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Abstract This paper investigates the nonlinear con-
trol problem for flexible air-breathing hypersonic vehi-
cles (FAHVs). The coupling dynamics between flexible
and rigid-body parts of FAHVs may cause degradation
of control performance or high-frequency oscillations
of control input and flexible state. In this paper, the flex-
ible effects produced by the coupling are modeled as a
kind of unknown disturbance and included in the new
control-design model, for which a coupling observer
is constructed to estimate these effects. Thus, a novel
nonlinear composite control strategy, which combines
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a coupling-observer-based feedforward compensator
and a dynamic-inversion-based feedback controller, is
proposed to reject the flexible effects on pitch rate and
track desired trajectories of velocity and flight-path
angle. The stability of composite closed-loop system
is analyzed by using the Lyapunov theory. Simulation
results on a full nonlinear model of FAHVs demon-
strate that the presented controller is more effective by
comparison with the previous scheme.

Keywords Flexible air-breathing hypersonic
vehicles · Rigid-flexible coupling dynamics · Coupling
observer · Disturbance observer-based control ·
Composite hierarchical anti-disturbance control

1 Introduction

Air-breathing hypersonic vehicles (AHVs) present a
cost efficient way to make access to space routine. But
it uses scramjet engines integrated with the airframe,
so the vehicle dynamics display strong interactions
between the elastic airframe and the propulsion system
(see [1–3] and references therein). In addition, signifi-
cant flexible effects cannot be neglected in the control
design due to the slender geometries and light structures
of flexible air-breathing hypersonic vehicles (FAHVs)
(see [4–6] and references therein). Thus, flight control
of AHVs is very important and difficult especially for
FAHVs.
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2142 N. Wang et al.

In the past few years, many effective modeling and
control techniques have been presented for AHVs (see
e.g. [6–31]). The available control methods can be
divided into two subcategories: linear model based and
nonlinear model based. The linear approaches are sim-
ple and easily performed, but the capability of the lin-
ear models to represent the dynamics and the coupling
effects is limited (see e.g. [11–17]). As such, nonlinear
models that carry more information instead of linear
ones have been investigated (see e.g. [18–31]). Many
nonlinear control methods were successfully applied
for a model of AHVs developed at NASA Langley
Research Center (see e.g. [18–28]). For example, an
effective neural control method via time-scale decom-
position with throttle setting constraint was proposed
for this AHV model in [26]. But rigid-body dynamics
were only contained in the nonlinear AHV model.

Therefore, a nonlinear model of FAHVs was devel-
oped by Bolender and Doman in [6], which includes
not only the interactions between the propulsion sys-
tem and the airframe dynamics, but also the strong flex-
ible effects. Based on this nonlinear model of FAHVs,
a control-design model in closed form was obtained by
replacing complex force and moment functions with
curve-fitted approximations in [29]. Many nonlinear
controllers were applied effectively for the curve-fitted
model (see e.g. [29–31]). However, the nonlinear con-
trollers proposed in [29] and [30] were constructed
based on control-design models without including the
rigid-flexible coupling dynamics. It has been shown
that the undesired flexible effects may cause degrada-
tion of the performance of flight control systems in [29].
So the rigid-flexible coupling dynamics should be con-
sidered and studied to design nonlinear controllers for
FAHVs. In [31], the flexible effects were transformed
into some terms that depended on the flexible modes
and appeared in forces and moment. Since many coef-
ficients used for approximating these effects have to be
estimated by using adaptive methods, it may lead to a
large amount of calculations online. To overcome these
problems, the flexible effects on pitch rate produced
by rigid-flexible coupling dynamics are considered as
a kind of unknown disturbance and modeled using
known information in this paper. Then a coupling-
observer-based nonlinear controller, which is a novel
nonlinear composite controller, is proposed to reject
the flexible effects and track the desired trajectories.

Recently, the disturbance-observer-based control
strategy has attracted considerable attention. In most

cases, principle of disturbance observer design in the
time domain is similar to the one of state observer pre-
sented in [32], which can be concluded as follows:
with suitable selection of disturbance observer gain,
the dynamics of disturbance observer must be faster
than the ones of the actual system, so that the estimate
of disturbance can approach the actual disturbance as
quickly as possible. In [34], it has been shown that this
kind of composite hierarchical anti-disturbance con-
trol scheme can be applied to solve many control prob-
lems with multiple disturbances. Moreover, it has been
applied effectively in many practical systems (see e.g.
[12,22,27,35]). For example, a disturbance-observer-
based dynamic inversion controller was designed first
for missile systems in [35], and several effective com-
posite control methods based on disturbance observer
have been presented for the AHV model in [12,22,27].
However, the study for the nonlinear FAHV model with
rigid-flexible coupling dynamics using composite con-
trol strategy is still insufficient due to its special struc-
ture.

In conclusion, the main contributions in this paper
can be summarized as follows:

(1) The flexible effects on pitch rate are formulated as
a kind of unknown disturbance, which is consid-
ered in the control-design model and estimated by
a coupling observer.

(2) Combining a dynamic-inversion-based controller
with a coupling-observer-based compensator, a
novel nonlinear composite controller is proposed
to make velocity and flight-path angle track desired
signals and reject the flexible effects.

(3) The stability of composite closed-loop system
which combines two tracking-error equations and
a coupling estimation error equation is analyzed.

In simulation studies, it will be demonstrated that
the rigid-flexible coupling dynamics may cause degra-
dation of control performance or high-frequency oscil-
lations of control input and flexible state using the
nonlinear controller presented in [29], while the pro-
posed coupling-observer-based nonlinear controller
can avoid these problems successfully.

The rest of the paper is organized as follows. In Sect.
2, the FAHV model is introduced and the control objec-
tive is defined. In Sect. 3, a novel nonlinear composite
controller is proposed. Simulation results are given in
Sect. 4. Finally, some conclusions are drawn in Sect. 5.
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Notation The notations used throughout the paper are
standard. The superscript “T ” and “−1” stand for trans-
pose and inversion of a matrix or vector, respectively.
Rn denotes the n-dimensional Euclidean space, the
notation P > 0 means that P is a real symmetric and
positive definite matrix, I and 0 represent the identity
matrix and a zero matrix, respectively. diag{. . .} stands
for a block-diagonal matrix, ‖·‖ denotes the Euclidean
norm of a vector and its induced norm of a matrix.

