm

dtm

∫ t

t0

f (τ )

(t − τ)α−m+1 dτ (2)

Remark 1 From Definitions 1 and 2 one can see that
the relation

RL
t0 Dα

t

(
t0

I α
t f (t)

)
= f (t)

is satisfied for the Riemann–Liouville fractional inte-
grations and derivatives of order α.

Definition 3 The Caputo fractional derivative of order
α of function f (t) is defined as follows:

C
t0 Dα

t f (t)=
{

1
�(m−α)

∫ t
t0

f (m)(τ )

(t−τ)α−m+1 dτ, m−1<α<m
dm

dtm f (t), α = m

(3)

where m is the smallest integer number, larger than α.

Remark 2 It should be noted that the definition of
Caputo fractional integration is identical to the defini-
tion of Riemann–Liouville fractional integration. Sub-
sequently, from Definitions 1 and 3 one can see that the
relation

C
t0 Dα

t (t0 I α
t f (t)) = f (t)

is satisfied for the Caputo fractional integrations and
derivatives of order α.

Property 1 The following equality holds for both the
Riemann–Liouville and Caputo derivatives [39].

RL ,C
t0 Dα

t (
RL ,C

t0 D−β
t f (t)) =RL ,C

t0 Dα−β
t f (t) (4)

where α ≥ β ≥ 0.

Property 2 [39]. For the Riemann–Liouville deriva-
tive, we have

RL
t0 D−α

t

(
RL

t0 Dβ
t f (t)

)
= RL

t0 Dβ−α
t f (t)

−
∑m

j=1

[
RL

t0 Dβ− j
t f (t)

]
|t=t0

(t−t0)α−j

�(1+α− j)
, (m − 1≤β <m)

(5)

In the rest of this paper, the notation Dα indicates the
Riemann–Liouville fractional derivative.

Lemma 1 For an integrable function f (t), assume
that for a nonzero interval t ∈ (0, T ) the condition
| f (t)| ≥ F1, where F1 > 0 is a constant, is held. Then,
there is a positive constant

L = F1T α

� (1 + α)

such that the inequality

0 I α
t1 | f (t)| ≥ L

is hold for t ∈ (0, t1) , t1 ≥ T .

Proof It is clear that the equality

0 It1
α | f (t)| = 1

�(α)

∫ t1

0

| f (τ )|
(t − τ)1−α

dτ

can be resulted from the definition of the fractional inte-
gration Eq. (1). Now, since there is at least one nonzero
interval t ∈ (0, T ) such that the condition | f (t)| ≥ F1

is satisfied, we have

0 I α
t1 | f (t)| = 1

�(α)

∫ t1

0

| f (τ )|
(t − τ)1−α

dτ

≥ 1

�(α)

∫ T

0

| f (τ )|
(t − τ)1−α

dτ

≥ F1

�(α)

∫ T

0

1

(t − τ)1−α
dτ

= F1T α

� (1 + α)
(6)

So, it is obvious that the inequality

0 I α
t | f (t)| ≥ F1T α

� (1 + α)

holds for f (t). This completes the proof. ��
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Theorem 1 Consider the following autonomous lin-
ear fractional-order system

Dαx = Ax, x (0) = x0 (7)

where 0 < α < 1, x ∈ Rn and A ∈ Rn×n.
This system is asymptotically stable iff

|arg (eig A)| > απ/2.

In this case, each component of the states decays toward
0 like t−α .

Proof See [40]. ��
Theorem 2 Let x = 0 be an equilibrium point for the
non-autonomous fractional-order system

Dαx (t) = f (x, t), (8)

where f (x, t) satisfies the Lipschitz condition with Lip-
schitz constant l > 0 and α ∈ (0, 1). Assume that there
exist a Lyapunov function V (t, x(t)) and class-K func-
tions α1, α2, and α3 satisfying

α1 (‖x‖) ≤ V (t, x) ≤ α2 (‖x‖) (9)

Dβ V (t, x) ≤ −α3 (‖x‖) (10)

where β ∈ (0, 1). Then the equilibrium point of the
system (8) is asymptotic stable.

