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Abstract Nonlinear dynamical systems often have
multiple stable states and thus can harbor coexist-
ing and hidden attractors that may pose an incon-
venience or even hazard in practical applications.
Amplitude control provides one method to detect these
coexisting attractors, and it explains the unpredictable
and irreproducible behavior that sometimes occurs
in carefully engineered systems. In this paper, two
regimes of amplitude control are described to illus-
trate the method for detecting multistability and possi-
ble coexisting or hidden attractors.
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1 Introduction

For their potential application or hazards, chaotic sys-
tems and their synchronization have evoked great inter-
est [1–6]. Especially, multistability with coexisting
attractors in nonlinear dynamics and laser engineer-
ing [7–15] has attracted renewed attention because the
presence of coexisting attractors may have serious tech-
nological implications and pose risks in applications
and in amplitude control. Moreover, many dynamical
systems have multiple coexisting attractors even with-
out equilibria, where the attractors are hidden rather
than self-excited [16,17] and whose basins of attrac-
tion do not contain neighborhoods of any equilibria.

The amplitude of oscillation in a dynamical sys-
tem can often be controlled by changing the coef-
ficient of one or more terms in the equations that
describe the behavior without otherwise altering the
characteristics of the oscillation such as its power spec-
tral density and Lyapunov exponents [18–21]. In total
amplitude control, all of the variables are simultane-
ously and proportionally controlled, whereas in partial
amplitude control, only some are changed while the
others are unaffected [22]. This method is often used
in electrical circuit implementations to avoid saturating
the amplifiers.

Amplitude control can be hindered by the existence
of multistability, but it also provides a possible method
to detect coexisting attractors, including hidden attrac-
tors. Even though Leonov et al. [16,17] used a special
analytical–numerical algorithm to detect and localize
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the hidden attractors of Chua’s circuit, it is still impor-
tant to develop other effective methods to detect coex-
isting and hidden attractors. In this paper, we apply
amplitude control and use a calculation of the Lyapunov
exponents to give an indication of existence of multi-
ple attractors. The method is also suitable for systems
with no or stable equilibrium points, where all attractors
are hidden. In Sect. 2, the basic method is described.
Section 3 gives several examples of the method using
both total and partial amplitude control. In Sect. 4, the
advantages and limitations of the method are discussed
along with future prospects.

2 Principle of amplitude control for detecting
coexisting attractors

Amplitude control makes the attractor larger or smaller
by changing the scale of some or all of the variables,
and so it does not change the dynamical and topologi-
cal properties of the attractor. However, if a system has
multiple coexisting attractors, it is usually necessary to
scale the initial conditions to remain within the desired
basin of attraction. Otherwise, very different dynam-
ical behaviors may occur for different settings of the
amplitude control, which is an advantage if the goal is
to identify coexisting attractors.

In general, these attractors may have very differ-
ent dynamics including stable equilibria, periodicity,
quasi-periodicity, chaos, and hyperchaos. A powerful
method for identifying and quantifying the dynamic is
the spectrum of Lyapunov exponents, whose number is
equal to the number of dynamical variables and that are
usually ordered from the largest (most positive) to the
smallest (most negative). Consider a two-dimensional
space of the largest two Lyapunov exponents λ1 and
λ2 as shown in Fig. 1. From the definition, the expo-
nents lie on or below the 45-degree line with stable
equilibria (SE) in the lower left quadrant, limit cycles
(LC) along the negative λ2-axis, toruses (T) at the ori-
gin, chaotic attractors along the positive λ1-axis, and
hyperchaotic attractors in the upper right quadrant. If
a dynamical system has coexisting attractors, they will
usually have different values of one or both of their two
largest Lyapunov exponents. Therefore, a scatter plot in
the plane for different initial conditions will show clus-
ters of points corresponding to the different coexisting
attractors and will identify their types.

Similarly, for a given initial condition, different set-
tings of the amplitude control will generally cause the

Fig. 1 Dynamical behaviors indicated by the two largest Lya-
punov exponents

system to visit the basins of most if not all of the attrac-
tors, especially if the basin boundaries are fractal [7–9]
which is common in nonlinear dynamical systems that
are multistable. However, for some dynamical systems,
the attracting basin is simple or symmetrical according
to some axis or original point, and so an appropriate ini-
tial condition must be chosen to increase the likelihood
of visiting all the basins as the amplitude is adjusted.
The amplitude control can be thought of as taking a
particular straight-line path through the space of initial
conditions.

3 Finding coexisting attractors by amplitude
control

3.1 Simple amplitude control

When we speak of an amplitude control we mean that
the variables are controlled in proportion to another,
and we do not consider cases in which variables
are independently controlled. Amplitude control can
be either partial (PAC) or total (TAC) depending on
whether some or all of the dynamic variables are
controlled. In an n-dimensional chaotic system, PAC
means that anywhere from one to n – 1 of the state
space variables are controlled, whereas TAC means all
n of the variables are controlled.