2 Problem formulation

A nonlinear model for the longitudinal dynamics of
flexible air-breathing hypersonic vehicles (FAHVs), as
given by Bolender and Doman in [6], is described by
the following nonlinear equations:

ḣ = V sin γ, (1)

V̇ = T cosα − D

m
− g sin γ, (2)

α̇ = − L + T sin α

mV
+ Q + g

V
cos γ, (3)

γ̇ = L + T sin α

mV
− g

V
cos γ, (4)

Iyy Q̇ = M + ψ̃1η̈1 + ψ̃2η̈2, (5)

η̈i = −2ζiωi η̇i − ω2
i ηi + Ni + ψ̃i Q̇, i = 1, 2. (6)

The model is composed of rigid-body state xr =
[h V α γ Q]T , control input u = [δe Φ]T and flex-
ible modes η1 and η2, whereas the output to be con-
trolled is selected as y = [V γ ]T . The nomenclature
is given in Table 1. The fuel equivalence ratio affects
the thrust directly and the pitching moment indirectly
via coupling between the engine and the airframe. The
aerodynamic forces/moment and the generalized elas-
tic forces are influenced by the aerodynamic control
surfaces.

Remark 1 The FAHV nonlinear model described by
(1)–(6) has strong interactions among rigid-body state,
control input, and flexible modes due to rigid-flexible
coupling dynamics (that is, ψ̃1η̈1 + ψ̃2η̈2 and ψ̃i Q̇). It
may cause the performance degradation to design non-
linear controller without considering these couplings
(see [6] and [29]). The flexible effects were studied
and added in the approximations of forces and moment
in [31]. However, it may lead to a large amount of
calculations online because many coefficients (such as
Cη

L , Cη
D, Cη

M and Cη
Ni

) have to be estimated using the

Table 1 Nomenclature

h Altitude

V Velocity

α Angle of attack

γ Flight path angle

θ Pitch angle, θ = α − γ

Q Pitch rate, Q = θ̇

ηi Generalized elastic coordinate

Φ Fuel equivalence ratio

δe Elevator deflection

Ni Generalized elastic force

L Lift

D Drag

T Thrust

M Pitching moment

m Vehicle mass

Iyy Moment of inertia

g Acceleration due to gravity

ψ̃i Inertial coupling parameter

ζi Damping ratio for ηi

ωi Natural frequency for ηi

adaptive methods. To avoid these problems, the flexible
effects on pitch rate are modeled as a kind of unknown
disturbance in this paper, which is estimated by a cou-
pling observer. And then, a feedforward compensator
based on the coupling observer is designed to reject
these flexible effects.

The approximations of the forces and moment
adopted in this paper are given by Parker and Fiorentini
in [29], which are described as follows:

L = q S(Cα
Lα + C0

L + Cδe
L δe),

D = q S(Cα2

D α
2 + Cα

Dα + C0
D + C

δ2
e

D δ
2
e + Cδe

D δe),

T = (Cα3

TΦα
3 + Cα2

TΦα
2 + Cα

TΦα + C0
TΦ)Φ

+Cα3

T α
3 + Cα2

T α
2 + Cα

Tα + C0
T ,

M = zT T + q Sc̄(Cα2

M α
2 + Cα

Mα + C0
M + Cδe

Mδe),

N1 = Cα2

N1
α2 + Cα

N1
α + C0

N1
,

N2 = Cα2

N2
α2 + Cα

N2
α + C0

N2
+ Cδe

N2
δe,

where C (·)
M , C (·)

T , C (·)
TΦ , C (·)

Ni
, C (·)

L , and C (·)
D are the

coefficients of the curve-fit approximations. S denotes
the reference area, c̄ the mean aerodynamic chord and
zT the thrust moment arm. Dynamic pressure q =
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Table 2 Admissible ranges for variables

Variable Min. value Max. value

h 70,000 ft 135,000 ft

V 7,000 ft/s 11,000 ft/s

α −5 ◦ 10 ◦

γ −3 ◦ 3 ◦

Q −10 ◦ 10 ◦

q 500 psf 2000 psf

Φ 0.05 1.5

δe −20 ◦ 20 ◦

(ρV 2)/2 and air density ρ = ρ0 exp(−(h − h0)/hs),
in which h−1

s is the air density decay rate, ρ0 and h0 are
the values of air density and altitude at trimmed cruise
condition.

Similarly to [30] and [31], the hypersonic cruising
regimes are only considered for the above nonlinear
model in this paper. As consequence of the physical
constraints that characterize hypersonic flight and oper-
ability of scramjet engines, the rigid-body state xr is
bound to remain within the admissible range shown in
Table 2, which determine the flight envelope, together
with the admissible range for the control input u. And
the admissible ranges for variables in Table 2 are same
as the ones of Table 1 in [31].

In this paper, our objective is to design a nonlin-
ear control law such that the output y can track the
desired signals [Vd γd ] T for the nonlinear model of
FAHVs, where the desired trajectories are assumed to
be bounded and with bounded derivatives of any order.
The next section is to provide a novel nonlinear com-
posite controller to achieve the control objective.

3 Coupling-observer-based nonlinear controller
design

This section presents a novel composite controller with
a hierarchical architecture for the nonlinear model
of FAHVs. First, a control-design model with rigid-
flexible coupling dynamics is provided. Second, the
coupling observer is constructed to estimate the flex-
ible effects on pitch rate. Finally, the nonlinear com-
posite controller, which combines a coupling-observer-
based compensator and a dynamic-inversion-based
controller, is proposed to reject the flexible effects and
track the desired trajectories. In addition, stability of the

composite closed-loop system involving two tracking-
error equations and a coupling observation error equa-
tion is analyzed.

