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Abstract The vibrational power flow characteristics
of a two-degree-of-freedom system are investigated
to examine the performance of nonlinear absorbers in
vibration attenuation of nonlinear primary oscillators.
The nonlinearities in the oscillator and those in the
absorber are both characterised by cubic restoring and
damping forces. Both analytical approximations and
numerical integrations are used to obtain time-averaged
power flow variables, as well as kinetic energies of the
system. Power absorption ratio and the kinetic energy
of the nonlinear oscillator are proposed to quantita-
tively evaluate the effectiveness of nonlinear absorbers
with respect to the existing nonlinearities in the oscil-
lator. Comparing with linear absorbers, it is found that
softening (hardening) stiffness absorber provides ben-
efits for vibration mitigation of a hardening (softening)
stiffness primary oscillator by enhancing power absorp-
tion efficiency and reducing the kinetic energy of the
oscillator so that the functioning frequency range of the
absorber can be enlarged. Nonlinear cubic damping in
the absorber is shown beneficial for vibration suppres-
sion as the power absorption ratio becomes large at
resonance frequencies so that the peak power flow and
kinetic energy levels are reduced. The developed model
can be conveniently extended to study other types of
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nonlinearities in the absorber/oscillator. Conclusions
and suggestions are provided for applications.
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1 Introduction

Linear dynamic vibration absorbers (DVAs) are widely
used for suppressing excessive vibrations of linear pri-
mary structures. The design concept was originally
reported about a century ago by Frahm [1] who added
an undamped linear attachment to a conservative lin-
ear oscillator to suppress its vibrations. Mathematical
treatments were later provided to a vibration absorp-
tion system with consideration of weak damping in the
absorber as an energy dissipation mechanism [2,3]. It
was shown that if the natural frequency of the absorber
was tuned to that of the linear oscillator, effective atten-
uations of its vibrations can be achieved, when the exci-
tation frequency is the same as the natural frequency.
Since then, different optimisation criteria have been
proposed for optimal designs of absorbers by varying
the stiffness and/or damping parameters. For instance,
the classical approach by Omondroyd and Den Hartog
[2] optimised the damping ratio of the absorber so that
the two peak values in the displacement response curves
of the coupled system were the same and the deriva-
tives at the peaks vanished. On the other hand, much
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research has also been undertaken on the applications
of linear absorbers to passive vibration control of more
complicated linear systems. For example, Snowdon [4]
attached DVAs to simply supported plate structures
to suppress their vibrations and investigated optimum
conditions of tuning and damping. Ozer and Royston
[5] extended Den Hartog’s design approach of invari-
ant points to determine optimal damping of vibration
absorbers for undamped multiple degree-of-freedom
(DOF) systems. However, one deficiency often con-
fining the applications of linear vibration absorbers is
that they are only effective in a relatively narrow band
of excitation frequencies.

To broaden the working frequency range of linear
vibration absorbers, the feasibility of employing non-
linear absorbers for linear dynamical systems has been
explored. Early studies of these were conducted by
Roberson [6], Pipes [7] and Arnold [8], who consid-
ered undamped nonlinear absorbers with stiffness non-
linearities and suggested that softening stiffness would
be beneficial in vibration suppression. Hunt and Nissen
[9] proposed practical softening-type absorbers with
linear viscous damping and showed that they can be
used to double the frequency bandwidth for effective
vibration absorption. Rice [10] examined the stabilities
of a nonlinear stiffness absorber and showed a possi-
ble existence of unstable periodic solutions near the
tuning frequency. Jordanov and Cheshankov [11] pro-
posed an efficient numerical method for minimisation
of the vibration response to obtain the optimal para-
meters for both linear and nonlinear dynamic vibration
absorbers.

It should be noted that many dynamical systems
encountered in engineering practice are inherently non-
linear and significant nonlinearity has been observed in
many applications. For example, intrinsic nonlineari-
ties in suspensions bridges can lead to large-amplitude
periodic oscillation, as well as significant travelling
waves [12]. The mounts for hydraulic engine used
in automobiles possess nonlinearity in both damping
and stiffness [13]. As such systems can exhibit com-
plex nonlinear phenomena such as modal interaction,
bifurcation, chaos, successful application of DVAs to
reduce their vibrations is still challenging task and has
attracted increasing attention of many researchers. Nat-
siavas [14] examined the steady-state responses of a
system with a nonlinear absorber as well as a nonlin-
ear primary structure and showed that stiffness non-
linearity can assist vibration absorption by suppress-

ing response peaks. Bosnel et al. [15] showed exper-
imentally that a linear dynamical absorber may be
used to suppress primary or super/sub- harmonic res-
onances of a piece-wise linear beam. Jo and Yabuno
[16] devised a pendulum absorber for vibration absorp-
tion of a main system subjected to a nonlinear restor-
ing force and experimentally verified its efficiency.
Based on the frequency energy dependence character-
istics of nonlinear systems, Viguié and Kerschen [17]
proposed a qualitative tuning approach of nonlinear
dynamic absorbers to reduce the impulsive response
of nonlinear oscillators. Ji and Zhang [18] used a lin-
ear absorber to reduce the primary resonance vibra-
tions as well as to eliminate saddle-node bifurcation
and jump phenomenon of a nonlinear structure. Using
the saturation phenomenon, Oueini et al. [19] designed
and analysed a nonlinear active vibration absorber for
flexible structures with quadratic nonlinearities and
showed that the absorber was effective, when the pri-
mary structure was excited near its resonances. Febbo
and Machado [20] investigated the performance of a
nonlinear absorber with a finite extensibility nonlin-
ear elastic potential and showed that vibration absorp-
tion can be achieved over a large excitation frequency
range.

In previous investigations of nonlinear DVAs, how-
ever, the displacement response of the primary struc-
ture was often used to assess vibration absorption
performance. The associated vibrational power flow
behaviour of the system is usually ignored. The vibra-
tional power flow analysis approach provides a valuable
tool to characterise the dynamic behaviour of com-
plex systems, incorporating the effects of force and
velocity, as well as their relative phase angle in a sin-
gle quantity [21]. It has been developed to study lin-
ear passive/active vibration control systems [22–27].
Recently, Zilletti et al. [28] used the kinetic energy
of the primary system and the time-averaged absorbed
power as optimisation objectives of a linear dynamic
absorber attached to a linear oscillator.

