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Abstract In this paper, an extended traffic flow model
on a single-lane gradient highway is proposed with the
consideration of the relative velocity. The stability con-
dition is obtained by the use of linear stability analysis.
It is shown that the stability of traffic flow on the gra-
dient varies with the slope and the coefficient of the
relative velocity: when the slope is constant, the stable
regions increase with the increase of the coefficient of
the relative velocity; when the coefficient of the rel-
ative velocity is constant, the stable regions increase
with the decrease of the slope in downhill and increase
with the increase of the slope in uphill. The Burgers,
Korteweg-de Vries, and modified Korteweg-de Vries
equations are derived to describe the triangular shock
waves, soliton waves, and kink-antikink waves in the
stable, metastable, and unstable region, respectively.
The numerical simulation shows a good agreement with
the analytical result, which shows that the traffic con-
gestion can be suppressed by introducing the relative
velocity.
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1 Introduction

Traffic problems have attracted considerable attentions
especially traffic jams in recent decades. To investigate
the properties of traffic jams, various traffic flow mod-
els including car-following models, cellular automa-
tion models, hydrodynamics models, and gas kinetics
models were proposed by many scholars with different
backgrounds [1–34].

The car-following models explain many complex
physical phenomena in traffic flow. Bando et al. [2] pro-
posed an optimal velocity model (OVM) to describe
the dynamical behaviors of vehicles on a highway
under a high-density condition. But the comparison
with field data showed that high acceleration and unre-
alistic deceleration appear in OVM. To overcome this
shortage, Helbing and Tilch [3] developed a gener-
alized force model (GFM) with a velocity difference
term added into the OVM. Jiang et al. [4,5] proposed a
full velocity difference model (FVDM) which consid-
ers more aspects in the car-following process than the
OVM and the GFM. Xue et al. [6] extended the OVM
to take the effects of the relative velocity into account.
Recently, Peng et al. [7] proposed an optimal velocity
difference model (OVDM) to study the effect of the
optimal velocity difference.

The nonlinear waves in traffic flow have been inves-
tigated by using nonlinear analysis. Kerner et al. [8]
had found the single pulse density waves in the numer-
ical simulation with the hydrodynamic model. Kurtze
and Hong [9] had shown that the single pulse den-
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sity wave is a soliton. Komatsu and Sasa [10] derived
modified Korteweg-de Vries (MKdV) equation from
OVM to describe the traffic jams in terms of the kink
density waves. Nagatani [11] improved OVM by tak-
ing the effect of the next-nearest-neighbor interaction
into account and found that triangular shockwave, soli-
ton wave, and kink-antikink wave appear. Xue [13]
extended OVM based on Jiang’s full velocity difference
model and discussed its stability and density waves ana-
lytically and numerically. Ge et al. [14] proposed an
extended model by incorporating intelligent transporta-
tion applications and analyzed it by using linear stabil-
ity theory and nonlinear analysis. The kink-antikink
solutions were obtained near the critical point in the
unstable region.

All the above works are based on the highway with
no slope. But in real traffic, the road may not be flat. Li
et al. [17] investigated the effect of the slope in a single-
lane highway on the traffic flow with an extended opti-
mal velocity model. Komada et al. [18] considered the
effect of gravitational force upon traffic flow on a high-
way with sags, uphill, and downhill. The gravitational
force was considered as an external force acting on
vehicles. They investigated the traffic states and jam-
ming transitions induced by the slope of the highway
and derived the fundamental diagram for the traffic flow
on the sag. Zhu et al. [20] investigated the stability and
density waves of the traffic flow on a gradient highway
with different slopes. But these work did not consider
the effect of the relative velocity. In real traffic, the
vehicle will not brake if the preceding cars are faster,
even if the headway is smaller than the safe distance.

The paper is organized as follows. In Sect. 2,
the model is formulated, and the stability analysis is
obtained. We can see the stability condition varies with
the slope and the coefficient of the relative velocity.
In Sect. 3, the Burgers, KdV, and MKdV equations
are derived in three types of traffic flow regions by
using nonlinear analysis. The numerical simulations
are given in Sect. 4.