3.1 Control-design model

Similarly to [29], the control-design model for rigid-
body variables is obtained from the FAHV nonlinear
model (1)-(6) by removing the altitude and flexible
modes and setting to zero the weak elevator couplings,
which is given by following equations:

V̇ = f1(xr , Φ), (7)

α̇ = f2(xr , Φ), (8)

γ̇ = f3(xr , Φ), (9)

Q̇ = f4(xr , Φ)+ g4(xr , Φ)δe + dc, (10)

where nonlinear functions f1(xr , Φ), f2(xr , Φ),
f3(xr , Φ), f4(xr , Φ), and g4(xr , Φ) are sufficiently
smooth with respect to xr and Φ, disturbance dc is
produced by the rigid-flexible coupling dynamics. The
concrete forms of f1(xr , Φ), f2(xr , Φ), f3(xr , Φ),

f4(xr , Φ), g4(xr , Φ), and dc are described as f1(xr , Φ)

= (T cosα − D̄)/m − g sin γ , f2(xr , Φ) = −(L̄ +
T sin α)/(mV ) + Q + (g/V ) cos γ, f3(xr , Φ) =
(L̄ + T sin α)/(mV ) − (g/V ) cos γ , f4(xr , Φ) =
Ī −1

yy [zT T + q Sc̄(Cα2

M α
2 + Cα

Mα + C0
M ) + ψ̃1 N1 +

ψ̃2(Cα2

N2
α2+Cα

N2
α+C0

N2
)], g4(xr , Φ) = Ī −1

yy (q Sc̄Cδe
M+

ψ̃2Cδe
N2
) and dc = C f [η1 η2 η̇1 η̇2]T , where

L̄ = q S(Cα
Lα + C0

L), D̄ = q S(Cα2

D α
2 + Cα

Dα + C0
D),

Īyy = Iyy − ψ̃2
1 − ψ̃2

2 and C f = Ī −1
yy [−ψ̃1ω

2
1 −

ψ̃2ω
2
2 − 2ψ̃1ζ1ω1 − 2ψ̃2ζ2ω2].

Remark 2 It is different from [29] that the flexible
effects produced by the rigid-flexible coupling dynam-
ics are considered and added in the control-design
model (7)–(10).

Using (5) and (6), the model for flexible modes η1

and η2, which is provided to construct the coupling
observer in next subsection, can be written as

ẋ f = A f x f + B f (xr )δe + F f (xr , Φ), (11)

where x f = [η1 η2 η̇1 η̇2]T is the flexible state, and

A f =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−p1ω
2
1 −p3ω

2
2 −2p1ζ1ω1 −2p3ζ2ω2

−p3ω
2
1 −p2ω

2
2 −2p3ζ1ω1 −2p2ζ2ω2

⎤
⎥⎥⎦ ,
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B f (xr ) =

⎡
⎢⎢⎣

0
0

b f 1

b f 2

⎤
⎥⎥⎦ , F f (xr , Φ) =

⎡
⎢⎢⎣

0
0

f f 1

f f 2

⎤
⎥⎥⎦ ,

in which p1 = 1 + Ī −1
yy ψ̃

2
1 , p2 = 1 + Ī −1

yy ψ̃
2
2 ,

p3 = Ī −1
yy ψ̃1ψ̃2, b f 1 = Ī −1

yy ψ̃1q Sc̄Cδe
M + p3Cδe

N2
,

b f 2 = Ī −1
yy ψ̃2q Sc̄Cδe

M + p2Cδe
N2

, f f 1 = Ī −1
yy ψ̃1[zT T +

q Sc̄(Cα2

M α
2 + Cα

Mα + C0
M )] + p3(Cα2

N2
α2 + Cα

N2
α +

C0
N2
) + p1 N1, f f 2 = Ī −1

yy ψ̃2[zT T + q Sc̄(Cα2

M α
2 +

Cα
Mα + C0

M )] + p3 N1 + p2(Cα2

N2
α2 + Cα

N2
α + C0

N2
).

3.2 Coupling observer design

We can construct a nonlinear Luenberger observer to
estimate the flexible state x f based on (10) and (11).
So a coupling observer to estimate the unknown distur-
bance dc can be given by

⎧⎪⎪⎨
⎪⎪⎩

d̂c = C f x̂ f

x̂ f = vc + Lc Q
v̇c = (A f − LcC f )(vc + Lc Q)+ B f (xr )δe

+F f (xr , Φ)− Lc( f4(xr , Φ)+ g4(xr , Φ)δe),

(12)

where d̂c and x̂ f are estimates of dc and x f , respec-
tively. Besides, vc is the internal state of observer (12)
and the observer gain, Lc∈R4×1, is to be designed.

Define flexible state estimation error e f (t) = x f −
x̂ f and coupling estimation error ec(t) = dc−d̂c. Obvi-
ously, ec(t) = C f e f (t). Using coupling observer (12),
the first differential of e f (t) can be given by

ė f (t) = ẋ f − ˙̂x f

= ẋ f − v̇c − Lc Q̇

= A f x f + B f (xr )δe + F f (xr , Φ)

−(A f − LcC f )(vc + Lc Q)− B f (xr )δe

−F f (xr , Φ)+ Lc( f4(xr , Φ)+ g4(xr , Φ)δe)

−Lc( f4(xr , Φ)+ g4(xr , Φ)δe + C f e f (t))

= (A f − LcC f )e f (t).

Thus, the differential equation for e f (t) is described as

ė f (t) = Ā f e f (t), (13)

where Ā f = A f −LcC f . The system (13) is asymptot-
ically stable, if an observer gain Lc can be found such
that Ā f is a Hurwitz matrix.

When A f = 0, C f = I, B f (xr ) = 0 and
F f (xr , Φ) = 0 (that is, ḋc ≡ 0), a simpler observer
can be designed to estimate dc as

⎧⎨
⎩

d̂c = zd + Ld Q
żd = −Ld(zd + Ld Q)− Ld( f4(xr , Φ)

+g4(xr , Φ)δe),

(14)

where zd and Ld are the internal state and the gain of
observer (14), respectively. The observer (14) is similar
to the disturbance observer presented in [22,27,35,36].
The estimation error using observer (14) can be reduced
by increasing the observer gain Ld , if the disturbance
is slowly time-varying. Another kind of disturbance
observer presented in [12,37,38] were designed to esti-
mate the disturbances that are generated by exogenous
systems which are different from the disturbance dc

under consideration in this paper.