Proof See [41]. ��

3 Formulation of the robust control of
fractional-order uncertain systems

Consider a class of n-dimensional fractional-order
chaotic system with model uncertainties, external dis-
turbances, and a single control input as follows:

{
Dαxi = xi+1, 1 ≤ i ≤ n − 1
Dαxn = f (X, t) + � f (X, t) + d(t) + u(t),

(11)

where α ∈ (0, 1) is the order of the chaotic system,

X (t) = [x1, x2, . . . , xn]T ∈ Rn

is the state vector of the chaotic system, f (X, t) ∈ R is
a given nonlinear function of X and t , � f (X, t) ∈ R
represents an unknown model uncertainty term, d(t) ∈
R is the external disturbance of the system, and u(t) ∈
R is the control input.

Assumption 1 The uncertainty term � f (X, t) is ass-
umed to be bounded by

|� f (X, t)| ≤ γ1, (12)

where γ1 is a known positive constant.

Assumption 2 The external disturbance d(t) is ass-
umed to be bounded by

|d(t)| ≤ γ2, (13)

where γ2 is a given positive constant.

The control goal of this paper is to design a suitable
robust fractional variable structure controller for sta-
bilization of the non-autonomous chaotic system (11)
in the presence of system uncertainties and external
noises via a single input.

4 The proposed nonlinear variable structure
control method

In this section, first a fractional integral-type sliding
surface is introduced. Then, a suitable sliding mode
control law is proposed to guarantee the occurrence of
the sliding motion in a given finite time.

The sliding mode control (SMC) approach [42] is a
robust control methodology which is appropriate for
high-order nonlinear dynamical systems. The SMC
has constructive features such as fast response, low
sensitivity to external noises, robustness to the sys-
tem uncertainties, and easy realization. In the SMC
approach, once the system state trajectories approach
to the prescribed sliding surface, the system behavior
is determined by the sliding mode dynamics. There-
fore, the SMC decouples the overall system motion
into independent lower dimension components, which
decreases the complexity of the controller design. In
general, the sliding mode control approach is composed
of two phases. The first phase is to select a proper slid-
ing surface with some desired properties. Accordingly,
in this paper, we introduce a fractional integral-type
sliding surface as follows:

s (t) = xn + D−α
n∑

i=1

ki xi , (14)

where xi , i = 1, 2, . . . , n are the system states and
ki , i = 1, 2, . . . , n are sliding surface parameters to be
introduced later.
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Lyapunov-based control scheme for robust stabilization 2133

Once the system operates in the sliding mode, it sat-
isfies the following Eq. (42).

s (t) = 0 (15)

Consequently, Using Eqs. (14) and (15), we have

s (t) = xn + D−α
n∑

i=1

ki xi

= 0 → xn = −D−α
n∑

i=1

ki xi (16)

Based on the Property 1 and applying the operator Dα

to both sides of Eq. (16), we have

Dαxn = −
n∑

i=1

ki xi . (17)

Therefore, using the system dynamics (11) and Eq.
(17), the sliding mode dynamics is obtained as follows:

{
Dαxi = xi+1, 1 ≤ i ≤ n − 1
Dαxn = −∑n

i=1 ki xi
(18)

Theorem 3 The sliding mode dynamics (18) is asymp-
totically stable and the states decay toward 0 like t−α .

Proof Rewriting Eq. (18) and rearranging it in a matrix
equation form, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαx1 = x2

Dαx2 = x3
...

Dαxn−1 = xn

Dαxn = −∑n
i=1 ki xi

→

⎡
⎢⎢⎢⎢⎢⎣

Dαx1

Dαx2
...

