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Abstract This paper proposes a robust sliding mode
control strategy for an uncertain nonlinear system sub-
jected to time-varying disturbance. The class of sys-
tem considered includes state-dependent nonlinearity
in the input vector (in addition to the plant matrix).
The control scheme uses inertial delay control to esti-
mate the lumped uncertainty. The proposed control
enforces sliding without using the discontinuous con-
trol and without requiring the knowledge of uncertain-
ties or their bounds. The overall stability of the system
is proved. The effectiveness of the proposed strategy is
verified for model following and robust performance,
by simulation of an illustrative example and an appli-
cation to inverted pendulum system.
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1 Introduction

Robust control is concerned with control performance
in the presence of uncertainties, external disturbances,
and plant parameter variations. Sliding mode control
(SMC) is one such strategy that has matured into an
effective technique for controlling uncertain systems
[1,2].

The current sliding mode strategies are concerned
mostly with systems that are linear in the input.
This formulation restricts the application potential
of SMC. Under this formulation, systems with an
input nonlinearity are usually approached by intro-
ducing a coordinate transformation [1,3] or exact lin-
earization [4]. The robustness, however, is a con-
cern and may result in performance degradation and
in some cases even in instability. A modified slid-
ing condition combined with equivalent control [5]
can improve robustness. An adaptive robust finite-
time controller [6] is introduced for synchronization
of two different uncertain chaotic systems (master-
slave) with input nonlinearities. The control, however,
is discontinuous and requires the bounds of uncer-
tainty.

The uncertain parameters [7] or the bounds of uncer-
tainties [8] can be estimated adaptively and combined
with SMC for robust performance. The robustness is
also achieved by adaptively estimating the uncertainties
using fuzzy and neural network [9–11]. The adaptive
estimation algorithms can effectively take care of struc-
tured uncertainties; however, sensor errors or accumu-
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lation of numerical errors may lead the system toward
instability [12].

A control design augmented by the estimates of
uncertainties and disturbances can effectively alleviate
the problem. In this design, the effect of uncertainties
is compensated by augmenting the controller designed
for nominal system with the estimates. Techniques
like unknown input observer (UIO) [13], perturbation
observer (PO) [14], disturbance observer (DO) [15],
extended state observer (ESO) [16], and time delay
control (TDC) [17] have been in place for quite some-
time, to estimate the effects of uncertainties and distur-
bances. These techniques have been efficiently used in
robustifying the control for nonlinear systems [18] and
uncertain chaotic systems [19]. An application of TDC
for DC servo motor control [20] is also reported.

The uncertainty and disturbance estimator (UDE)
[21] (redefined as inertial delay control (IDC) as
explained in Remark 3) is an effective technique for
estimating slow-varying uncertainties. This method has
been applied to SMC of linear systems [22], linear and
nonlinear systems with state delays [23,24], and input-
output linearization [25].

In this paper, sliding mode control (SMC) combined
with IDC is extended to a matched uncertain system
with control appearing through a nonlinear function
as in [5,26]. This formulation appears in many prac-
tical applications like motion control [27], magnetic
levitation [4,9] underwater vehicles [28], vehicle con-
trol [29], and underactuated systems [30]. The robust-
ness is assured through IDC that estimates the lumped
uncertainty comprising uncertainty in plant as well as
input matrix and unknown disturbance. The developed
strategy is applied to a representative nonlinear second-
order example as in [20] and a benchmark inverted pen-
dulum problem [31]. The main contributions of this
paper are as follows:

(i) The system considered here covers a large class
of practical applications.

(ii) The proposed method does not require any knowl-
edge of the bounds of uncertainties and distur-
bances.

(iii) The method of IDC is extended to uncertain sys-
tem, with nonlinearity in the input vector (in addi-
tion to the uncertainty in the plant matrix) and
state-dependent disturbances.

(iv) The ultimate boundedness of estimation error (ẽ)
and the sliding variable (σ ) is proved and vali-

dated by simulation of a numerical example and
a practical application.

The paper is organized as follows: Sect. 2 states the
problem with the necessary assumptions. Section 3
explains the design of model following control fol-
lowed by uncertainty estimation in Sect. 4. Section 5
gives the stability analysis. The performance is illus-
trated by a numerical example in Sect. 6 followed by
an application to inverted pendulum system in Sect. 7
and conclusion in Sect. 8.