2 Model and linear stability

We consider a situation such that many same vehi-
cles move ahead on a single-lane highway. A gradient
is positioned on the single-lane highway. Traffic flow
is under a periodic boundary condition. The gravita-
tional force acts upon vehicles on the slope of the gra-

Fig. 1 Illustration of the gravitational force acting upon a vehicle
on a gradient: uphill and downhill

dient. Figure 1 shows the illustration of gravitational
force acting upon a vehicle on an uphill and down-
hill highway, respectively [20]. The slope of the gradi-
ent is represented by θ , the gravity is g, and the mass
of a vehicle is m. Then, the external force mg sin θ

acts on the vehicle in a horizontal direction when a
driver does not operate the brake. If a driver operates
the brake, the gravitational force is reduced by the brake
control.

The equation of motion for vehicle n is described by

m
d2xn(t)

dt2 =F(�xn(t),�vn(t)) − μ
dxn(t)

dt
− mg sin θ B(�xn(t)),

(1)

where xn(t) is the position of vehicle n at time t ,
�xn(t) = xn+1(t) − xn(t) and �vn(t) = vn+1(t) −
vn(t) are the headway and the velocity difference
between preceding vehicle n+1 and the following vehi-
cle n, respectively, F(�xn(t),�vn(t)) is the driving
force, μ is the friction coefficient, and B(�xn(t)) is
the brake-control function. Here, we assume that the
driving force is the function of the headway �xn(t) and
the relative velocity �vn(t), because the driving force
is given by drivers, and drivers adjust the driving force
by considering not only the headway but also the rela-
tive velocity. The brake-control function B(�xn(t)) is
the function of the headway �xn(t), it represents the
effect when a driver operates the brake when the head-
way varies [18], when �xn(t) → 0, the vehicle should
stop to avoid collision, we assume B(�xn(t)) → 0
for �xn(t) → 0. When the headway is sufficient large
(�xn(t) → ∞), the vehicle will never brake, and the
gravitational force acting on the vehicle is mg sin θ ,
that means B(�xn(t)) → 1 for �xn(t) → ∞. Here
we consider F(�xn(t),�vn(t)) is the linear function
of �xn(t) and �vn(t), that is

F(�xn(t),�vn(t)) = αF(�xn(t)) + βF(�vn(t)).
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Then, Eq. (1) is rewritten as

d2xn(t)

dt2 = μ

m

[
αF(�xn(t))

μ
− mg sin θ B(�xn(t))

μ

− dxn(t)

dt

]
+ β

m
F(�vn(t)), (2)

we compare Eq. (2) with the conventional FVDM. It is
described by [4]

d2xn(t)

dt2 = a

[
V (�xn(t)) − dxn(t)

dt

]
+λa�vn(t). (3)

with

V (�xn(t)) = v f,max

2
[tanh(�xn(t) − hc) + tanh(hc)],

(4)

where v f,max is the maximal velocity without any slope.
When θ = 0 in Eq. (2), it should reduce to Eq. (3).
Therefore, we set

μ

m
= a, λ = β

μ
, (5)

αF(�xn(t))

μ
= v f,max

2
[tanh(�xn(t) − hc)

+ tanh(hc)], (6)
β

m
F(�vn(t)) = λa�vn(t). (7)

In Ref. [18], the term mg sin θ B(�xn(t))
μ

in Eq. (2) is given
by

mg sin θ B(�xn)

μ
= Vg(�xn) (8)

= vg,max

2
[tanh(�xn − hb)

+ tanh(hb)]

where vg,max = mg sin θ
μ

. The turning point hb is the
brake distance. vg,max is proportional to slope sin θ .
Thus, the effect of the slope is taken into account in
vg,max of Eq. (8). And the extended optimal velocity
V (�xn) is given by [18]

V (�xn) = v f,max

2
[tanh(�xn − hc) + tanh(hc)], (9)

for a highway without slope,

V (�xn) =v f,max

2
[tanh(�xn − hc) + tanh(hc)]

− vg,u,max

2
[tanh(�xn − hb,u)

+ tanh(hb,u)],
(10)

for an uphill gradient highway, and

V (�xn) = v f,max

2
[tanh(�xn − hc) + tanh(hc)]

+ vg,d,max

2
[tanh(�xn − hb,d)

+ tanh(hb,d)], (11)

for a downhill gradient highway. But the term hc in Eqs.
(10) and (11) is not taken the slope effect into account,
and we think hc should be influence by the slope. So we
let the hc be rewritten as hc,θ , and hc,θ = hc(1−ξ sin θ)

for uphill and hc,θ = hc(1 + η sin θ) for downhill
[20], when θ = 0, hc,θ reduce to hc. For simplicity,
here we set ξ = η = 1. vg,u,max and vg,d,max are the
maximal reduced and enhanced velocity on uphill and
downhill gradients which are formulated as vg,u,max =
vg,d,max = vg,max, when θ = 0, vg,max = 0.