There is also a growing interest in vibrational power
flow behaviour of nonlinear dynamical systems. For
example, Royston and Singh [29] examined the energy
flow in a hydraulic engine mount system and showed
that significant amount of vibration energy can be trans-
mitted through a nonlinear path to a flexible base. Xing
and Price [30] provided a generalised mathematical
model based on a substructure method to analyse the
power flows in linear continuous systems connected
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by nonlinear springs and dampers. Xiong et al. [31]
examined an integrated system of a machine, a non-
linear isolator and a flexible beam-like ship excited by
sea waves. The results showed that the time-averaged
power flow spectra were significantly affected by the
isolator nonlinearities when the excitation frequency
was close to resonant frequencies. Vakakis et al. [32]
discovered the phenomenon of targeted energy trans-
fer, based on which nonlinear attachment can be used
to channel and dissipate the vibration energy of a main
structure. Xiong and Cao [33] investigated the power
flow characteristics of a two-degrees-of-freedom sys-
tem with a nonlinear stiffness absorber and a linear
primary structure. Yang et al. [34,35] developed power
flow analysis (PFA) approaches for nonlinear dynam-
ical systems, re-examined typical nonlinear systems
from the power flow perspective, and demonstrated the
applications of PFA to vibration control and vibration
energy harvesting systems. It was found that as the aver-
aging time increases, the time-averaged power flow of
a chaotic response tends to an asymptotic value insen-
sitive to the initial conditions [36]. Therefore, it pro-
vides an indicator to quantify both periodic and chaotic
responses, and allows comparisons of the associated
vibration levels.

For better designs and applications of nonlinear
dynamic absorbers, a comprehensive study of the
power flow characteristics of a nonlinear vibration
absorption system is necessary. In particular, the per-
formance of nonlinear absorbers is of interest when
different types of damping and stiffness nonlinearities
exist in the primary oscillator. In this paper, we seek to
address the issue by analytical and numerical methods
to reveal vibration power input, transmission, dissipa-
tion and absorption in such a system. The influences
of different combinations of damping/stiffness nonlin-
earities in a vibrating oscillator and in the absorber
on the power flow behaviour of the integrated system
will be examined. Cubic restoring and damping forces
are considered in the oscillator and the absorber. The
former is a typical model for nonlinear stiffness, with
the same form as the well-known Duffing oscillator.
The latter has been used to account for nonlinear vis-
cous damping effects. However, the analysis method-
ology developed in the paper can be easily extended
to other types of nonlinearities represented by polyno-
mial or trigonometric functions. Following a descrip-
tion of the mathematical model of the system, the solu-
tion procedures for power flows quantities are outlined.

The method of averaging is used to obtain analytical
approximations of system responses and to formulate
power flow variables. At the same time, direct numer-
ical integrations are also conducted to verify the ana-
lytical results. Power- and energy-based performance
indices are introduced and used to evaluate the dynamic
performance of the nonlinear absorber. At the end of
this paper, conclusions and some suggestions for appli-
cations are provided.

2 Mathematical modelling

Figure 1 provides a schematic representation of a two
degree-of-freedom (DOF) vibration absorption system,
in which a vibrating primary structure, subject to a
harmonic excitation with amplitude f and frequency
ω, is modelled by a single DOF system consisting of
a mass m1, a nonlinear spring with restoring force
F(x1) and a nonlinear damper with damping force
G1(ẋ1). To suppress its vibration, a light-weight mass
m2 is attached to the main structure through a nonlinear
spring with restoring force F2(δ) and a nonlinear vis-
cous damper with damping force G2(δ̇). It is assumed
that the masses only have vertical displacement and
their static equilibrium positions where the dynamic
deflections x1 = x2 = 0 are taken as the reference.
The relationships between the restoring and the damp-
ing forces and the corresponding dynamic deflections
of the nonlinear springs and dampers are described by

G1(ẋ1) = c11 ẋ1 + c12 ẋ3
1 , (1a)

F1(x1) = k11x1 + k12x3
1 , (1b)

Fig. 1 A schematic model of the system
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G2(δ̇1) = c21δ̇ + c22δ̇
3, (1c)

F2(δ) = k21δ1 + k22δ
3
1, (1d)

respectively, where δ = x2 −x1 is the relative displace-
ment of mass m2 with respect to mass m1, c11 and c21

are linear damping parameters, c12 and c22 are the non-
linear damping parameters, k11 and k21 are the linear
stiffness parameters, k12 and k22 are nonlinear stiffness
parameters of which zero, positive and negative values
correspond to linear, hardening and softening springs,
respectively.

The governing equations of motion of the system are
obtained as

m1 ẍ1 + G1(ẋ1) + F1(x1) − G2(δ̇1) − F2(δ)

= f cos ωt, (2a)

m2 ẍ2 + G2(δ̇1) + F2(δ) = 0. (2b)

To simplify these equations, the following non-dimen-
sional parameters are introduced

x0 = m1g

k11
, μ = m2

m1
, ω1 =

√
k11

m1
, ω2 =

√
k21

m2
,

γ = ω2

ω1
, Ω = ω

ω1
, ξ1 = c11

2m1ω1
, ξ2 = c21

2m2ω2
,

η = k12

k11
x2

0 , ε = k22

k21
x2

0 , λ = c12

c11
ω2

1x2
0 ,

ρ = c22

c21
ω2

1x2
0 , f0 = f

k11x0
, y = δ

x0
, x = x1

x0
,

τ = ω1t,

where x0 is the reference displacement, μ is the mass
ratio, ω1 and ω2 are the linearized natural frequency
of the oscillator and that of the absorber, respectively,
γ is the natural frequency ratio, and Ω is the non-
dimensional excitation frequency, ξ1 and ξ2 are non-
dimensional linear damping coefficients of the oscil-
lator and the absorber, respectively, η and ε are the
non-dimensional nonlinear stiffness coefficients of the
oscillator and the absorber, respectively, λ and ρ are
the non-dimensional nonlinear damping coefficients of
the oscillator and the absorber, respectively, f0 denotes
non-dimensional forcing amplitude, y and x are non-
dimensional displacement of the oscillator mass and
the relative deflection of the absorber, respectively, τ

is the non-dimensional time.

Following these definitions, the governing equations
are written in a non-dimensional form

x ′′ + 2ξ1x ′(1 + λx ′2) + x + ηx3

−μγ (2ξ2 y′(1 + ρy′2)
+γ y + εγ y3) = f0 cos Ωτ, (3a)

μy′′ + μγ (2ξ2 y′(1 + ρy′2) + γ y + εγ y3)

= −μx ′′, (3b)

where the primes denote differentiations with respect
to the non-dimensional time τ .

To facilitate numerical and analytical investigations
of power flow characteristics, equations (3a) and (3b)
are transformed into a set of four first-order differential
equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ′ = z
z′ = f0 cos Ωτ − 2ξ1z(1 + λz2) − x − ηx3

+μγ (2ξ2u(1 + ρu2) + γ y + εγ y3)

y′ = u
u′ = − f0 cos Ωτ + 2ξ1z(1 + λz2) + x + ηx3

−γ (μ + 1)(2ξ2u(1 + ρu2) + γ y + εγ y3).

(4)

For performance assessment of nonlinear dynamic
absorbers using vibrational power flow quantities, it
is essential to solve Eq. (4) so that the influences
of nonlinear parameters on the time-averaged power
flow, as well as kinetic energies of the system can be
obtained. However, when damping or stiffness nonlin-
earities exist, exact analytical solutions of the system
response are not available. As an alternative, analytical
approximations are sought in this paper, allowing eval-
uation of time-averaged power flow variables, as well
as system kinetic energies at a relatively small compu-
tational cost. Direct numerical integrations based on the
fourth-order Runge–Kutta method, although computa-
tionally more expensive, are also employed to reveal
both transient and time-averaged power flow behav-
iours and to verify the analytical results.