2 Problem statement

Consider a nonlinear single input, single output uncer-
tain system given by,

ẋ = f (x, t)+g(x, t) u+� f (x, t)+�g(x, t) u+d(x, t)

(1)

x ∈ R
n is the state vector

u ∈ R
1 is the control input

f (x, t) is known nonlinear system vector
g(x, t) is known nonlinear input vector
� f (x, t) & �g(x, t) are uncertainties in plant and input
vector, respectively
d(x, t) ∈ R

n is the unmeasurable disturbance

Assumption 1 The uncertainties � f (x, t),�g(x, t),
and disturbance d(x, t) satisfy the matching conditions
given by

� f (x, t) = g(x, t) · e f (x, t)
�g(x, t) = g(x, t) · eg(x, t)
d(x, t) = g(x, t) · ed(x, t)

⎫
⎬

⎭
(2)

where e f , eg , and ed are unknown.

The Eq. (2) is the well-known matching condition
required to guarantee invariance and is an explicit
statement of the structural constraint stated in [32].
Using the Assumption 1, the uncertainty and distur-
bances can be combined into a lumped uncertainty term
e(x, u, t) ∈ R

1 and is given as

e(x, u, t) = e f (x, t) + eg(x, t) u + ed(x, t) (3)

The system (1) can now be rewritten as

ẋ = f (x, t) + g(x, t) u + g(x, t) · e(x, u, t) (4)
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Assumption 2 The lumped uncertainty e(x, t) is con-
tinuous and satisfies
∣
∣
∣
∣
∣

d( j)e(x, t)

dt ( j)

∣
∣
∣
∣
∣
≤ μ for j = 0, 1, 2, . . . , r (5)

where μ is a small positive number.

Remark 1 The Assumption 2 implies that the uncer-
tainty e(x, u, t) and its derivatives up to some finite
order (r ) be bounded but the bound is not required
to be known. The assumption includes a fairly large
class of uncertainties and disturbances that can be esti-
mated by inertial delay control (IDC) described in
Sect. 4.

A model following control is to be designed for the
uncertain plant (4), such that it follows the desired
model given by

˙xm = Am xm + bmum (6)

where xm ∈ R
n is the model state, um ∈ R

1 is the ref-
erence input, and Am and bm are user selected matrix
of suitable dimensions such that (6) gives the desired
response. The following assumption is needed on the
structure of the model to ensure perfect model follow-
ing.

Assumption 3

f (x, t) − Am x = g(x, t) · L
bm = g(x, t) · M

}

(7)

where L and M are suitable known matrices of appro-
priate dimensions.

The objective is to design a control u such that the
uncertain plant (4) follows the desired model (6)
inspite of uncertainties and disturbances represented
by e(x, u, t).

3 Design of control

A model following control is designed, based on the
sliding surface of Ackermann [33]. The control is
designed to ensure sliding and the choice of sliding
surface ensures that the system follows the desired
model.

3.1 Sliding surface

The sliding surface is defined as

σ = bT x + z, z(0) = −bT x(0) (8)

where b = [0 1]T . The auxiliary variable z is defined
as

ż = −bT Am x − bT bm um (9)

A sliding surface of (8) gives full order sliding and
eliminates reaching phase [33]. It can be easily veri-
fied that with this sliding surface and auxiliary variable
dynamics (9), when σ goes to 0, the plant follows the
desired model.

3.2 Model following control

A control is designed such that the sliding condition
is satisfied and plant follows the desired model. The
control u is designed as u = ueq +un with ueq catering
to the nominal (known) terms and un to take care of
uncertainty in (11). Differentiating (8) and using (4)
and (9),

σ̇ = bT [ f (x, t) + g(x, t) u + g(x, t) e(x, u, t)]

− bT Am x − bT bm um (10)

Using (7) in (10),

σ̇ = bT g L + bT g u + bT g e(x, u, t) − bT g M um

(11)

For the sake of simplicity, bT g(x, t) is written as bT g.
Let the control u be expressed as

u = ueq + un (12)

with

ueq = −L + Mum − (bT g)−1kσ (13)

where k is a positive constant. Using (12) and (13) in
(11),

σ̇ = bT g un + bT g e(x, u, t) − kσ (14)