Thus, the extended full velocity difference model is
obtained

d2xn(t)

dt2 = a

[
V (�xn(t)) − dxn(t)

dt

]
+ λa�vn(t),

(12)

with the extended optimal velocity

V (�xn) = v f,max ∓ vg,max

2
[tanh(�xn − hc,θ )

+ tanh(hc,θ )]. (13)

The sign ′−′ represents uphill, and the sign ′+′ rep-
resents downhill. hc,θ = hc(1 ∓ sin θ) is the safety
distance, the sign ′−′ also represents uphill, and the
sign ′+′ represents downhill. When θ = 0, the
extended FVDM and optimal velocity are the conven-
tional FVDM and optimal velocity.

Now we deduce the stability condition of the
extended FVDM. Here we select v f,max = 4,

mg
μ

=
1, vg,max = sin θ . In order to investigate the stability
of the traffic flow on an uphill/downhill highway we
assume that N vehicles move homogeneously on a cir-
cular lane with length L and slope θ . The slope θ is
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Fig. 2 Illustration of the phase diagram of the model with different θ on a gradient uphill and downhill

between 0◦ and 6◦ according to the real highway situ-
ation. Assume

V0(�xn) = tanh(�xn − hc,θ ) + tanh(hc,θ ). (14)

The Eq. (13) has the following formation

V (�xn) = 4 ∓ sin θ

2
V0(�xn). (15)

Then Eq. (12) can be rewritten as

d2xn

dt2 = a

[
4 ∓ sin θ

2
V0(�xn) − dxn

dt

]
+ λa�vn .

(16)

We apply the linear stability theory to analyze the traffic
model described by Eq. (16). Supposing the vehicles
running with the uniform headway h and optimal veloc-
ity V (h), then we get the uniform steady state solution
x (0)

n (t) for Eq. (16)

x (0)
n (t) = hn + 4 ∓ sin θ

2
V0(h)t. (17)

Assuming xn(t) be a small deviation from the uniform
steady state x (0)

n (t) : xn(t) = x (0)
n (t) + yn(t) where

yn(t) is the small deviation. Inserting it and Eq. (17)
into Eq. (16), then the linearized equation for yn(t) is
obtained from Eq. (16)

d2 yn

dt2 = a

[
4 ∓ sin θ

2
V ′

0(h)�yn − dyn

dt

]
+ λa

d�yn

dt
(18)

where �yn = yn+1(t) − yn(t), and V ′
0(h) is the

derivative of optimal velocity function V0(h) at point
�xn(t) = h.

The stability condition is obtained by the same
method in Ref. [6]

V ′
0(h) < a

1 + 2λ

4 ∓ sin θ
. (19)

Then the neutral stability condition is given by

as = 4 ∓ sin θ

1 + 2λ
V ′

0(h). (20)

The spinodal stability curves for different slopes of
the gradient highway are shown in Fig. 2. Here we
select λ = 0.2. From Fig. 2 we can see that the dotted
lines are the spinodal stability curves, and the solid lines
are coexisting curves. The areas below the spinodal sta-
bility curves are unstable regions, and the areas above
the coexisting curves are stable regions. The areas
between the spinodal stability curves and coexisting
curves are metastable regions. Figure 2 shows the spin-
odal stability curves and coexisting curves for uphill
and downhill on highways, respectively. In the downhill
situations the stable region increases with the decrease
of the slope, while in the uphill situations the stable

123



An extended traffic flow model 1769

Fig. 3 Illustration of the phase diagram of the model with different λ on a gradient uphill

Fig. 4 Illustration of the phase diagram of the model with different λ on a gradient downhill

region increases with the increase of the slope. So the
stability of the traffic flow varies with the slopes of the
gradient. In addition one can see that the apexes of the
spinodal stability curves are the critical points (hc, ac)

which are corresponding to different slope θ . Obviously
safety distances hc = 4, 3.86, 3.72, 3.58 in uphill sit-
uations and hc = 4, 4.14, 4.28, 4.42 in downhill situ-
ations are corresponding to slopes θ = 0◦, 2◦, 4◦, 6◦,
respectively. The results agree with ones in Ref. [20].