3 Analytical approximations

The method of averaging [37] is used herein to derive
a first-order approximation of the relationship between
response amplitudes, phase angles and system parame-
ters. For its implementation, the steady-state responses
of the primary oscillator and the absorber are assumed
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to be harmonic with the same frequency as the excita-
tion, i.e.,

x = a cos(Ωτ + φ), (5a)

x ′ = −aΩ sin(Ωτ + φ), (5b)

y = b cos(Ωτ + θ), (5c)

y′ = −bΩ sin(Ωτ + θ), (5d)

where a and b are the unknown response amplitudes,
while φ and θ are the corresponding phase angles.
Using the assumptions of the averaging method, Eq.
(4) are transformed into

a′ cos(Ωτ + φ) − aφ′ sin(Ωτ + φ) = 0, (6a)

−a′ sin(Ωτ + φ) − aφ′ cos(Ωτ + φ) = f1

Ω
, (6b)

b′ cos(Ωτ + θ) − bθ ′ sin(Ωτ + θ) = 0, (6c)

−b′ sin(Ωτ + θ) − bθ ′ cos(Ωτ + θ) = f2

Ω
, (6d)

where

f1 = a
(
Ω2 − 1 − ηa2 cos2(Ωτ + φ)

)
cos(Ωτ + φ)

+2ξ1aΩ
(
1 + λa2Ω2 sin2(Ωτ + φ)

)
× sin(Ωτ + φ) + f0 cos Ωτ + μγ f3, (7a)

f2 = bΩ2 cos(Ωτ + θ) + a′Ω sin(Ωτ + φ)

+(aΩ2 + aΩφ′) cos(Ωτ + φ) − γ f3, (7b)

f3 = −2ξ2bΩ
(
1 + ρb2Ω2 sin2(Ωτ + θ)

)
× sin(Ωτ + θ) + γ b

(
1 + εb2 cos2(Ωτ + θ)

)
× cos(Ωτ + θ) (7c)

From Eqs. (6), the expressions of the time change rates
of response amplitudes and phase angles are found

a′ = − 1

Ω
f1 sin(Ωτ + φ), (8a)

φ′ = − 1

aΩ
f1 cos(Ωτ + φ), (8b)

b′ = − 1

Ω
f2 sin(Ωτ + θ), (8c)

θ ′ = − 1

bΩ
f2 cos(Ωτ + θ). (8d)

Assuming that the response amplitudes and the
phase angles are slowing-varying variables of time, the
left hand sides of Eqs. (8) can be approximated by their
average values over an excitation cycle, i.e.,

a′ ≈ − 1

2π

2π
Ω∫

0

f1 sin(Ωτ + φ) dτ, (9a)

φ′ ≈ − 1

2πa

2π
Ω∫

0

f1 cos(Ωτ + φ) dτ, (9b)

b′ ≈ − 1

2π

2π
Ω∫

0

f2 sin(Ωτ + θ) dτ, (9c)

θ ′ ≈ − 1

2πb

2π
Ω∫

0

f2 cos(Ωτ + θ) dτ. (9d)

Evaluating the integrations in Eq. (9) with reference to
the previous expressions of f1 and f2, it follows that

a′ = − 1

Ω

( f0

2
sin φ + ξ1aΩ

(
1 + 3

4
λa2Ω2

)

+μγ b
( − ξ2Ω

(
1 + 3

4
ρb2Ω2

)
cos(φ − θ)

+γ

2

(
1 + 3

4
εb2

)
sin(φ − θ)

))
, (10a)

φ′ = − 1

aΩ

( f0

2
cos φ + 1

2
a

(
Ω2 − 1 − 3

4
ηa2

)

+μγ b
(
ξ2Ω

(
1 + 3

4
ρb2Ω2

)
sin(φ − θ)

+γ

2

(
1 + 3

4
εb2

)
cos(φ − θ)

))
, (10b)

b′ = − 1

Ω

(a′Ω
2

cos(φ − θ) − aΩ2 + aΩφ′

2

× sin(φ − θ) + γ ξ2bΩ

(
1 + 3

4
ρb2Ω2

) )
,

(10c)

θ ′ = − 1

bΩ

(bΩ2

2
+ aΩ2 + aΩφ′

2
cos(φ − θ)

+a′Ω
2

sin(φ − θ) − γ 2b

2

(
1 + 3

4
εb2

) )
. (10d)

In the steady-state motion, the response amplitudes and
phase angles remain unchanged, and thus their deriva-
tives will vanish, i.e., a′ = φ′ = b′ = θ ′ = 0. Based
on this, Eq. (10) are simplified into

f0

2
sin φ + ξ1aΩ

(
1 + 3

4
λa2Ω2

)

+μγ b
( − ξ2Ω

(
1 + 3

4
ρb2Ω2

)
cos(φ − θ)
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Fig. 2 Verification of the
derived frequency-response
relations (ξ1 = ξ2 =
0.01, η = 0.01, λ =
0.1, ε = 0.1, ρ = 0.1, μ =
0.1, γ = 1.0, f0 = 0.2).
Lines analytical
approximations, dots:
numerical integration results

(a) (b)

+γ

2

(
1 + 3

4
εb2

)
sin(φ − θ)

) = 0, (11a)

f0

2
cos φ + 1

2
a(Ω2 − 1 − 3

4
ηa2)

+μγ b
(
ξ2Ω

(
1 + 3

4
ρb2Ω2

)
sin(φ − θ)

+γ

2

(
1 + 3

4
εb2

)
cos(φ − θ)

) = 0, (11b)

−aΩ2

2
sin(φ − θ) + γ ξ2bΩ

(
1 + 3

4
ρb2Ω2

)
= 0,

(11c)

aΩ2

2
cos(φ − θ) + bΩ2

2
− γ 2b

2

(
1 + 3

4
εb2

)
= 0.