The control strategy is to estimate e(x, u, t) as ê(x, u, t)
(18) using inertial delay control (Sect. 4) and use
−ê(x, u, t) as a component in control to cancel the
effect of e(x, u, t).
Let

un = −ê(x, u, t) (15)
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Using (15) in (14),

σ̇ = −k σ + bT g ẽ(x, u, t) (16)

with

ẽ(x, u, t) = e(x, u, t) − ê(x, u, t) (17)

Remark 2 It is seen from (16) that, as ẽ → 0, i.e.
ê(x, u, t) ≈ e(x, u, t), sliding condition is satisfied and
σ will asymptotically approach 0, if k > 0. This implies
that the uncertain plant follows the desired model i.e.,
ẋ = Am x + bm um .

4 Estimation of uncertainty

The uncertainty and disturbance estimator (UDE) [21]
is a promising strategy for estimating slow-varying
uncertainties. The UDE control algorithm is based on
the assumption that a signal can be approximated and
estimated using a filter with the right bandwidth. The
opposite of estimate is then used in control to negate the
effect of the uncertainty [22]. The lumped uncertainty
e(x, u, t) can be estimated as

ê(x, u, t) = G f (s) e(x, u, t) (18)

where G f (s) is a strictly proper low-pass filter with
unity steady-state gain and sufficiently large band-
width.

Remark 3 The estimate (ê) is obtained by passing
lumped uncertainty (e) through an inertial filter G f (s).
In analogy with time delay control (TDC) in which the
estimates are obtained by delaying the plant signals in
time, the method of UDE is redefined as inertial delay
control (IDC). The order of estimation filter (n) shall
imply the order (n) of IDC.

Using (14) and (15),

e(x, u, t) = (bT g)−1(σ̇ + kσ) + ê(x, u, t) (19)

Using (19) in (18),

ê(x, u, t) = G f (s)
{
(bT g)−1(σ̇ + kσ) + ê(x, u, t)

}

(20)

Specifically for a choice of G f (s) given by

G f (s) = 1

1 + τ s
(first-order filter) (21)

where τ is a small positive constant. The Eq. (20) can
be written as

τ ˙̂e(x, u, t) + ê(x, u, t)

= (bT g)−1(σ̇ + kσ) + ê(x, u, t) (22)

Therefore, with a first-order low-pass filter (i.e., 1st-
order IDC),

ê(x, u, t) = (bT g)−1

τ

⎛

⎝σ + k

t∫

0

σ

⎞

⎠ (23)

From Eqs. (17), (18), and (21),

˙̃e(x, u, t) = − 1

τ
ẽ(x, u, t) + ė(x, u, t) (24)

Remark 4 If ė = 0, ẽ goes to zero asymptotically, oth-
erwise it is ultimately bounded. If ė is not small, but ë is
small, i.e., j = 2 in (5), then the accuracy of estimation
can be improved by estimating e as well as ė.

4.1 Improvement in estimation: 2nd-order IDC

The uncertainty (e) and its derivative (ė) can be esti-
mated using a second-order filter of the form

G f (s) = 1 + 2τ s

τ 2s2 + 2τ s + 1
(2nd order IDC) (25)

where τ is a small positive constant. Let ê1 be the
estimate of e(x, u, t) and ê2 = ˙̂e1 be the estimate of
ė(x, u, t).

The estimation errors are derived using (17)

ẽ1 = e − ê1 (26)

ẽ2 = ė − ê2 (27)

Using (18) and (25),

ê1 =
(

1 + 2τ s

τ 2s2 + 2τ s + 1

)

e (28)

τ 2 ¨̂e1 + 2τ ˙̂e1 + ê1 = 2τ ė + e

˙̂e2 = 2

τ
ẽ2 + 1

τ 2 ẽ1 (29)

˙̃e2 = − 1

τ 2 ẽ1 − 2

τ
ẽ2 + ë (30)

The estimation error equations can be expressed in the
state variable form as

˙̃e1 = ê2

˙̃e2 = − 1

τ 2 ẽ1 − 2

τ
ẽ2 + ë (31)

˙̃e = Aẽ + Eë (32)

where

ẽ =
[

ẽ1

ẽ2

]

, A =
[

0 1
− 1

τ 2 − 2
τ

]