Figures 3 and 4 show the phase diagram with differ-
ent values of λ on uphill and downhill situation, respec-
tively. Here we select θ = 0◦, 6◦. From Figs. 3 and 4,

we can see that the critical points rise with decreasing
λ. The traffic flow is more stable with the increase of λ.
In Sect. 4, we perform numerical simulations to study
the impact of small perturbations to the whole traffic
flow with different λ.

3 Nonlinear analysis

In this section, by using the reductive perturbation
method introduced in Ref. [10], we derive the Burgers,
KdV, and MKdV equations in the stable, metastable,
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and unstable regions, respectively. For later conve-
nience, Eq. (16) can be rewritten as

d2�xn(t)

dt2

= a
{[4 ∓ sin θ

2
V0(�xn+1(t)) − V0(�xn(t))

]

− d�xn(t)

dt

}
+aλ

[
d�xn+1(t)

dt
− d�xn(t)

dt

]
.

(21)

We introduce slow scales for space variable n and
time variable t and define low variables X and T for
0 < ε � 1 [21]

X = ε(n + bt), T = εmt (22)

where b is a constant to be determined. Assuming

�xn(t) = h + εl R(X, T ). (23)

The values of the index m, l represent different phases
of the traffic flow. Three groups of values m = 2, l = 1;
m = 3, l = 2; m = 3, l = 1 are corresponding to the
stable traffic flow region, metastable traffic flow region,
and unstable traffic flow region, respectively.

By Substituting Eqs. (22)-(23) into Eq. (21) and
expanding to the m + l + 1 order of ε, we obtain the
following nonlinear partial differential equation:

aεl+1
(

b − kV ′
0(h)

)
∂X R

+ εl+2
(

b2 − ak

2
V ′

0(h) − abλ
)
∂2

X R

+ εl+3
(

− ak

6
V ′

0(h) − abλ

2

)
∂3

X R

+ εl+4
(

− ak

24
V ′

0(h) − abλ

6

)
∂4

X R

+ ε2l+1
(

− ak

2
V ′′

0 (h)
)
∂X R2

+ ε2l+2
(

− ak

4
V ′′

0 (h)
)
∂2

X R2

+ ε3l+1
(

− ak

6
V ′′′

0 (h)
)
∂X R3

+ ε3l+2
(

− ak

12
V ′′′

0 (h)
)
∂2

X R3

+ εm+la∂T R + εm+l+1(2b − λa)∂X∂T R = 0 (24)

where k = 4∓sin θ
2 .

First, we discuss the triangular shock waves of the
traffic flow in the stable region. The nonlinear partial

differential equation is obtained from Eq. (24) for m =
2, l = 1.

ε2a
(

b − kV ′
0(h)

)
∂X R + ε3

[
a∂T R − ak

2
V ′′

0 (h)∂X R2

+
(

b2 − ak

2
V ′

0(h) − abλ
)
∂2

X R

]
= 0

(25)

Taking b = kV ′
0(h), the second-order terms of ε is

eliminated in Eq. (25). We obtain the following partial
differential equation:

∂T R − kV ′′
0 (h)R∂X R

=
(

1 + 2λ

2
− kV ′

0(h)

a

)
kV ′

0(h)∂2
X R (26)

In accordance with criterion Eq. (19), the coefficient
of the second derivative of Eq. (26) is positive in the
stable region. Therefore, in the stable region, Eq. (26)
is just the Burgers equation. If R(X, 0) is of compact
support, then the solution R(X, T ) of Eq. (26) is

R(X, T ) = 1

|kV ′′
0 (h)|T

[
X − ηn+1 + ηn

2

]

− ηn+1 − ηn

2|kV ′′
0 (h)|T tanh

[(
1 + 2λ

2

− kV ′
0(h)

a

)
kV ′

0(h)
(ηn+1−ηn)(X − ξn)

4|kV ′′
0 (h)|T

]

(27)

where ξn are the coordinates of the shock fronts, and
ηn are the coordinates of the intersections of the slopes
with the x-axis (n = 1, 2, ..., N ). As O( 1

T ), R(X, T )

decays to 0 when T → +∞. That means any shock
wave expressed by Eq. (27) in stable traffic flow region
will evolve to a uniform flow when time is sufficient
large. We see this phenomenon when λ = 0.2 in Figs.
5, 6, and 7 of Sect. 4.