(11d)

Cancelling out the trigonometric terms with phase
angles in Eqs. (11c) and (11d), we obtain

a2Ω4 = (2γ ξ2bΩ)2
(

1 + 3

4
ρb2Ω2

)2

+b2
(

γ 2 − Ω2 + 3

4
εγ 2b2

)2

. (12)

Eliminating the terms with sin φ, cos φ, sin(φ − θ) or
cos(φ − θ) in Eqs. (11a) and (11b) by Eqs. (11c) and
(11d), we have

f 2
0 a2 = 4Ω2

(
ξ1a2

(
1 + 3

4
λa2Ω2

)

+μγ ξ2b2
(

1 + 3

4
ρb2Ω2

)2 )2

+
(

a2
(

Ω2 + μΩ2 − 1 − 3

4
ηa2

)

+ μb2
(

γ 2 + 3

4
εγ 2b2 − Ω2

))2

. (13)

Thus, the relationship between the steady-state
response amplitudes of the systems and different para-
meters is governed by Eqs. (12) and (13), which are
nonlinear algebraic equations. Note that the unknown
a2 can be expressed in terms of b2 and other parameters
using Eq. (12). A substitution of the resultant expres-
sion to Eq. (13) to replace a2 yields a nonlinear equa-
tion of b2, which can be solved by a bisection algorithm
[38]. The results provide first-order approximations of
the response amplitudes. It can be observed that in these
equations the nonlinear damping parameters λ and ρ

and the nonlinear stiffness parameters ε and η always
appear in the forms of 1 + 3

4λa2Ω2, 1 + 3
4ρb2Ω2,

1 + 3
4ηa2, and 1 + 3

4εb2, respectively. In non-resonant
regions, the values of 3

4λa2Ω2, 3
4ρb2Ω2, 3

4ηa2 and
3
4εb2 may be much smaller than 1. Correspondingly,
the effects of the nonlinear parameters on the response
amplitudes a and b can be expected to be small as they
may be neglected when solving Eqs. (12) and (13).

For a nonlinear system with parameters set as ξ1 =
ξ2 = 0.01, η = 0.01, λ = 0.1, ε = 0.1, ρ = 0.1, μ =
0.1, γ = 1.0, f0 = 0.2, Fig. 2 compares the fourth-
order Runge-Kutta numerical integration results of the
response amplitudes with those obtained using the
averaging approximations. A good agreement of the
results is shown, which verifies the averaging formu-
lations. It shows some inherently nonlinear behaviour,
i.e., the response amplitudes of the nonlinear system
may become multi-valued at a single frequency and the
peaks of the curves bent to the high frequencies. The
corresponding power flow behaviour will be examined
and shown in the following text.

As shown in Fig. 2, at some excitation frequencies,
there may be more than one solution to Eqs. (12) and
(13), i.e., non-unique steady-state responses may be
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encountered. In this situation, it is useful to perform
stability analysis of the solutions as only the stable ones
are physically realisable and generally of more interest
to engineering applications [37]. For clarity, Eqs. (10)
are rewritten as

a′ = u′
1 = g1(a, φ, b, θ), (14a)

φ′ = u′
2 = g2(a, φ, b, θ), (14b)

b′ = u′
3 = g3(a, φ, b, θ), (14c)

θ ′ = u′
4 = g4(a, φ, b, θ), (14d)

where the detailed expressions for gi (i = 1, 2, 3, 4)

can be obtained from Eq. (10). The corresponding char-
acteristic matrix of a solution (as, φs, bs, θs) to the
frequency-response relations (12) and (13) is

A =

⎛
⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎠ , (15)

where ai j = ∂gi
∂u j

, (i, j = 1, 2, 3, 4) of which the

detailed expressions are omitted here. In the derivation,
the property that for any solution point (as, φs, bs, θs),
gi = 0(i = 1, 2, 3, 4), may be used. The stability of
a solution can then be identified by examining the cor-
responding eigenvalues of the matrix A. If the eigen-
values all have negative real part, the solution will be
stable. On the other hand, if one of the eigenvalues of A
is with a positive real part, the corresponding solution
becomes unstable.

4 Power flow analysis

To assess the vibration absorption performance, the
effects of the stiffness, as well as damping nonlineari-
ties in the primary structure, as well as in the absorber
on the vibration power generation, dissipation, trans-
mission and absorption should be clarified. In the fol-
lowing content, power flow variables, as well as the
maximum kinetic energies of the masses will be for-
mulated analytically using the previously derived aver-
aging results.

4.1 Input power

The non-dimensional instantaneous input power into
the system is the product of the excitation with the cor-

responding velocity. In this system, there is only one
excitation acting on mass m1, so that we have

pin = f0v1 cos Ωτ, (16)

where v1 is instantaneous velocity of the primary struc-
ture. When a first-order harmonic response is assumed,
we have v1 = x ′ = −aΩ sin(Ωτ + φ). Consequently,
the time-averaged input power is formulated by

p̄in(Ω) = 1

T

T∫
0

pin dτ ≈ − f0aΩ

2
sin φ, (17)

where the averaging time T was taken as 2π
Ω

, i.e., a
cycle of the excitation. By replacing the trigonometric
function sin φ in (17) using the relations in Eq. (11)
and further simplifying, the approximate expression of
time-averaged input power (TAIP) is derived as

p̄in(Ω) = ξ1a2Ω2
(

1 + 3

4
λa2Ω2

)

+μγ ξ2b2Ω2
(

1 + 3

4
ρb2Ω2

)
. (18)

4.2 Transmitted power

It is useful to clarify vibration energy transmission
paths in the system. The power injected by the external
excitation is partly transmitted downwards and dissi-
pated by the nonlinear damper in the primary structure,
while the rest is transmitted upwards through the non-
linear spring and nonlinear damper of the absorber to
mass m2. The instantaneous power transmitted to mass
m2 is the product of the force acting upon it with the
corresponding velocity, i.e.,

pt = ftv2, (19)

where ft = μγ (2ξ2 y′ + γ y + εγ y3) is the transmitted
force and v2 = x ′ + y′ is the velocity of mass m2. The
time-averaged transmitted power to mass m2 over an
excitation cycle is formulated by

p̄t (Ω) = 1

T

T∫
0

pt dτ. (20)

Replacing the variables in the expressions of ft and
v2 with their first-order analytical approximations and
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completing the integration in Eq. (20), it follows
that

p̄t (Ω) = μγ
(
ξ2bΩ2(a cos(φ−θ) + b

) (
1 + 3

4
ρb2Ω2

)

− γ abΩ

2

(
1 + 3

4
εb2

)
sin(φ − θ)

)
. (21)

Using the relationship described in Eq. (11) to eliminate
the trigonometric functions in Eq. (21), it can be shown
that

p̄t (Ω) = 0. (22)

This expression shows that there will be no net vibra-
tion energy transmission to mass m2 over a period of
motion. This is reasonable as the mass is considered
as a rigid body with no internal damping so that over
an oscillation cycle, the change in its kinetic energy
will vanish. Consequently, the time-averaged transmit-
ted power into mass m2 will be zero.

4.3 Dissipated power

The dissipated power refers to the rate change of vibra-
tion energy that turned into heat by damping. For the
system under investigation, the total instantaneous dis-
sipated power is

pd = fd1x ′ + fd2 y′, (23)

where fd1 = 2ξ1x ′ and fd2 = 2μγ ξ2 y′ are the damp-
ing force of the damper in the absorber and that in the
primary structure, respectively. The first term in Eq.
(23) represents power dissipated by the primary struc-
ture, while the second denotes power dissipated by the
absorber. The time-averaged dissipated power over an
excitation cycle is

p̄d(Ω) = 1

T

T∫
0

pd dτ. (24)

By replacing velocities x ′ and y′ with their first-order
expressions described by Eqs. (5b) and (5d), the instan-
taneous dissipated power can be expressed in a first-
order form, using which to complete the integration in
Eq. (24) leads to

p̄d(Ω) = ξ1a2Ω2
(

1 + 3

4
λa2Ω2

)

+μγ ξ2b2Ω2
(

1 + 3

4
ρb2Ω2

)
. (25)

Comparing the Eq. (25) with Eq. (18), it can be clearly
seen that the expressions for p̄in and p̄d are exactly the
same. This is in accordance with the principle of power
balance, i.e., over a cycle of oscillation, there will be no
net changes in the kinetic and potential energies of the
system, and the input energy by the external excitation
is all dissipated by damping.