, E =
[

0
1

]

(33)
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Fig. 1 Model following with uncertainty estimation. a Plant
(straight lines) and model (dotted lines) state x1, b plant (straight
lines) and model (dotted lines) state x2, c control u, d sliding

variable σ , e uncertainty e (straight lines) and ê (dotted lines), f
estimation error ẽ

Therefore, with a second-order low-pass filter (i.e.,
2nd-order IDC),

ê1 = (bT g)−1

⎛

⎝
2

τ
σ + 2τk + 1

τ 2

t∫

0

σ + k

τ 2

t∫

0

t∫

0

σ

⎞

⎠

(34)

5 Stability

In this section, it is proved that estimation error (ẽ)
and sliding variable (σ ) are ultimately bounded. The
stability is analyzed for 2nd-order IDC. From (32) and
(33), it is observed that for τ > 0, the eigen values of
A can be placed arbitrarily. If τ is selected such that
all eigen values of A have negative real parts, one can
always find a positive definite matrix P such that

P A + AT P = −Q (35)

for a given positive definite matrix Q. Let λ be the
smallest eigen value of Q.

Defining a Lyapunov function as

V (ẽ) = ẽT P ẽ (36)

Taking derivative of V (ẽ) along (24)

V̇ (ẽ) = ẽT P ˙̃e + ˙̃eT Pẽ (37)

= ẽT (P A + AT P)ẽ + 2ẽT P Eë (38)

= −ẽT Qẽ + 2ẽT P Eë (39)

≤ −λ‖ẽ‖2 + 2‖ẽ‖ ‖P E‖μ (40)

≤ −‖ẽ‖ (‖ẽ‖λ − 2‖P E‖μ) (41)

Thus, the estimation error (ẽ) is ultimately bounded by

‖ẽ‖ ≤ λẽ = 2 ‖P E‖μ

λ
(42)

The bound on |σ | is now determined using (16)

σ̇ = −k σ + bT g ẽ (43)

Therefore,

σ σ̇ = −kσ 2 + bT gσ ẽ (44)

≤ −k|σ |2 + |bT g| |σ | ‖ẽ‖ (45)

≤ −|σ |
(

k |σ | − |bT g| λẽ

)
(46)

Thus, the sliding variable (σ ) is ultimately bounded by

|σ | ≤ λσ = |bT g| λẽ

k
(47)
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Fig. 2 Robustness for increased uncertainty in g(x, t). a Plant
(straight lines) and model (dotted lines) state x1, b plant (straight
lines) and model (dotted lines) state x2, c control u, d sliding

variable σ , e uncertainty e (straight lines) and ê (dotted lines), f
estimation error ẽ

It is seen from (42) and (47) that ‖ẽ‖ and |σ | are ulti-
mately bounded and the bounds can be lowered by
appropriate choice of control parameters k and τ . Thus,
the practical stability is proved in the sense of [34].

6 Numerical example

The effectiveness of the proposed strategy is illus-
trated with the numerical example as in [20]. The plant
dynamics are as in (1) with

f (x, t) =
[

0 1
2 x2 sin x1
2
3 +cos x1

cos x1
2
3 +cos x1

] [
x1

x2

]

(48)

� f (x, t) =
[

0 0
0.2 sin x2 0.1 cos x2

] [
x1

x2

]

(49)

g(x, t) =
[

0
1

2
3 +cos x1

]

,

�g(x, t) =
[

0
0.1 sin x2

]

(50)

The structure of the model to be followed is as in (6)
with

Am =
[

0 1
−ω2

n −2ζωn

]

, bm =
[

0
−ω2

n

]

(51)

The initial conditions for the plant and model are

x(0) = [1 0]T xm(0) = [0 1]T (52)

The disturbance is

d(x, t) =
[

0
x2

1 sin (t) + x2 cos (t) + 1

]

(53)

6.1 Case 1 : model following

A model following control with uncertainty estimated
by a first-order IDC (23) is considered here and the sim-
ulation results are showed in Fig. 1. The model para-
meters are ζ = 1 and ωn = 6 in (51). The plant and
the model have an initial condition mismatch (52). The
control gain is k = 2 and filter time constant is τ =
1 ms. The reference input is a square wave of amplitude
1 and frequency 0.9 rad/sec. The response of the plant
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Fig. 3 Robustness for fast disturbance. a Plant (straight lines) and model (dotted lines) state x1, b plant (straight lines) and model
(dotted lines) state x2. c control u, d sliding variable σ , e uncertainty e (straight lines) and ê (dotted lines), f estimation error ẽ