Remark 3 The moment of inertia Īyy , interplay cou-
pling parameter ψ̃i , natural frequencyωi , and damping
ratio ζi can be worked out, if we know the mass, length,
and rigidity of the vehicle. So the parameter matrices
A f and C f can be obtained. In fact, the mass, length,
and rigidity may have uncertainty in practice. Thus, a
work is being done to design a robust coupling observer
in order to estimate the disturbance dc when the matri-
ces A f , B f (xr ), C f and F f (xr , Φ) are uncertain.

Remark 4 In order to reject the disturbance dc by
using coupling-observer-based compensator later, the
boundedness of dc needs to be analyzed. Recall that
dc = C f x f , this problem turns to the boundedness
analysis of x f . First, Let us rewrite the model (11) as

ẋ f = A f x f + w f , (15)

where w f = B f (xr )δe + F f (xr , Φ) is considered as
an input of flexible system (15). Then the characteristic
equation of A f is

det(λI − A f ) = a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0,

(16)

where a0 = 1, a1 = 2(ζ̄1ω̄1 + ζ̄2ω̄2), a2 = ω̄2
1 +

ω̄2
2 + 4 p̄ζ̄1ω̄1ζ̄2ω̄2, a3 = 2 p̄ω̄1ω̄2(ζ̄1ω̄2 + ζ̄2ω̄1),
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a4 = p̄ω̄2
1ω̄

2
2, in which ζ̄1 = √

p1ζ1, ω̄1 = √
p1ω1,

ζ̄2 = √
p2ζ2, ω̄2 = √

p2ω2, p̄ = 1 − (p2
3/(p1 p2)).

Obviously, 0 < p̄ < 1. The Routh Table is described
as

s4 a0 a2 a4

s3 a1 a3 0
s2 (a1a2 − a0a3)/a1 a4 0
s1 (a1a2a3 − a0a2

3 − a4a2
1)/(a1a2 − a0a3) 0

s0 a4

where

a1a2 − a0a3 = 2(1 − p̄)(ζ̄1ω̄1ω̄
2
2 + ζ̄2ω̄2ω̄

2
1)+ 2(ζ̄1ω̄

3
1

ζ̄2ω̄
3
2)+ 8 p̄ζ̄1ω̄1ζ̄2ω̄2(ζ̄1ω̄1 + ζ̄2ω̄2),

a1a2a3 − a0a2
3 − a4a2

1 = 4 p̄(1 − p̄)(ζ̄1ω̄2 + ζ̄2ω̄1)
2

+4 p̄ζ̄1ω̄1ζ̄2ω̄2(ω̄
2
1 − ω̄2

2)
2 + 8ζ̄1ω̄1ζ̄2ω̄2(ζ̄1ω̄1 + ζ̄2ω̄2).

Observe that coefficients of the first column in Routh
Table are all positive, when ζ1 > 0, ζ2 > 0, ω1 >

0 and ω2 > 0. Thus A f is Hurwitz stable. The
solution of state-space equation (15) is given by
x f (t) = eA f t x f (0)+

∫ t
0 eA f (t−τ)w f (τ )dτ , where w f

is bounded because the angle of attack α, the dynamic
pressure q and the control inputs Φ and δe are all
bounded for the flight control of cruising regimes.
Therefore, the flexible state x f and the disturbance dc

are bounded.

3.3 Nonlinear composite controller design

With the coupling observer (12), a nonlinear composite
controller which combines a coupling-observer-based
feedforward compensator and a dynamic-inversion-
based feedback controller is constructed in this subsec-
tion. Let us consider the following second-order actu-
ator model, which is appended to the input Φ.

Φ̈ = −2ζωΦ̇ − ω2Φ + ω2Φc. (17)

By combing with (7)–(10) and selecting ū = [δe Φc]T

as the new control input, a six dimension model with
full vector relative degree can be obtained to design
a dynamic-inversion-based feedback controller. From
(7)-(10) and (17), the third differential of V and γ can
be obtained as follows:
...
V = (∂ f1(xr , Φ)/∂x)ẍ+ ẋ T (∂2 f1(xr , Φ)/∂x2)ẋ (18)
...
γ = (∂ f3(xr , Φ)/∂x)ẍ+ ẋ T (∂2 f3(xr , Φ)/∂x2)ẋ, (19)

where x = [V α γ Φ]T , ẋ = [V̇ α̇ γ̇ Φ̇]T ,
and ẍ = [V̈ α̈ γ̈ Φ̈]T . Because ẋ and ẍ contain the
functions about control input ū and disturbance dc, the
expressions of

...
V and

...
γ can be rewritten as

[ ...
V...
γ

]
=

[
fV (xr , Φ)

fγ (xr , Φ)

]
+

[
gV 1(xr , Φ) gV 2(xr , Φ)

gγ 1(xr , Φ) gγ 2(xr , Φ)

]
ū

+
[

gV 3(xr , Φ)

gγ 3(xr , Φ)

]
dc,

(20)

where

fV (xr , Φ) = πV ẍ0 + ẋ T
0 Π

V ẋ0,

gV 1(xr , Φ)= g4(xr , Φ)

m

(
∂T

∂α
cosα−T sin α− ∂ D̄

∂α

)
,

gV 2(xr , Φ) = ω2

m

(
∂T

∂Φ
cosα

)
,

gV 3(xr , Φ) = 1

m

(
∂T

∂α
cosα−T sin α− ∂ D̄

∂α

)
,

fγ (xr , Φ) = πγ ẍ0 + ẋ T
0 Π

γ ẋ0,

gγ 1(xr , Φ) = g4(xr , Φ)

mV

(
∂T

∂α
sin α+T cosα+ ∂ L̄

∂α

)
,

gγ 2(xr , Φ) = ω2

mV

(
∂T

∂Φ
sin α

)
,

gγ 3(xr , Φ) = 1

mV

(
∂T

∂α
sin α + T cosα + ∂ L̄

∂α

)
,

in which

ẋ0 =

⎡
⎢⎢⎣

f1(xr , Φ)

f2(xr , Φ)

f3(xr , Φ)

Φ̇

⎤
⎥⎥⎦ , ẍ0 =

⎡
⎢⎢⎣

πV ẋ0

−πγ ẋ0 + f4(xr , Φ)

πγ ẋ0

−2ζωΦ̇ − ω2Φ

⎤
⎥⎥⎦ ,

πV = ∂ f1(xr , Φ)/∂x, πγ = ∂ f3(xr , Φ)/∂x,
ΠV = ∂2 f1(xr , Φ)/∂x2, Πγ = ∂2 f3(xr , Φ)/∂x2.