4.4 Absorbed power

The instantaneous power absorbed by the nonlinear
absorber equals the power dissipated by its damper,
and thus can be expressed by

pa = fd2 y′. (26)

The time-averaged absorbed power over a cycle of
oscillation is

p̄a(Ω) = 1

T

T∫
0

pa dτ ≈μγ ξ2b2Ω2
(

1+ 3

4
ρb2Ω2

)
.

(27)

where analytical approximations of fd2 and y′ were
used in the evaluation of the integration.

4.5 Kinetic energies

In the applications of vibration control devices, the
squared values of velocity amplitudes or the kinetic
energy of a structure are often used as cost functions to
measure the control effectiveness [27]. For the current
system in the steady-state motion, the non-dimensional
maximum kinetic energy K1 of mass m1 is encountered
when it has the maximum velocity

K1 = 1

2
(|v1|max)

2 ≈ 1

2
a2Ω2, (28)

where a first-order approximation of the velocity
v1 = −aΩ sin(Ωτ + φ) is used so that its amplitude
|v1|max = aΩ . Also, the non-dimensional mass of m1

is used. Similarly, by Eqs. (5b) and (5d), the velocity
of the nonlinear absorber mass m2 is expressed as

v2 = x ′ + y′ =−aΩ sin(Ωτ + φ) − bΩ sin(Ωτ + θ),

(29)

with the its amplitude being
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|v2|max = Ω
√

(a2 + b2) + 2ab cos(φ − θ). (30)

Using Eq. (11d) to replace the cosine function in Eq.
(30) and simplifying, the non-dimensional maximum
kinetic energy of mass m2 is found to be

K2 = 1

2
μ(|v2|max)

2 = 1

2
μ(a2 − b2)Ω2

+μγ 2b2
(

1 + 3

4
εb2

)
. (31)

where μ denotes the non-dimensional mass of the pri-
mary oscillator.

4.6 Vibration absorption performance

Here we introduce vibration power- and energy-based
variables to assess the performance of nonlinear dyna-
mic vibration absorbers. Note that for the nonlinear
primary oscillator without adding the absorber, the
frequency-response relation is obtained by setting μ =
0 in Eq. (13):

f 2
0 = 4ξ2

1 a2
0Ω2

(
1 + 3

4
λa2

0Ω2
)

+a2
0

(
Ω2 − 1 − 3

4
ηa2

)
(32)

where a0 represents the response amplitude of the
structure without attaching the absorber. Correspond-
ingly, the time-averaged input power and the maximum
kinetic energy are

p̄in(Ω) ≈ ξ1a2Ω2
(

1 + 3

4
λa2

0Ω2
)

. (33a)

K pri ≈ 1

2
a2

0Ω2, (33b)

respectively. The performance of the absorber may be
assessed by comparing the kinetic energy of the pri-
mary structure with and without adding the absorber
and also the amount of time-averaged input power
before and after attaching the absorber.

In order to compare the vibration attenuation effi-
ciency of nonlinear absorbers with that of their linear
counterparts, power absorption ratio may be defined
as the ratio of the amount of time-averaged absorbed
power and the time-averaged input power, i.e.,

Ra = μγ ξ2b2Ω2
(
1 + 3

4 ρb2Ω2
)

ξ1a2Ω2
(
1 + 3

4 λa2Ω2
) + μγ ξ2b2Ω2

(
1 + 3

4 ρb2Ω2
) .

(34)

Clearly, to enhance the performance of vibration
absorbers, a large power absorption ratio is preferable.

5 Results and discussions

In this section, case studies are conducted to examine
the performance of linear/nonlinear absorbers attached
to linear/nonlinear primary oscillators. As stated previ-
ously, the response of the system is obtained from both
analytical approximations using the averaging method
and numerical integrations based on a fourth-order
Runge-Kutta method. The non-dimensional values of
power flow variables are obtained and are shown in
the following figures in a decibel scale with a non-
dimensional reference level of 10−12. In the follow-
ing figures, the lines denote analytical approxima-
tions, whereas the symbols represent numerical inte-
gration results. A relatively light absorber of mass ratio
μ = 0.1 is used in all the cases. Heavier absorber can
be employed for enhancing vibration suppression per-
formance, but in engineering design, there is usually a
limit on the acceptable weight penalty which needs to
be taken into consideration.

5.1 A nonlinear stiffness absorber attached to a linear
oscillator (ε �= 0, ρ = η = λ = 0)

Here, vibration mitigation of a harmonically excited
linear primary structure with η = λ = 0 using a nonlin-
ear absorber with linear damping (ρ = 0), but nonlinear
stiffness (ε �= 0) is considered. To examine the effects
of the stiffness nonlinearity in the dynamic absorber on
vibrational power flows, the nonlinear stiffness coeffi-
cient ε varies from −0.01, indicating a softening stiff-
ness absorber, to 0.1, for a hardening stiffness absorber.
The results for the linear absorber case of ε = 0 are also
provided for comparison. Other system parameters are
set as ξ1 = ξ2 = 0.01, η = ρ = λ = 0, μ = 0.1, γ =
1.0, f0 = 0.1.

Figure 3 plots the variations of time-averaged
input and absorbed powers with respect to the non-
dimensional excitation frequency Ω . It shows that there
is only one peak at around Ω = 1 in the time-averaged
input power curve for the primary oscillator without
adding the absorber. When a linear absorber is attached,
two peaks can be observed in each curve, and the
amount of time-averaged input power at the original
peak is greatly reduced. In comparison, if a nonlinear
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Fig. 3 Time-averaged a
input and b absorbed
powers of the system with a
linear oscillator and an
absorber with different
nonlinear stiffness
(ξ1 = ξ2 = 0.01, η = ρ =
λ = 0, μ = 0.1, γ =
1.0, f0 = 0.1). Solid line
without absorbers; dashed
line or triangles ε = −0.01;
dash-dotted line ε = 0 ;
dotted line or squares
ε = 0.1

(a) (b)

Fig. 4 Performance of the
nonlinear stiffness absorber
in vibration mitigation of a
linear primary oscillator
(ξ1 = ξ2 = 0.01, η = ρ =
λ = 0, μ = 0.1, γ =
1.0, f0 = 0.1). a Power
absorption ratio, and b
kinetic energy of the
oscillator. Solid line without
absorbers; dashed line or
triangles ε = −0.01;
dash-dotted line ε = 0 ;
dotted line or squares
ε = 0.1