Fig. 4 Comparison
between first-order and
second-order IDC for
estimation accuracy. a σ

with 1st order filter, b σ

with 2nd order filter, c ẽ
with 1st order filter, d ẽ with
2nd order filter
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Fig. 5 Inverted Pendulum without disturbance. a Plant output y
(in radians), b control u (in V), c sliding variable σ , d estimation
error ẽ

Fig. 6 Inverted Pendulum with disturbance. a Plant output y (in
radians), b control u (in V), c sliding variable σ , d estimation
error ẽ

123



Robust SMC for a class of nonlinear systems using IDC 1929

states (x), in Fig. 1a, b, shows that the plant follows
the model very closely even with uncertainty in plant
(49) as well as input vector (50) as also state-dependent
nonlinear disturbance (53). The sliding variable (σ ) and
estimation error (ẽ) are bounded as seen in Fig. 1d,f.

6.2 Case 2 : robustness

The robustness analysis with a first-order IDC (23) is
presented in this section. The uncertainty in f (x, t)
(49) is same as in Case 1 whereas the uncertainty
in g(x, t) (50) is increased by considering g(x, t) =
[0 0.6 sin x2]T . The results are shown in Fig. 2. The
performance of first-order IDC (23) is also tested
for a fast disturbance. The disturbance considered is
d(x, t) = x2

1 sin (10 t) + x2 cos (10 t) + 1 and the
results are shown in Fig. 3. The results are a confir-
mation of the theory and IDC can indeed compensate
fast-varying disturbances and large input vector uncer-
tainties. This implies a good model following and the
same is evident from Figs. 2a, b and 3a, b. The sliding
variable (σ ) and estimation error (ẽ) are also bounded
as expected. It may be noticed that the disturbance has
terms that vary in a sinusoidal fashion. As a result, the
rate of change of uncertainty ė(x, u, t) also has terms
that vary in a sinusoidal fashion. Therefore, the esti-
mates ê(x, u, t) and ẽ also show a sinusoidal variation
as is to be expected.

6.3 Case 3 : improvement with higher order filter

The improvement in accuracy of estimation using a
second-order IDC (34) is presented here. The reduction
of (σ ) and estimation error (ẽ) in comparison to the
results of Case 1 is shown in Fig. 4. It can be seen that
the bounds are reduced by a factor of more than 10.

7 Application to inverted pendulum system

The inverted pendulum system is widely used in the lit-
erature to check the validity of control strategies, owing
to its challenging dynamic structure. A nonlinear con-
trol based on sliding plane [35], adaptive-H∞ control
[36], SMC with QFT [37] are some of the nonlinear
designs reported in literature. A SMC combined with
self-tuning fuzzy inference scheme [38] provides good

tracking performance. However, the control input is
very high initially; it is effectively addressed in the pro-
posed design by choice of a suitable sliding surface and
auxiliary variable.

The theoretical results of nonlinear sliding mode
control design are applied to an inverted pendulum
stabilization problem. The stabilization problem is
to design a controller to keep the pendulum in its
unstable equilibrium point in the presence of distur-
bances.

The dynamics of the inverted pendulum can be writ-
ten as in [31,35].

ẋ1 = x2

ẋ2 = g sin(x1)− m l x2
2 cos(x1) sin x1
(mc+m)

l
[

4
3 − m cos2(x1)

(mc+m)

] +
cos(x1)
(mc+m)

l
[

4
3 − m cos2(x1)

(mc+m)

]u(t)+d(t)

y = x1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(54)

where [x1 x2]T are the state variables—position and
velocity of the pole in radians and radians/sec, u(t)
is the control input in V, d(t) is the external disturbance
and y is the output. The model parameters are: mc is
the mass of cart, m is the mass of pole and l is half
length of the pole.