The detailed expressions of πV , πγ , ΠV , andΠγ are
given in the Appendix. It is observed that the nonlin-
ear functions fV (xr , Φ), fγ (xr , Φ), gV j (xr , Φ), and
gγ j (xr , Φ), j = 1, 2, 3 are sufficiently smooth with
respect to xr and Φ.

Next, we begin to design the nonlinear composite
controller based on the coupling observer. Using the
estimate d̂c produced by observer (12), the composite
controller can be designed as

ū = u1 + u2 + u3, (21)

where
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u1 = −G(xr , Φ)
−1

[
fV (xr , Φ)

fγ (xr , Φ)

]
,

u2 = −G(xr , Φ)
−1

[− ...
V d + υ1

− ...
γ d + υ2

]
,

u3 = −G(xr , Φ)
−1

[
gV 3(xr , Φ)

gγ 3(xr , Φ)

]
d̂c,

G(xr , Φ) =
[

gV 1(xr , Φ) gV 2(xr , Φ)

gγ 1(xr , Φ) gγ 2(xr , Φ)

]
,

υ1 = kV 4ëV (t)+ kV 3ėV (t)+ kV 2eV (t)
+kV 1

∫ t
0 eV (τ )dτ,

υ2 = kγ 4ëγ (t)+ kγ 3ėγ (t)+ kγ 2eγ (t)
+kγ 1

∫ t
0 eγ (τ )dτ,

in which eV (t) = V − Vd and eγ (t) = γ − γd are
tracking errors of velocity and flight-path angle, respec-
tively. The control gains KV = −[kV 1 kV 2 kV 3 kV 4]
and Kγ = −[kγ 1 kγ 2 kγ 3 kγ 4] are to be obtained by
solving Riccati equations in the following.

Remark 5 The control law (21) includes three parts:
the first term is designed to compensate the nonlinear
functions fV (xr , Φ) and fγ (xr , Φ), the second term
is designed to track the desired signals Vd and γd ,
and the third term is designed to reject the disturbance
dc. The dynamic-inversion-based feedback controller
is composed of the first and the second parts, while the
coupling-observer-based feedforward compensator is
the third part.

Remark 6 When d̂c ≡ 0, that is, there is no coupling
compensation, the nonlinear composite controller (21)
obviously becomes the dynamic-inversion-based non-
linear controller presented in [29], which is written as

ū = ū1 + ū2, (22)

where

ū1 = −Ḡ(xr , Φ)
−1

[
f̄V (xr , Φ)

f̄γ (xr , Φ)

]
,

ū2 = −Ḡ(xr , Φ)
−1

[− ...
V d + υ1

− ...
γ d + υ2

]
,

in which

Ḡ(xr , Φ) =
[

ḡV 1(xr , Φ) gV 2(xr , Φ)

ḡγ 1(xr , Φ) gγ 2(xr , Φ)

]
,

¨̄x0 =

⎡
⎢⎢⎣

πV ẋ0

−πγ ẋ0 + f̄4(xr , Φ)

πγ ẋ0

−2ζωΦ̇ − ω2Φ

⎤
⎥⎥⎦ ,

f̄V (xr , Φ) = πV ¨̄x0 + ẋ T
0 Π

V ẋ0,

ḡV 1(xr , Φ)= ḡ4(xr , Φ)

m

(
∂T

∂α
cosα−T sin α− ∂ D̄

∂α

)
,

f̄γ (xr , Φ) = πγ ¨̄x0 + ẋ T
0 Π

γ ẋ0,

ḡγ 1(xr , Φ) = ḡ4(xr , Φ)

mV

(
∂T

∂α
sin α+T cosα+ ∂ L̄

∂α

)
,

f̄4(xr , Φ) = Ī −1
yy [zT T +q Sc̄(Cα2

M α
2+Cα

Mα+C0
M )],

ḡ4(xr , Φ) = Ī −1
yy q Sc̄Cδe

M .

Remark 7 Note that the non-singular conditions for
G(xr , Φ) and Ḡ(xr , Φ) can be represented as

det[G(xr , Φ)] �= 0 ⇐⇒
ω2

m2V
∂T
∂Φ

g4(xr , Φ)(T + ∂ D̄
∂α

sin α + ∂ L̄
∂α

cosα) �= 0,

det[Ḡ(xr , Φ)] �= 0 ⇐⇒
ω2

m2V
∂T
∂Φ

ḡ4(xr , Φ)(T + ∂ D̄
∂α

sin α + ∂ L̄
∂α

cosα) �= 0.

In [29], the matrix Ḡ(xr , Φ) has been verified to
be nonsingular over the operating range of inter-
est, which is the range of parameter values used in
the curve fits. Thus (T + ∂ D̄

∂α
sin α + ∂ L̄

∂α
cosα) �=

0 holds due to ω2

m2V
∂T
∂Φ

ḡ4(xr , Φ) �= 0. Moreover,
ω2

m2V
∂T
∂Φ

g4(xr , Φ) �= 0 also holds for the dynamic pres-

sure q considered in this paper. Finally, the ω2

m2V
∂T
∂Φ

g4

(xr , Φ)(T + ∂ D̄
∂α

sin α + ∂ L̄
∂α

cosα) �= 0 holds, that is,
the matrix G(xr , Φ) is also nonsingular.

Remark 8 The gains (KV and Kγ ) of controller (22)
are designed using LQR in [29], which obtained by
solving two Riccati equations. In order to compare
controller (21) with controller (22) clearly, the gains
(Lc, KV and Kγ ) of controller (21) are also related
with the solutions of Riccati equations detailed in the
following.