Dαxn−1

Dαxn

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Dα X(t)

=

⎡
⎢⎢⎢⎢⎢⎣

x2

x3
...

xn

−∑n
i=1 ki xi

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . . . . 0

0 0 1 0 . . .
...

...
...

...
. . .

. . .
...

−k1 −k2 . . . . . . . . . −kn

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X(t)

= AX (t) (19)

where A is an n × n constant matrix.
The sliding surface parameters ki are selected to be

positive such that the eigenvalues of matrix A satisfy the
stability condition of Theorem 1, i.e., |arg (eig A)| >

απ/2. Therefore, it can be concluded that the sliding
mode dynamics (18) is asymptotic stable and if the
system states reach it, then they will be converged to
the origin. Thus, the proof is completed.

Once an appropriate sliding surface is established,
the next step is to determine an input signal u(t) to
guarantee that the system trajectories reach to the slid-
ing surface s (t) = 0 in a given finite time and stay on it
forever. In this paper, we propose the following robust
sliding mode control law.

u (t) = −
(

f (X, t) + (γ1 + γ2)sgn(s)

+
n∑

i=1

ki xi + ζ1s + ζ2sgn (s)

)
(20)

where ζ1, ζ2 > 0 are constant scalars.
In what follows, we use the fractional Lyapunov the-

orem to prove that the sliding motion takes place in a
finite time.

Theorem 4 Consider the sliding surface in Eq. (14).
If the system (11) with the conditions (12) and (13) is
controlled using the control law (20), then the system
states will converge to the sliding surface s (t) = 0 in
a finite time.

Proof First, motivated by the work [43], we assume
that the following inequality holds.

∣∣∣∣∣
∞∑

i=1

�(1 + α)

�(1 + i)�(1 − i + α)
Di s Dα−i s

∣∣∣∣∣ ≤ ϑ |s| (21)

where ϑ is a positive constant.
We choose the following positive definite Lyapunov

function candidate

V (t) = s2. (22)

Taking the fractional-order derivative of V (t), one has
[43]

DαV =s Dαs +
∞∑

i=1

�(1 + α)

�(1 + i)�(1 − i + α)
Di s Dα−i s.

(23)
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Using the inequality (21), we have

DαV ≤ s Dαs +
∣∣∣∣∣

∞∑
i=1

� (1 + α)

� (1 + i) � (1 − i + α)
Di s Dα−i s

∣∣∣∣∣
≤ s Dαs + ϑ |s| . (24)

Applying Dα to both sides of Eq. (16) and inserting it
to the above inequality, we have

DαV ≤ s
(

Dαxn +
∑n

i=1
ki xi

)
+ ϑ |s| . (25)

Based on Dαxn = f (X, t)+� f (X, t)+ d(t)+ u(t),
one has

DαV ≤ s

(
f (X, t) + � f (X, t) + d(t) + u(t)

+
n∑

i=1

ki xi

)
+ ϑ |s| (26)

Substituting u (t) from (20) into (26), it yields

DαV ≤ s
(

f (X, t) + � f (X, t) + d(t)

−
[

f (X, t) + (γ1 + γ2) sgn (s)

+
∑n

i=1
ki xi + ζ1s + ζ2sgn (s)

]
+

∑n

i=1
ki xi

)
+ ϑ |s|

(27)

It is obvious that

DαV ≤ |s| (|� f (X, t)| + |d(t)|)
− s ((γ1+γ2) sgn (s)+ζ1s+ζ2sgn (s))+ϑ |s| (28)

Using Assumptions 1 and 2, one has

DαV ≤ |s| (γ1 + γ2)

− s ((γ1 + γ2) sgn (s) + ζ1s + ζ2sgn (s)) + ϑ |s|
(29)

On the basis of sgn (s) s = |s|, one obtains

DαV ≤ −ζ1s2 − ζ2 |s| + ϑ |s| ≤ − (ζ2 − ϑ) |s| (30)

where ζ2 is set as ζ2 > ϑ . Consequently, based on
Theorem 2, the system states will converge to s (t) = 0
asymptotically.