The system state equations in (54) can be repre-
sented generically as

ẋ = f (x, t) + g(x, t) u + d(x, t) (55)

x ∈ R
n is the state vector

u ∈ R
1 is the control input

f (x, t) is known nonlinear system vector
g(x, t) is known nonlinear input vector
d(x, t) is the unmeasurable disturbances

f (x) =
⎡

⎣
x(2)

g sin(x1)−m l x2
2 cos(x1) sin x1/(mc+m)

l
[

4
3 −m cos2(x1)/(mc+m)

]

⎤

⎦

g(x) =
⎡

⎣
0

cos(x1)/(mc+m)

l
[

4
3 −m cos2(x1)/(mc+m)

]

⎤

⎦

d(t) =
[

0
20 sin(2 π t)

]

The nonlinear system and input vector may have
uncertainties; � f , �g. As is evident, the uncertainties
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Fig. 7 Estimation accuracy
with different values of τ .
a Estimation error (ẽ) with
τ = 1 ms, b estimation
error (ẽ) with τ = 0.1 ms

Fig. 8 Increased robustness
with 2nd order filter. a ẽ
with 1st order filter and
τ = 1 ms, b σ with 1st
order filter and τ = 1 ms,
c ẽ with 2nd order filter and
τ = 1 ms, d σ with 2nd
order filter and τ = 1 ms

� f,�g and disturbance d(x, t) satisfy matching con-
ditions. Thus, the system (55) can now be rewritten as
in (4),

ẋ = f (x, t) + g(x, t) u + g(x, t) · e(x, u, t) (56)

where e(x, u, t) is the lumped uncertainty as in (3)
comprising uncertainty in plant and input vector as well
as unknown disturbance.

A trajectory tracking control with uncertainty esti-
mated by a first-order IDC (23) is considered here and
the simulation results are shown in Fig. 5. The ref-
erence is r(t) = 0.2 sin

(
π t + π

2

)
. The nominal val-

ues of model parameters are mc = 1 kg, m = 0.1 kg,
l = 0.5 m. An uncertainty of 50 % is added in m to
check the robustness of control. It is observed from
Fig. 5a that the tracking accuracy is good inspite of
uncertainties. It may be noted that no disturbance is
added for this case.

In the second case, a time-varying disturbance is
added to the plant and the trajectory tracking control
performance is shown in Fig. 6. The disturbance con-
sidered is d(t) = 20 sin(2 π t), with all other parame-
ters same as the previous case. The first-order IDC (23)
is able to compensate this time-varying disturbance and
the control ensures a good tracking performance and
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Robust SMC for a class of nonlinear systems using IDC 1931

disturbance rejection as seen in Fig. 6a. The plot of ẽ
which is the difference between e and ê is also sinu-
soidal but bounded.

The choice of sliding surface ensures that the mag-
nitude of control is within limits. The same can be
observed from Figs. 5b and 6b for both the cases.
The sliding variable (σ ) and estimation error (ẽ) are
bounded for both the cases as seen in Figs. 5c, d and
6c, d. The sinusoidal variation in the plot of σ in Fig. 6c
is expected because the disturbance d(t) has sinusoidal
components in it.

The bounds can be lowered using a smaller value of
τ as seen in Fig. 7. The estimation error (ẽ) and sliding
variable (σ ) are bounded and the same is shown for a
longer simulation time of 25 s in Fig. 8. The accuracy
of estimation is further improved using a second-order
filter. The bounds on estimation error (ẽ) and sliding
variable (σ ) are further lowered by using a second-
order filter as seen in the comparative results shown in
Fig. 8a, b, c, d.

8 Conclusion

In this paper, a robust sliding mode control strategy
using IDC is extended to uncertain nonlinear system
with nonlinearity in the plant as well as input vector
and subjected to time-varying disturbance. The pro-
posed control enforces sliding without using the dis-
continuous control and without requiring the knowl-
edge of uncertainties or their bounds. The IDC is
able to compensate significant uncertainties as well
as fast disturbances. The paper proposes an approach
for improving the accuracy of estimation to cover a
large class of disturbances. It is proved that the ulti-
mate boundedness of uncertainty estimation error and
sliding variable is guaranteed, and the bounds can
be lowered by appropriate choice of design parame-
ters. The accuracy of estimation is improved using a
second-order filter. The theoretically expected results
are verified by computer simulation in MATLAB-
SIMULINK environment. The efficacy of the design is
also confirmed on an application to inverted pendulum
system.
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