Considering (13) and substituting (21) into (20), a
composite closed-loop system can be obtained as fol-
lows:
⎧⎨
⎩

ė f (t) = Ā f e f (t)˙̄eV (t) = ĀV ēV (t)+ B̄V C f e f (t)˙̄eγ (t) = Āγ ēγ (t)+ B̄γC f e f (t),
(23)
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where ĀV = A0 + B0 KV , Āγ = A0 + B0 Kγ , B̄V =
gV 3(xr , Φ)B0, B̄γ = gγ 3(xr , Φ)B0,

ēV (t) =

⎡
⎢⎢⎣

∫ t
0 eV (τ )dτ

eV (t)
ėV (t)
ëV (t)

⎤
⎥⎥⎦ , ēγ (t) =

⎡
⎢⎢⎣

∫ t
0 eγ (τ )dτ

eγ (t)
ėγ (t)
ëγ (t)

⎤
⎥⎥⎦ ,

A0 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , B0 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ .

The composite closed-loop system (23) can be described
compactly as

ė(t) = Ae(t), (24)

where

e(t) =
⎡
⎣

e f (t)
ēV (t)
ēγ (t)

⎤
⎦ , A =

⎡
⎣

Ā f 0 0
B̄V C f ĀV 0
B̄γC f 0 Āγ

⎤
⎦ .

To design the gains of controller (21) and analyze
the stability of composite system (24), the following
assumption is needed in this paper. The assumption
can be satisfied for the hypersonic cruising regimes.

Assumption 1 Nonlinear functions gV 3(xr , Φ) and
gγ 3(xr , Φ) are bounded, that is, ||gV 3(xr , Φ)|| ≤ σV 3,
||gγ 3(xr , Φ)|| ≤ σγ 3, where σV 3 and σγ 3 are all known
positive constants.

Theorem 1 Considering the closed-loop system (24),
for βV > 0 and βγ > 0, if there exist three positive
definite matrices, P1∈R4×4, P2∈R4×4 and P3∈R4×4,
satisfying the following Riccati equations:

P1 AT
f + A f P1 − P1CT

f R−1
f C f P1 + Q f = 0, (25)

P2 A0 + AT
0 P2 − P2 B0 R−1

V BT
0 P2 + QV = 0, (26)

P3 A0 + AT
0 P3 − P3 B0 R−1

γ BT
0 P3 + Qγ = 0, (27)

and the weights Q f ∈R4×4, QV ∈R4×4, Qγ∈R4×4,
R f ∈R, RV ∈R and Rγ∈R, satisfying

Q f ≥ (β−2
V σ 2

V 3 + β−2
γ σ 2

γ 3)C
T
f C f , QV ≥ 0,

Qγ ≥ 00 < R f , 0 < RV ≤ β−2
V , 0 < Rγ ≤ β−2

γ

then by selecting LT
c = R−1

f C f P1, KV = −R−1
V BT

0 P2

and Kγ = −R−1
γ BT

0 P3, the composite closed-loop sys-
tem (24) is asymptotically stable.

Proof A Lyapunov function candidate for the system
(24) is chosen as

W (t) = eT (t)Pe(t),

where P = diag{P̄1, P2, P3} and P̄1 = P−1
1 .

The derivative of W (t) along trajectories of system (24)
can be written as

Ẇ (t) = eT (t)(P A + AT P)e(t)

= eT (t)Γ̄ e(t)−eT (t)χT
1χ1e(t)−eT (t)χT

2 χ2e(t)

≤ eT (t)Γ̄ e(t),

where Γ̄ = diag{Γ̄1, Γ̄2, Γ̄3}, χ1 = [β−1
V gV 3(xr , Φ)

C f − βV BT
0 P2 0], χ2 = [β−1

γ gγ 3(xr , Φ)C f 0 −
βγ BT

0 P3], in which

Γ̄1 = ĀT
f P̄1 + P̄1 Ā f + [β−2

V g2
V 3(xr , Φ)

+β−2
γ g2

γ 3(xr , Φ)]CT
f C f ,

Γ̄2 = ĀT
V P2 + P2 ĀV + P2 B0β

2
V BT

0 P2,

Γ̄3 = ĀT
γ P3 + P3 Āγ + P3 B0β

2
γ BT

0 P3.

According to Assumption 1, we know that

β−2
V g2

V 3(xr , Φ)+β−2
γ g2

γ 3(xr , Φ)≤β−2
V σ 2

V 3+β−2
γ σ 2

γ 3.

Therefore

Ẇ (t) ≤ eT (t)Γ e(t), (28)

where the matrixΓ = diag{ ĀT
f P̄1+P̄1 Ā f +(β−2

V σ 2
V 3+

β−2
γ σ 2

γ 3)C
T
f C f , ĀT

V P2 + P2 ĀV + P2 B0β
2
V BT

0 P2,

ĀT
γ P3+P3 Āγ+P3 B0β

2
γ BT

0 P3}. Pre- and post-multiply
the inequality (28) by diag{P1, I, I } and substituting
matrices Γ , Ā f , ĀV and Āγ into the inequality, we
obtain

Ẇ (t) ≤ eT
f (t)(P1 AT

f + A f P1 − P1CT
f LT

c − LcC f P1

+(β−2
V σ 2

V 3 + β−2
γ σ 2

γ 3)C
T
f C f )e f (t)+ ēT

V (t)

(AT
V P2 + P2 AV + K T

V BT
0 P2 + P2 B0 KV

+P2 B0β
2
V BT

0 P2)ēV (t)+ēT
γ (t)(A

T
γ P3+P3 Aγ

+K T
γ BT

0 P3+P3 B0 Kγ +P3 B0β
2
γ BT

0 P3)ēγ (t).

If the matrices P1, P2 and P3 are the solutions of
the Riccati equations (25)–(27) and the gains of con-
troller (21) are chosen as LT

c = R−1
f C f P1, KV =

−R−1
V BT

0 P2 and Kγ = −R−1
γ BT

0 P3, we obtain

Ẇ (t) ≤ eT
f (t)(−P1CT

f R−1
f C f P1 − Q f + (β−2

V σ 2
V 3

+β−2
γ σ 2

γ 3)C
T
f C f )e f (t)+ēT

V (t)(−P2 B0 R−1
V

BT
0 P2 − QV + P2 B0β

2
V BT

0 P2)ēV (t)+ ēT
γ (t)

(−P3 B0 R−1
γ BT

0 P3−Qγ+P3 B0β
2
γ BT

0 P3)ēγ (t).

123



Coupling-observer-based nonlinear control 2149

When the weights Q f , QV , Qγ R f , RV and Rγ sat-
isfy the following conditions:

Q f ≥ (β−2
V σ 2

V 3 + β−2
γ σ 2

γ 3)C
T
f C f , QV ≥ 0,

Qγ ≥ 0, 0 < R f , 0 < RV ≤ β−2
V , 0 < Rγ ≤ β−2

γ ,

the Ẇ (t) < 0, that is, the composite closed-loop system
(24) is asymptotically stable. �
Remark 9 The gains (Lc, KV and Kγ ) of controller
(21) can be adjusted to improve the estimation perfor-
mance and control performance by choosing appropri-
ate values of weights (Q f , QV , Qγ , R f , RV and Rγ )
and positive parameters (βV and βγ ).

4 Simulations

In this section, the effectiveness of the proposed method
is demonstrated by numerical simulations. To com-
pare with the controller (21), the controller (22) will
be also applied for the flight control of FAHVs. For
simplification, the controllers (21) and (22) are called
as controller 1 and controller 2, respectively. The sim-
ulation results are obtained for the full nonlinear model
of FAHVs with the elevator-to-lift coupling and rigid-
flexible coupling. The values of rigid-body state and
flexible state at trimmed cruise condition, the vehicle
parameters (that is, Iyy, m, ρ, S, c̄) and the coeffi-
cients that appear in the forces and moment (that is,
C (·)

M , C (·)
T , C (·)

Ni
, C (·)

L , C (·)
D ) are given in [29].

In the simulation, the FAHV needs to complete the
same maneuver tasks as [29]. The selected reference
trajectory begin at q = 2, 000 lb ft−2 and h = 85, 000
ft. The aircraft climbs at a steady 50 ft s−1, while main-
taining a constant dynamic pressure. Once the FAHV
reaches Mach 10 at time 220 s, the Mach number
is held constant at climb rate increase to 139 ft s−1

until leveling off at 115,000 ft. With above maneu-
ver tasks, the desired signals Vd(t) and γd(t) can be
obtained shown in Fig. 1a, b by using the relationships
qd(t) = 0.5ρ0V 2

d (t) exp(−(hd(t) − h0)/hs), Ma =
Vd(t)/(20

√
Te) and ḣd(t) = Vd(t)sin(γd(t)), where

qd(t) and hd(t) are the desired signals of dynamic pres-
sure and altitude, Ma and Te denote Mach number and
air temperature, respectively.

In order to fully analyze the performances of con-
troller 1 and controller 2, two case studies will be con-
sidered. In the first case, controller 1 and controller 2
choose the same gains KV and Kγ to analyze the effects

caused by the disturbance dc. In the second case, the
different gain Kγ is chosen to compare the performance
of the two controllers.

The first case sets weights Q f = 4.225×105CT
f C f ,

QV = diag{1, 10, 1, 1}, Qγ = I4×4, R f = 200,
RV = 1, Rγ = 0.1, and parameters βV = 1, βγ = 1.
Then we have KV = −[3.4849 5.5722 4.5983 1],
Kγ = −[5.4399 9.7962 8.4827 3.1623] and Lc =
[11.6038 −7.2228 −1.4551 −1.6087]T according
to Theorem 1.

The simulation results of rigid-body state, control
input, flexible state and disturbance dc under controller
1 and controller 2 with the same gains KV and Kγ
are shown in Figs. 1, 2, 3, and 4. It can be seen from
Fig. 1 that the tracking performances of controller 1
are similar to the ones of controller 2 due to choosing
the same gains KV and Kγ . However, there are oscilla-
tions in the simulation results of tracking errors, angle
of attack, pitch rate, control input and flexible state
using controller 2 shown in Figs. 1, 2, and 3. It can be
observed from Fig. 4a that the simulation results of dis-
turbance dc under controller 2 also has high-frequency
oscillation. Thus, the oscillations that appear in rigid-
body variables, control input and flexible state are all
caused by the disturbance dc. Furthermore, the oscil-
lations will be intensified, if the smaller tracking error
of flight-path angle is needed for controller 2. Mean-
while, it also can be seen from Figs. 1, 2, 3, and 4 that
the controller 1 with the same tracking performance as
controller 2 can avoid these oscillations by using the
coupling-observer-based compensator which is able to
reject the disturbance dc.

The vehicle may be out of control due to the high-
frequency oscillation of elevator deflection δe. The
durable oscillations appeared in flexible state may
cause vehicle damage. Therefore, the oscillations pro-
duced by using controller 2 in the first case are unde-
sired in practice. Thus the bigger weight Rγ of con-
troller 2 (that is, Rγ = 1) is chosen in the sec-
ond case study to reduce the oscillations, while the
smaller weight Rγ (that is, Rγ = 0.08) is chosen
to further improve the tracking performance of con-
troller 1. So the new gain Kγ can be worked out as
Kγ = −[5.8258 10.7200 9.3979 3.5355] for con-
troller 1 and Kγ = −[3.0777 4.2361 3.0777 1] for
controller 2. Other gains of controller 1 and controller
2 are same as the first case.

The simulation results of rigid-body state, control
input, flexible state and disturbance dc under controller
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Fig. 1 Case study 1:
a velocity V (t) and desired
trajectory Vd (t), b flight
path angle γ (t) and desired
trajectory γd (t), c velocity
tracking error eV (t),
d flight-path angle tracking
error eγ (t)
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Fig. 2 Case study 1:
a angle of attack α(t), b
pitch rate Q(t), c elevator
deflection δe(t), d fuel
equivalence ratio Φ(t)
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Fig. 3 Case study 1:
a flexible mode η1(t),
b flexible mode η2(t),
c η̇1(t), d η̇2(t)
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Fig. 4 Case study 1:
a disturbance dc,
b estimation value and error
of dc
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1 and controller 2 with different gain Kγ are shown
in Figs. 5, 6, 7, and 8. It can be seen from Figs. 5, 6,
7, and 8 that the oscillations of tracking errors, angle
of attack, pitch rate, control input, flexible state and
disturbance are reduced in the simulation results using
controller 2, but the tracking performance of controller
2 is degraded (that is, the tracking error of fight-path
angle using controller 2 is bigger than the one using
controller 1). Moreover, even if the smaller weight
Rγ is chosen, there are no durable or high-frequency
oscillations in the simulation results under controller
1. In addition, it can be seen from Figs. 4b and 8b
that the disturbance dc using controller 1 can be esti-
mated very well by the coupling observer in the two
case studies.