In order to show that the sliding motion happens in
finite time, we have the following statements.

Using Eqs. (24) and (30), we have

s Dαs ≤ −ζ1s2 (31)

��

According to the sign of s, one has the following
two cases.

Case 1 s > 0, s = |s|: In this case, dividing both sides
of (31) by s, one has

Dα |s| ≤ −ζ1 |s| (32)

Taking the fractional integral of both sides of (32) from
0 to the reaching time tr and using Property 2, one
obtains

|s (tr )| − |s(0)|α−1 tα−1
r

�(α)
≤ −ζ1 D−α |s| (33)

Based on Lemma 1 and D−α |s (t)| ≥ L , where L =
F1T α

�(1+α)
is a positive constant, and since s (tr ) = 0, we

have

− |s(0)|α−1 tα−1
r

�(α)
≤ −ζ1L (34)

After simple manipulations, one has

tr ≤
(

|s(0)|α−1

ζ1L

) 1
1−α

(35)

Therefore, in the case of s > 0, the states of the system
(11) will converge to the sliding surface s (t) = 0 in a
finite time.

Case 2 s < 0, s = − |s|: In this case, dividing both
sides of (31) by s, one has

Dαs ≥ −ζ1s (36)

Since s < 0 is assumed, using s = − |s| one obtains

Dα |s| ≤ −ζ1 |s| (37)

Eq. (37) is equal to Eq. (32). Thus, using a same
approach applied in Eqs. (33)–(35) the reaching time

is obtained as tr ≤
( |s(0)|α−1

ζ1 L

) 1
1−α

. Hence, in the case

of s < 0, the states of the system (11) will converge
to the sliding surface s (t) = 0 in a finite time. This
completes the proof.

Remark 3 In Eq. (20), the values of the control parame-
ters can be selected as follows: a) the parameters γ1 and
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γ2 are chosen such that the conditions of Assumption
1 are satisfied; b) the parameters ki , i = 2, 3, . . . , n
are chosen to be positive such that the polynomial
knλn−1 + kn−1λ

n−2 + · · · + k2λ + k1 is Hurwitz. In
other word, all the roots of the characteristic polyno-
mial knλn−1 + kn−1λ

n−2 + · · · + k2λ + k1have neg-
ative real parts with desirable pole placement. This
selection guarantees the satisfaction of the condition
|arg (eig A)| > απ/2.; c) the parameter ζ1 is related
to the reaching time expressed in Eq. (35) and affects
the control effort. A large value of the parameter ζ1

results in a small reaching time and high control effort.
On the other hand, the small value of the parameter ζ1

leads to a large reaching time and low control effort.
Therefore, the value of the parameter ζ1is user and/or
problem dependant; d) the parameter ζ2 is the switch-
ing gain. It is related to the variable structure inherent
of the proposed sliding mode controller. The parame-
ter ζ2 controls the discontinuity of u (t). In other word,
a large value of ζ2 increases the switching gain and,
therefore, the control effort is also decreased. Thus, a
small value for the parameter ζ2 is advised.

5 Two illustrative examples

In this section, some numerical simulations are pre-
sented to illustrate the effectiveness and efficiency of
the proposed fractional sliding mode scheme and to
verify the theoretical results of this paper.

5.1 Example 1

This example illustrates the effectiveness of the pro-
posed fractional sliding mode controller in chaos sup-
pression of the following fractional-order uncertain
Arneodo chaotic systems [21].⎧⎪⎪⎨
⎪⎪⎩

Dαx1 = x2

Dαx2 = x3

Dαx3 = 5.5x1 − 3.5x2 − x3 + x3
1 + � f (x, t)

+d(t) + u(t).