(a) (b)

stiffness absorber is used, there will still be two peaks in
each curve, but they bend either to the high-frequency
range when ε = 0.1 or the low-frequency range when
ε = −0.01. Associated with the bending of the peaks,
there are changes in the peak values of time-averaged
power flows. For the softening absorber case of ε =
−0.01, the first peak of time-averaged input power p̄in

encountered in the low-frequency range becomes lower
than that of corresponding linear absorber case, but the
second peak value increases substantially. For the hard-
ening absorber case of ε = 0.1, the first peak value in
p̄in becomes larger than that of the corresponding linear
system. However, the amount of time-averaged power
flow reduces significantly around the second resonance
peak of the linear absorber case. The twisting of curves
also results in non-unique branches in some frequency
ranges, indicating possible multiple solutions of power
flows at a single excitation frequency. When the exci-
tation frequency is away from the peak regions, the
curves that correspond to different types of absorbers
coincide with each other, and the time-averaged power
flows are not sensitive to variations of ε. It indicates

that the stiffness nonlinearity has local but not global
effects on the power flow characteristics of the system.

The variations of the power absorption ratio and
kinetic energy of the nonlinear oscillator are shown
in Fig. 4a, b, respectively. The figures show that the
examined linear and nonlinear absorbers are effec-
tive at around Ω = 1 with a high power absorp-
tion ratio of Ra ≈ 1 and a reduced kinetic energy
compared with that of the primary oscillator without
absorbers. However, the stiffness nonlinearities in the
absorber affect the vibration absorption performance
when Ω is close to the resonance frequencies of the
integrated system. In the low-frequency range of
Ω < 1, a softening stiffness absorber performs well by
increasing power absorption ratio and reducing peak
kinetic energy. However, its performance in the high-
frequency range of Ω > 1 becomes worse than the lin-
ear absorber case, with a smaller Ra and a higher peak in
kinetic energy K1. In comparison, the hardening stiff-
ness absorber with ε = 0.1 enhances power absorption
and attenuates the peak of kinetic energy in the high-
frequency range of Ω > 1. However, the correspond-
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Fig. 5 Time-averaged a
input and b absorbed
powers of a system with a
linear oscillator and an
absorber with different
nonlinear dampings
(ξ1 = ξ2 = 0.01, ε = η =
λ = 0, μ = 0.1, γ =
1.0, f0 = 0.1). Solid line
without absorbers;
dash-dotted line ρ = 0;
dashed line ρ = 0.1; dotted
line ρ = 1

(a) (b)

Fig. 6 Performance of the
nonlinear damping absorber
in vibration mitigation of a
linear primary oscillator
(ξ1 = ξ2 = 0.01, ε = η =
λ = 0, μ = 0.1, γ =
1.0, f0 = 0.1). a Power
absorption ratio, and b
kinetic energy of the
primary structure. Solid line
without absorbers;
dash-dotted line ρ = 0;
dashed line ρ = 0.1; dotted
line ρ = 1

(a) (b)

ing power absorption efficiency in the low-frequency
range is compromised and the first peak of K1 is larger
than the corresponding linear absorber case.

In summary, for a linear primary structure, the
results suggest that the softening (hardening) stiffness
nonlinearity can be included in the absorber to enhance
vibration mitigation in the low- (high-) frequency range
as it can assist in: (1) reduction of the first (second)
peak value of time-averaged power flow and the kinetic
energy of the primary mass, (2) increase in power
absorption ratio in the low- (high-) frequency range
and (3) shift of the frequency band of effective vibra-
tion absorption to the lower (higher) frequencies.

5.2 A nonlinear damping absorber attached to a linear
oscillator (ρ �= 0, ε = η = λ = 0)

To assess the performance of a vibration absorber with
nonlinear damping in suppressing excessive vibrations
of a linear primary oscillator, the system parameters
are set as ξ1 = ξ2 = 0.01, ε = η = λ = 0, μ =
0.1, γ = 1.0, f0 = 0.1, while the nonlinear damping

parameter ρ of the absorber varies from 0 to 0.1 and
then to 1. The time-averaged input power curves are
depicted in Fig. 5, which shows that the peak time-
averaged input and absorbed powers are reduced by
having stronger nonlinear damping. However, between
the resonant frequencies, a larger ρ gives rise to a
slightly higher level of time-averaged power flows. In
the other frequency ranges away from resonance, the
time-averaged power flow variables are observed to be
insensitive to the variations of ρ. The reason is that the
corresponding response amplitude b of the absorber
is small, so that the contribution of nonlinear damp-
ing 3

4ρb2Ω2 in frequency-response relations (12) and
(13) is small. The performance of nonlinear damping
absorbers is examined in Fig. 6. It shows that a larger
value of ρ leads to better power absorption around the
resonance frequencies of the integrated system. Also,
compared with the linear absorber case, the peaks in the
kinetic energy of oscillator are reduced by increasing
ρ.

To summarise, the cubic damping nonlinearity in the
absorber can assist in reductions of peak time-averaged
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(a) (b)

Fig. 7 Time-averaged a input and b absorbed powers of a system
with a softening stiffness oscillator and an absorber with different
nonlinear stiffnesses (ξ1 = ξ2 = 0.01, μ = 0.1, γ = 1, f0 =

0.1, η = −0.02, ρ = λ = 0). Solid line without absorbers; dash-
dotted line or circles ε = 0; dashed line or triangles ε = −0.01;
dotted line or squares ε = 0.1

power flow levels. The resonance peaks of the kinetic
energy of the primary structure are also suppressed.
At the same time, the power absorption ratio becomes
larger than the corresponding linear case. These char-
acteristics suggest that the cubic damping nonlinearity
in the absorber can be introduced to improve the per-
formance of vibration absorbers.

5.3 Nonlinear absorbers attached to a softening
oscillator (η < 0, ε �= 0)

The previous cases considered the existence of stiffness
or damping nonlinearity in the absorber. However, in
some applications significant nonlinearity exists in the
primary oscillator as well. In this situation, absorbers
that are designed under the assumption of the primary
structure being linear may not be effective. It is thus
necessary to examine the effectiveness of nonlinear
absorbers for different types of nonlinear oscillators.
The outcome of such investigations can provide guid-
ance for a proper design of the absorber’s nonlinearity
with respect to the existing nonlinear characteristics of
the primary structure. For clarity, this section considers
a softening stiffness primary oscillator attached with
different nonlinear absorbers, while the next section
will focus on suppressing the vibrations of a hardening
stiffness primary oscillator using nonlinear absorbers.