In a word, it may cause degradation of control per-
formance or oscillations of control input and flexible
state using controller 2 without considering the rigid-
flexible couplings, while the controller 1 proposed in
this paper can avoid these problems. That is, the track-
ing performances can be improved by using controller
1 compared with controller 2.

5 Conclusion

In this paper, the flexible effects produced by rigid-
flexible coupling dynamics between flexible and rigid-
body variables of FAHVs are formulated as a kind
of disturbance. First, a control-design model with
rigid-flexible coupling dynamics is given. And then,
the nonlinear composite controller which combines
a coupling-observer-based feedforward compensator
and a dynamic-inversion-based feedback controller is
presented, where the feedforward compensator is con-
structed to reject the flexible effects on pitch rate
and the feedback controller is designed to guarantee
velocity and flight-path angle track the desired signals.
Simulation results show that it may cause degrada-
tion of control performance or high-frequency oscil-
lations of control input and flexible state using the tra-
ditional nonlinear controller without considering the
rigid-flexible couplings, while the coupling-observer-
based controller can avoid these problems. In other
words, the tracking performances can be improved by
using the proposed composite controller compared with
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Fig. 5 Case study 2:
a velocity V (t) and desired
trajectory Vd (t), b flight
path angle γ (t) and desired
trajectory γd (t), c velocity
tracking error eV (t),
d flight-path angle tracking
error eγ (t)
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Fig. 6 Case study 2:
a angle of attack α(t),
b pitch rate Q(t), c elevator
deflection δe(t), d fuel
equivalence ratio Φ(t)
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Fig. 7 Case study 2:
a flexible mode η1(t),
b flexible mode η2(t),
c η̇1(t), d η̇2(t)
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Fig. 8 Case study 2:
a disturbance dc,
b estimation value and error
of dc

0 100 200 300 400 500 600
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 d
c

(a)
controller 2
controller 1

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

0.3

220 225 230 235 240
−0.2

0

0.2

350 360 370 380
0.04

0.06

0.08

0.1

0.12

450 455 460
0.115

0.115

0.115

0.115

0 100 200 300 400 500 600
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 Time [s]

 E
st

im
at

io
n 

V
al

ue
 a

nd
 E

rr
or

 o
f d

c

(b)
d

c
 using controller 1

 estimation value of d
c

 estimation error of d
c

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

345 350 355 360
−0.2

0

0.2

the previous dynamic-inversion-based nonlinear con-
troller. One of the future research topics is to extend
the result developed in this paper to FAHVs with uncer-
tainties.
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Appendix

πV = 1

m

⎡
⎢⎢⎢⎣

− ∂ D̄
∂V

∂T
∂α

cosα − T sin α − ∂ D̄
∂α−mg cos γ

∂T
∂Φ

cosα

⎤
⎥⎥⎥⎦

T

;

ΠV = 1

m

[
πV

1 πV
2 πV

3 πV
4

]
,

πV
1 =

[
− ∂2 D̄
∂V 2 − ∂2 D̄

∂α∂V 0 0
]T
,

πV
2 =

⎡
⎢⎢⎢⎣

− ∂2 D̄
∂α∂V(

∂2T
∂α2 − T

)
cosα − 2 ∂T

∂α
sin α − ∂2 D̄

∂α2

0
∂2T
∂α∂Φ

cosα − ∂T
∂Φ

sin α

⎤
⎥⎥⎥⎦ ,

πV
3 =

⎡
⎢⎢⎣

0
0

mg sin γ
0

⎤
⎥⎥⎦ , πV

4 =

⎡
⎢⎢⎣

0
∂2T
∂Φ∂α

cosα − ∂T
∂Φ

sin α
0
0

⎤
⎥⎥⎦ ;

πγ =

⎡
⎢⎢⎢⎣

− ∂2 L̄/∂V 2

mV − L̄+T sin α
mV 2 + g cos γ

V 2

∂ L̄/∂α+(∂T/∂α) sin α+T cosα
mV

g sin γ
V

(∂T/∂α) sin α
mV

⎤
⎥⎥⎥⎦

T

;

Πγ = [
π
γ
1 π

γ
2 π

γ
3 π

γ
4

]
,

π
γ
1 =

⎡
⎢⎢⎢⎢⎣

− ∂2 L̄/∂V 2

mV − 2 ∂ L̄/∂V
mV 2 + 2(L̄+T sin α)

mV 3 − 2g cos γ
V 3

∂2 L̄/∂V ∂α
mV − ∂ L̄/∂α+(∂T/∂α) sin α+T cosα

mV
− g sin γ

V 2

− (∂T/∂α) sin α
mV 2

⎤
⎥⎥⎥⎥⎦
,

π
γ
2 =

⎡
⎢⎢⎢⎣

− ∂2 L̄/∂V ∂α
mV − ∂ L̄/∂α+(∂T/∂α) sin α+T cosα

mV 2

∂2 L̄/∂α2+(∂2T/∂α2)−T ) sin α+2(∂T/∂α) cosα
mV
0

− (∂2T/∂α∂Φ) sin α+(∂T/∂Φ) cosα
mV

⎤
⎥⎥⎥⎦ ,

π
γ
3 =

[
− g sin γ

V 2 0 g cos γ
V 0

]T
,
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π
γ
4 =

⎡
⎢⎢⎢⎣

− (∂T/∂Φ) sin α
mV 2

− (∂2T/∂α∂Φ) sin α+(∂T /∂Φ) cosα
mV
0
0

⎤
⎥⎥⎥⎦ .
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