(38)

The uncertainty term and external noise of the system
are selected as follows:

� f (X, t) + d(t) = 0.1 cos (5t) x3 − 0.1sin(t) (39)

Initial conditions of the Arneodo system are selected
as x1 (0) = 0.2, x2 (0) = −0.1, and x3 (0) = 0.3.

The fractional order α is also set to 0.98 to ensure the
existence of chaos for the Arneodo system [21].

We use Eq. (14) and design the following sliding
surface.

s (t) = D−0.98 (40x1 + 15x2 + x3) + x3 (40)

Subsequently, according to Eq. (20), the proper control
input is designed as follows:

u (t) = −
(

5.5x1 − 3.5x2 − x3 + x3
1 + 0.2sgn (s)

+40x1 + 15x2 + x3 + 0.1s + sgn (s)
)

(41)

The state trajectories of the controlled fractional-order
uncertain Arneodo system are shown in Fig. 1. It can be
seen that the states converge to zero, which implies that
the chaotic behavior of the fractional-order uncertain
Arneodo system is successfully suppressed. The time
response of the proposed sliding surface (40) is plotted
in Fig. 2. It is clear that the sliding surface converges
to zero. The time history of the adopted control input
(41) is depicted in Fig. 3. Obviously, the control input
is feasible in practical applications.

5.2 Example 2

In this example, the chaotic behavior of the follow-
ing fractional-order uncertain Genesio chaotic systems
[44] is suppressed via the proposed method.⎧⎪⎪⎨
⎪⎪⎩

Dαx1 = x2

Dαx2 = x3

Dαx3 = −6x1 − 2.92x2 − 1.2x3 + x2
1

+� f (X, t) + d(t) + u(t)

(42)

The uncertainty term and external noise of the system
are selected same as those in Eq. (39). Initial condi-
tions of the Genesio system are selected as x1 (0) = 3,
x2 (0) = 1, and x3 (0) = 1. The fractional order α is
also set to 0.98 to ensure the existence of chaos for the
Genesio system [44].

We use Eq. (14) and propose the following sliding
surface.

s (t) = D−0.98 (100x1 + 10x2 + x3) + x3 (43)

Subsequently, according to Eq. (20), the proper control
input is derived as follows:

u (t) = −
(

− 6x1−2.92x2−1.2x3+x2
1 +0.2sgn (s)

+100x1 + 10x2 + x3 + s + sgn (s)
)

(44)
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Fig. 1 State trajectories of
the controlled
fractional-order Arneodo
system (38)
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Fig. 2 Time response of the
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Fig. 3 Time history of the
adopted sliding control
input (41)
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Fig. 4 State trajectories
of the controlled
fractional-order
Genesio system (42)
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Fig. 5 Time response of the
applied fractional sliding
surface (43)
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Fig. 6 Time history of the
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Figure 4 illustrates the state trajectories of the con-
trolled fractional-order uncertain Genesio system. One
can see that the system states approach to zero, which
indicates that the chaotic behavior of the fractional-
order uncertain Genesio system is effectively sup-
pressed. Figure 5 depicts the time response of the
applied sliding surface (43). It is seen that the sliding
surface attains to zero. The time history of the adopted
control input (44) is revealed in Fig. 6. Obviously, the
control input is practical.

6 Conclusions

The present paper introduces a novel fractional vari-
able structure controller for stabilization of a class
of fractional-order chaotic systems in the presence of
both system uncertainties and external disturbances.
First, a new fractional integral-type sliding manifold
is introduced. It is shown that the proposed sliding
manifold is asymptotically stable. Afterwards, based
on the variable structure control theory, a robust slid-
ing switching control signal is introduced to ensure
the existence of the sliding motion in finite time. We
apply the fractional Lyapunov stability theorem to
prove the stability of the proposed control scheme.
Also, we present some computer simulations to illus-
trate the effectiveness and applicability of the method
for controlling both autonomous and non-autonomous
fractional-order uncertain nonlinear dynamical, canon-
ical formed systems.
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