Several chaotic systems based on absolute-value
nonlinearities and with invariant Lyapunov exponents
[18–20] have been studied, in which a constant (time-
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independent) term in the equation determines the
amplitude. In fact, such a constant is necessary in any
system that contains only absolute-value nonlinearities
since there would otherwise be nothing to determine
the amplitude scale, and thus no attractor could exist.
Therefore, the constant term is an amplitude parameter,
which could realize TAC, and the amplitude parameter
can be implemented electronically with an adjustable
DC power supply.

Most model chaotic systems assume polynomial
nonlinearities. Suppose there are four groups of state
variable vectors, X, Y, U and W. X=(x1, x2, . . ., xl1)

T,

Y = (y1, y2, . . ., yl2)
T, U = (u1, u2, . . ., ul1)

T, W =
(w1, w2, . . ., wl2)

T. There is no coupling or mix-
ing of the linear terms between X and Y. D is
a constant vector, D = (d1, d2, . . ., dl2), p and q
are the index vectors associated with the state vari-
able vector of the corresponding dimension, p =
(p1, p2, . . ., pl1), q = (q1, q2, . . ., ql2), pi � 0(i =
1, 2, . . ., l1), q j � 0( j = 1, 2, . . ., l2), pi and q j

are integers. ||p||1, ||q||1 mean a vector of unit norm.
r � 2, n � 2, n � r, r is the highest index
of the nonlinear term, n is another positive integer
representing the index of the nonlinear term of X.
Then the polynomial nonlinearity can be written as
gp,q(X, Y) = ck[p,q]x

p1
1 x p2

2 · · · x
pl1
l1

yq1
1 yq2

2 · · · y
ql2
l2

, k =
1, 2, . . ., l1, l1 + 1, l1 + 2, . . ., l1 + l2, where ck[p,q] is
the coefficient of each term in the dimension k.

Theorem 1 Suppose a differential equation of a chao-
tic system without a constant term can be expressed as

Ẋ =
∑

||p||1=1

gp(X) +
∑

||p||1=r

gp(X). (1)

Then the system (2) can realize TAC by a unified para-
meter introduction in all of the nonlinear coefficients,
and all variables in the vector X can be controlled to
be f

−1
r−1 of the original scale.

U̇ =
∑

||p||1=1

gp(U) + f
∑

||p||1=r

gp(U), (2)

where U = f
−1

r−1 X, f �= 0, and the new introduced
coefficient parameter f is an amplitude parameter for
TAC.

Proof 1 Substitute U = f
−1

r−1 X into Eq. (2) as follows,

f
−1

r−1 Ẋ=
∑

||p||1=1

f
−1

r−1 gp(X)+ f
∑

||p||1=r

( f
−1

r−1 )r gp(X)

(3)

After simplification, Eq. (3) turns into Eq. (1). This con-
trol mode is called TAC mode because all the variables
in the chaotic system of with polynomial nonlinearity
can be controlled by introducing a unified coefficient
in each nonlinear term. ��
Theorem 2 Suppose a differential equation of a chaotic
system can be expressed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = ∑
||p||1=1,||q||1=0

gp,q(X, Y)

+ ∑
||p||1=1,||p||1+||q||1=r

gp,q(X, Y),

Ẏ = ∑
||p||1=0,||q||1=1

gp,q(X, Y)

+ ∑
||p||1=n,||p||1+||q||1=r

gp,q(X, Y) + D.

(4)

Then the system (5) can realize PAC by a unified para-
meter introduction in some of the nonlinear coefficients,
and the amplitude of the variable vector X can be
controlled to be 1/ n

√
f of the original scale, while the

amplitude of the variable vector Y remains constant.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U̇ = ∑
||p||1=1,||q||1=0

gp,q(U, W)

+ ∑
||p||1=1,||p||1+||q||1=r

gp,q(U, W),

Ẇ = ∑
||p||1=0,||q||1=1

gp,q(U, W)

+ f
∑

||p||1=n,||p||1+||q||1=r
gp,q(U, W) + D,

(5)

where U = X/ n
√

f , W = Y, and the new introduced
coefficient parameter f ( f > 0) is an amplitude para-
meter for PAC.

Proof 2 Substitute U = X/ n
√

f , W = Y into Eq. (5)
as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n√ f

Ẋ = ∑
||p||1=1,||q||1=0

1
n√ f

gp,q(X, Y)

+ ∑
||p||1=1,||p||1+||q||1=r

1
n√ f

gp,q(X, Y),

Ẏ = ∑
||p||1=0,||q||1=1

gp,q(X, Y)

+ f
∑

||p||1=n,||p||1+||q||1=r
( 1

n√ f
)ngp,q(X, Y) + D

(6)

After simplification, Eq. (6) becomes Eq. (4). This con-
trol mode is called PAC mode because the amplitude
of the variables in the vector X is controlled by the
introduced coefficients while the other variables in the
vector Y remain unchanged. ��
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Fig. 2 Lyapunov exponent
spectrum for system (8) and
its distribution for initial
conditions (0, 1, 0)

Fig. 3 Lyapunov exponent
spectrum for system (8) and
its distribution for initial
conditions (0, 0, 0)

In short, for a specific chaotic system, we can use
variable substitution to realize TAC or PAC, where the
variables can be controlled in proportion at the same
desired rate.