Figure 7 shows the variations of time-averaged
power flow variables for a system with ξ1 = ξ2 =
0.01, μ = 0.1, γ = 1, f0 = 0.1, η = −0.02, ρ =

λ = 0. The primary oscillator is of softening stiff-
ness, while the absorber possesses softening stiffness
when ε = −0.01 or hardening stiffness when ε = 0.1.
The results for a linear absorber case with ε = 0 are
also provided in the figure for comparison. The fig-
ure shows that the time-averaged input power curve
of the nonlinear oscillator without adding an absorber
bends to the low-frequency range. Compared with that,
attaching the softening stiffness absorber of ε = −0.01
to the softening stiffness primary structure strength-
ens the overall softening nonlinearity of the system,
as demonstrated by the further twisting of the peaks
to the low-frequency range. It also results in multiple
solutions of power flow variables over a larger range
of excitation frequencies, including the original tun-
ing frequency Ω = 1 of a linear absorber. In contrast,
adding a hardening stiffness absorber of ε = 0.1 to the
softening oscillator bends, the second peak in the power
flow curves to the high-frequency range, while keeping
the first peak extended to the low-frequency range. The
original second peak in time-averaged input power of
the linear absorber case is effectively suppressed.

Figure 8 examines the performance of the absorbers
by evaluating the corresponding power absorption ratio
and the kinetic energy of the primary oscillator. It shows
that although introducing a softening stiffness charac-
teristic in the absorber can increase power absorption
ratio Ra in the low-frequency range, at higher exci-
tation frequencies with Ω locating approximately in
between 0.98 and 1.2, the value of Ra may become
smaller than that of the corresponding linear absorber
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Fig. 8 Performance of
nonlinear stiffness absorbers
in vibration mitigation of a
softening stiffness oscillator
(ξ1 = ξ2 = 0.01, μ =
0.1, γ = 1, f0 = 0.1, η =
−0.02, ρ = λ = 0). a
Power absorption ratio and
b kinetic energy of the
primary structure. Solid line
without absorbers;
dash-dotted line or circles
ε = 0; dashed line or
triangles ε = −0.01; dotted
line or squares ε = 0.1

(a) (b)

Fig. 9 Performance of
absorbers with combined
damping and stiffness
nonlinearities in vibration
mitigation of a softening
stiffness oscillator
(ξ1 = ξ2 = 0.01, μ =
0.1, γ = 1, f0 = 0.1, η =
−0.02, ε = 0.1, λ = 0). a
Power absorption ratio, and
b kinetic energy of the
primary oscillator. Solid line
ρ = 0; dashed line ρ = 0.2;
dotted line ρ = 1

(a) (b)

case. Also in this frequency range, the kinetic energy
of the primary structure attached with the softening
absorber may be much larger than that of the struc-
ture without using the absorber. At Ω = 1, Ra and
K1 become multiple-valued and sensitive to the initial
conditions. These characteristics are not desirable for
effective vibration absorption. When a hardening stiff-
ness absorber with ε = 0.1 is used, the kinetic energy
of the nonlinear oscillator remains single-valued over a
wider range of excitation frequencies with Ω approx-
imately in between 0.86 and 1.26. Clearly, it provides
better vibration absorption performance than the cor-
responding linear absorber when 1.03 < Ω < 1.25, as
the value of Ra is larger. At the same time the second
peak of K1 of is greatly suppressed, compared with
the linear absorber case. Clearly, a hardening stiffness
absorber can be added to a softening nonlinear structure
to effectively mitigate its vibrations.

In Fig. 9, the influences of adding damping nonlin-
earity to the hardening absorber on its performance are
investigated. The primary oscillator is still of softening
stiffness. The system parameters are set as ξ1 = ξ2 =
0.01, μ = 0.1, γ = 1, f0 = 0.1, η = −0.02, ε =

0.1, λ = 0, while the nonlinear damping parameter ρ

varies from 0 to 0.2, and then to 1. Figure 9a shows that
by increasing ρ, there is a narrower range of multiple
solution branches of power flows at high excitation fre-
quencies of Ω > 1. It is also observed that Ra increases
withρ when the excitation frequencyΩ locates approx-
imately between 1.1 and 1.28. Compared with the case
with linear damping ρ = 0, the second peak value of
K1 is substantially suppressed when stronger nonlinear
damping is introduced to the absorber. It should also be
noted that when excitation frequency Ω is away from
the second resonance peak, the kinetic energy of the pri-
mary oscillator is shown not sensitive to the changes in
ρ.

In summary, when the primary structure is of soft-
ening stiffness nonlinearity, addition of a softening
stiffness absorber may not provide desirable perfor-
mance as it will result in a stronger softening nonlin-
earity in the overall system. Consequently, the reso-
nant peaks will be bent further to the low-frequency
range. Around the tuning frequency, the absorption
performance may be compromised with non-unique
solutions, potentially high level of power flow and
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Fig. 10 Time-averaged a
input and b absorbed
powers of a system with a
hardening stiffness
oscillator, and an absorber
with different nonlinear
stiffnesses (ξ1 = ξ2 =
0.01, μ = 0.1, γ = 1, f0 =
0.1, η = 0.05, λ = ρ = 0).
Solid line without absorbers;
dash-dotted line or circles
ε = 0; dashed line or
triangles ε = −0.01; dotted
line or squares ε = 0.1

(a) (b)

Fig. 11 Performance of
nonlinear stiffness absorbers
in vibration mitigation of a
hardening stiffness
oscillator (ξ1 = ξ2 =
0.01, μ = 0.1, γ = 1, f0 =
0.1, η = 0.05, λ = ρ = 0).
a Power absorption ratio,
and b kinetic energy of the
primary oscillator. Solid line
without absorbers;
dash-dotted line or circles
ε = 0; dashed line or
triangles ε = −0.01; dotted
line or squares ε = 0.1

(a) (b)

large kinetic energy. In comparison, introduction of a
hardening stiffness absorber can bend the second peak
to the higher-frequency range, creating a larger fre-
quency band of effective vibration mitigation. There-
fore, hardening stiffness can be used in the absorber
for enhanced vibration absorption from a softening pri-
mary structure.

5.4 Nonlinear absorbers attached to a hardening
oscillator (η > 0, ε �= 0)

In this section, the performance of different types of
nonlinearities in the absorbers in vibration suppression
of a oscillator with hardening stiffness is investigated.
For a system with ξ1 = ξ2 = 0.01, μ = 0.1, γ =
1, f0 = 0.1, η = 0.05, λ = ρ = 0, the nonlinear stiff-
ness parameter ε of the absorber is set as −0.01 for
a softening stiffness absorber and 0.1 for a hardening
stiffness absorber. To compare the performance of lin-
ear and nonlinear absorbers, the results for the system
with a linear absorber with ε = 0 attached to the hard-
ening stiffness oscillator are also plotted in the figures.