3.2 Examples of amplitude control with indication of
coexisting attractors

3.2.1 Total amplitude control (TAC)

As a first example, we choose a system proposed in [7]
given by
⎧
⎨

⎩

ẋ = yz + a,

ẏ = x2 − y,

ż = 1 − 4x,

(7)

that for a = 0.01 has three coexisting attractors: a sta-
ble equilibrium, a limit cycle, and a strange attractor. To
achieve total amplitude control, we introduce a control

parameter c in the constant and quadratic terms accord-
ing to
⎧
⎨

⎩

ẋ = 1
c yz + ca,

ẏ = 1
c x2 − y,

ż = c − 4x,

(8)

Since a transformation x = cu, y = cv, z = cw of
Eq. (8) leads directly to Eq. (7), the parameter c pro-
portionally controls the amplitude of variables x , y and
z according to c.

With fixed initial conditions of (0, 1, 0), variation of
c in the range [−2, 2] causes the Lyapunov exponents
to change as shown in Fig. 2 as the system transitions
between the three different dynamics as confirmed by
the corresponding clusters of points in the space of Lya-
punov exponents.

To illustrate an inappropriate choice of initial condi-
tions, consider the case (0, 0, 0) which gives the behav-
ior shown in Fig. 3 for which the only observed attractor
is the chaotic one. This selected initial condition does
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Fig. 4 Lyapunov exponent
spectrum for system (9) and
its distribution for initial
conditions (0, 1, 0)

Fig. 5 Lyapunov exponent
spectrum for system (10)
and its distribution for
initial conditions (1, 1, 0)

not pass through all the basins of attraction, and thus
it is a blind spot for coexisting attractors. For systems
with symmetries, it is necessary to avoid initial condi-
tion along the axis (or axes) of symmetry.

3.2.2 Partial amplitude control (PAC)

For a three-dimensional chaotic system, partial ampli-
tude control can be one-dimensional or two-dimen-
sional. If x = u, y = cv, z = w, the resulting
one-dimensional control system from Eq. (9) is iden-
tical to (7), which indicates that the variable y is
controlled according to the parameter c, while the
amplitude of the variables x and z remains unchanged.
The resulting system is
⎧
⎨

⎩

ẋ = 1
c yz + a,

ẏ = cx2 − y,

ż = 1 − 4x,

(9)

and the result of varying c over the range [−2, 2] for
initial conditions (0, 1, 0) is shown in Fig. 4.

For an example of two-dimensional partial ampli-
tude control, let x = cu, y = cv, z = w. The resulting
control system from Eq. (10) is identical to (7), and thus
the parameter c controls the amplitude of variables x
and y according to c, while the amplitude of z remains
unchanged. The resulting system is
⎧
⎨

⎩

ẋ = yz + ca,

ẏ = x2

c − y,

ż = 1 − 4 x
c ,

(10)

and the result of varying c over the range [−2, 2] for ini-
tial conditions (1, 1, 0) is shown in Fig. 5. Both cases of
partial amplitude control pass through all three basins
of attraction and thus correctly identify all dynamics of
the system.

4 Discussion and conclusion

Amplitude control with fixed initial conditions pro-
vides a tool for identifying coexisting attractors in a
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dynamical system that may be more convenient in a
practical application than exploring all possible initial
conditions. It also provides an explanation for why a
system may exhibit different dynamical behaviors for
different settings of an amplitude control adjustment
even when the system is started with the same initial
conditions.

However, this method has some disadvantages. The
Lyapunov exponent calculation typically converges
more slowly than other measures such as the location
and size of the attractor, especially the second largest
Lyapunov exponent. Furthermore, it cannot easily dis-
tinguish two symmetrical attractors with the same Lya-
punov exponent spectra, which is common in systems
with symmetries. In such a case, the method can be used
with whatever measure is deemed most appropriate for
the system under consideration, or a combination of
measures could be used.

Even though this phenomenon has practical con-
sequences in that it might render the prediction of a
system’s behavior difficult, it is still an easy way to
find multiple stabilities in dynamical systems. In gen-
eral, when the amplitude parameter varies in a range
to control the size of the attractors, dynamical systems
will often, but not always, pass though the different
attracting basins. Thus, the method of amplitude con-
trol opens up interesting possibilities in the identifica-
tion and study of multistability with coexisting attrac-
tors, including coexisting hidden attractors.
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