Figure 10 shows that for the primary oscillator with-
out attaching absorbers, the resonant peak in time-
averaged input power curve extends to the high-
frequency range. When a linear absorber with ε = 0 is
attached to the main oscillator, two peaks can be iden-
tified in the time-averaged input power curve and they
both bend slightly towards the high frequencies. Com-
pare with that, an introduction of the hardening stiffness
absorber with ε = 0.1 to the nonlinear oscillator yields
further bending of the peaks to the higher frequencies.
The figures show non-unique time-averaged power
flow levels at some excitation frequencies, including
the tuning frequency Ω = 1 of the corresponding linear
absorber. This may not be wanted for vibration absorp-
tion as the performance of the absorber will be depen-
dent on the initial conditions. In contrast, the use of
the softening stiffness absorber with ε = −0.01 to the
hardening oscillator, however, results in the twisting of
the first peak towards the low-frequency range and the
second peak to the high frequencies. At the same time,
the time-averaged power flow variables remain small
and single-valued in a relatively wider frequency range

123



Power flow behaviour and dynamic performance 1077

Fig. 12 Performance of
absorbers with combined
damping and stiffness
nonlinearities in vibration
mitigation of a hardening
stiffness oscillator
(ξ1 = ξ2 = 0.01, μ =
0.1, γ = 1, f0 = 0.1, η =
0.05, ε = −0.01, λ = 0). a
Power absorption ratio, and
b kinetic energy of the
primary oscillator. Solid line
ρ = 0; dashed line ρ = 0.2;
dash-dotted line ρ = 0.5;
dotted line ρ = 1

(a) (b)

around the tuning frequency of Ω = 1. This behaviour
may be employed for effective vibration absorption.

Figure 11 compares the power absorption ratio, as
well as the kinetic energy of the nonlinear oscillator
when the absorber is of different stiffness character-
istics. The figure shows that the considered softening
stiffness absorber performs well in the low-frequency
range where the excitation frequency Ω < 1, as the
corresponding power absorption ratio Ra is increased.
Moreover, the kinetic energy K1 remains single-valued
around Ω = 1 with first peak lower than that of
the case with a linear absorber. These characteristics
clearly show the benefits of using the softening stiff-
ness absorber for low-frequency vibration absorption.
When Ω > 1, it is observed that adding the hardening
absorber successfully improves power absorption effi-
ciency with Ra becoming larger. Also, the second peak
value of K1 is greatly reduced from the linear absorber
case. However, when the hardening stiffness absorber
is used, there are non-unique and small values of power
absorption ratio Ra when Ω is close to one. At the same
time, the kinetic energy K1 is also multiple-valued and
potentially large. As a result, hardening stiffness in the
absorber may not be desirable for vibration suppression
of the hardening oscillator around its linearized natural
frequency Ω = 1.

Figure 12 investigates the effects of nonlinear damp-
ing on the performance of the softening stiffness
absorber attached to a hardening oscillator. The non-
linear damping parameter ρ of the absorber changes
from 0, to 0.2, 0.5 and then to 1, and the other sys-
tem parameters are set as ξ1 = ξ2 = 0.01, μ =
0.1, λ = 1, f0 = 0.1, η = 0.05, ε = −0.01, λ = 0.
It shows that the power absorption ratio Ra increases
with ρ when Ω locates approximately between 0.8 and

1. As the nonlinear damping becomes stronger, the
value of Ra is enlarged at higher excitation frequen-
cies around Ω = 1.2. For the influence of parameter
ρ on the kinetic energy of the nonlinear oscillator, Fig.
12(b) shows that both peaks in kinetic energy curve
are suppressed by increasing the nonlinear damping in
the absorber. Also, the frequency ranges of multiple
solutions become much narrower. Again, the results
indicate possible benefits of introducing the nonlinear
damping in the absorber for better performance.

To summarise, when the primary structure is of hard-
ening stiffness, an addition of a hardening stiffness
absorber leads to a stronger hardening stiffness non-
linearity in the integrated system. As a result, there
is a greater bending of resonance peaks in both time-
averaged power flow and kinetic energy to the high-
frequency range. Successful vibration mitigation at the
original tuning frequency may not be guaranteed due
to possible non-unique solutions. In comparison, the
application of a softening stiffness absorber can widen
the frequency range of effective absorption by bending
the first resonant peak to the low frequencies and the
second to the high frequencies. The kinetic energy of
the oscillator remains low and single-valued in a larger
frequency band. Thus, softening stiffness nonlinearity
can be used for vibration attenuation of a hardening
stiffness primary structure.

6 Conclusions

The paper investigated a two-degree-of-freedom sys-
tem to evaluate the dynamic performance of nonlin-
ear absorbers attached to a nonlinear primary oscilla-
tor from a vibrational power flow viewpoint. Power
absorption ratio and the kinetic energy of the nonlinear
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oscillator were used as performance indices. Different
combinations of cubic damping and stiffness nonlin-
earities in the oscillator and absorber were investigated.
Based on the investigations, the following conclusions
and suggestions for nonlinear absorber design may be
provided:

1. For a linear primary oscillator, attaching a softening
(hardening) stiffness absorber can enhance power
absorption and reduce kinetic energy when the exci-
tation frequency is in the vicinity of the first (sec-
ond) resonance at low frequency. In this way, the
effective working frequency range of the absorber
is shifted slightly to the lower (higher) frequencies.

2. Attaching a nonlinear damping absorber to a linear
primary oscillator can help suppress peak values of
time-averaged power flows and kinetic energy of
the oscillator, and to enhance power absorption.

3. When the oscillator and absorber are both with
hardening (softening) stiffness, the overall harden-
ing (softening) nonlinearity of the system becomes
greater. As a result, the resonant peaks in time-
averaged power flow and kinetic energy curves will
tend to bend more towards the high- (low-) fre-
quency range. This may worsen the effectiveness
of the absorber as the primary oscillator may expe-
rience non-unique and potentially high levels of
kinetic energy at the desired functioning frequen-
cies of the absorber.

4. A hardening stiffness absorber can be attached to a
softening primary oscillator so as to effectively mit-
igation vibration in a wide frequency range, where
the power absorption ratio is large and the kinetic
energy remains low and single-valued.

5. When the oscillator is of hardening stiffness, a
softening stiffness absorber can provide better per-
formance than its hardening stiffness counterpart
around the tuning frequency as it yields better vibra-
tion suppression by enhancing power absorption
and reducing kinetic energy of the oscillator.

6. When nonlinear stiffness absorbers are used for
nonlinear primary oscillators, adding cubic damp-
ing in the absorber can improve power absorption
at the resonance peaks, and reduce the peak kinetic
energies. Thus, the cubic damping nonlinearity is
beneficial for vibration absorption as the frequency
band of effective vibration attenuation is enlarged.

It should also be noted that the derived analytical
formulations of the frequency-response relations allow

more detailed parametric studies. It is also possible
to conduct optimal design analysis of the absorber to
determine optimal mass or damping ratios, and nonlin-
ear stiffness and damping coefficients so as to achieve
specific objectives, e.g., to suppress peak responses
or to enlarge working frequency band. Moreover, the
analytical/numerical analysis approach developed in
the paper can easily be extended to deal with other
types of nonlinearities in the absorber and the oscilla-
tor, with damping and restoring forces represented by
polynomial or trigonometric functions of velocity and
dynamic deflection, respectively.
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