Second, we discuss the soliton waves of the traf-
fic flow in the metastable region. The nonlinear par-
tial differential equation is obtained from Eq. (24) for
m = 3, l = 2.

ε3a
(

b − kV ′
0(h)

)
∂X R

+ ε4
(

b2 − aV ′
0(h)k

2
− λab

)
∂2

X R

+ ε5a

[
∂T R −

(
V ′

0(h)k

6
+ λb

2

)
∂3

X R
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− V ′′
0 (h)k

2
∂X R2

]
ε6

[
(2b − aλ)∂X∂T R

−
(

aV ′
0(h)k

24
+ λab

6

)
∂4

X R − aV ′′
0 (h)k

4
∂2

X R2
]

= 0.

(28)

Near the neutral stability line in the unstable region,
let

as

a
= 1 + ε2 (29)

where as is given by Eq. (20). By taking b = kV ′
0(h),

the third- and fourth-order terms of ε are eliminated
from Eq. (28), and Eq. (28) can be rewritten as

ε5
[
∂T R − f1∂

3
X R − f2 R∂X R

]

+ ε6
[
− f3∂

2
X R + f4∂

2
X R2 + f5∂

4
X R

]
= 0

(30)

where

f1 = 1 + 3λ

6
kV ′

0(h), f2 = kV ′′
0 (h),

f3 = −1 + 2λ

2
kV ′

0(h),

f4 =
(

kV ′
0(h)

a
− 1 + 2λ

4

)
kV ′′

0 (h),

f5 = kV ′
0(h)[2kV ′

0(h) − aλ]1 + 3λ

6a
− kV ′

0(h)
1 + 4λ

24
.

In order to derive the standard KdV equation with
higher-order correction, we make the following trans-
formation in Eq. (30)

T = √
f1Tk, X = −√

f1 Xk, R = 1

f2
Rk .

(31)

By using of Eq. (31), we obtain the standard KdV equa-
tion with higher-order correction term

∂Tk Rk + ∂3
Xk

Rk + Rk∂Xk Rk

+ ε√
f1

[
− f3∂

2
Xk

Rk + f4

f2
∂2

Xk
R2

k + f5

f1
∂4

Xk
Rk

]
= 0.

(32)

Next, we assume that Rk(Xk, Tk) = R0(Xk, Tk) +
εR1(Xk, Tk) to consider the O(ε) correction in Eq.

(32). If we ignore the O(ε) term in Eq. (32), it is just
the KdV equation with the soliton solution

R0(Xk, Tk) = A sech2

[√
A

12

(
Xk − A

3
Tk

)]
(33)

where A is a free parameter. It is the amplitude of
soliton solutions of the KdV equation. The perturba-
tion term in Eq. (32) gives the condition of selecting
a unique member from the continuous family of KdV
solitons. In order to obtain the value of A, the solvabil-
ity condition is

(R0, M[R0]) ≡
∞∫

−∞
dXk R0 M[R0] = 0 (34)

must be satisfied, here M[R0] is the O(ε) term in Eq.
(32). By computing the integration in Eq. (34), we
obtain the value of amplitude A

A = 21 f1 f2 f3

24 f1 f4 − 5 f2 f5
. (35)

Substituting the values of f1– f5 into Eq. (35), we get
the value of A. Substituting each variable by the origi-
nal one, we obtain the soliton solution of the headway

�xn(t) = h + A

f2

(as

a
− 1

)

sech2

[√
A

12 f1

(as

a
− 1

)
(n + c1t

+ A

3

(as

a
− 1

)
t

)]
. (36)

Now, we have derived the soliton density wave
described by the KdV equation near the neutral sta-
bility line.

Finally, we discuss the kink-antikink waves of the
traffic flow in the unstable region. The critical point in
Figs. 3 and 4 is the turning point where V ′′

0 (hc) = 0.
The nonlinear partial differential equation is obtained
from Eq. (24) for m = 3, l = 1.

ε2a
(

b − kV ′
0(h)

)
∂X R

+ ε3
(

b2 − akV ′
0(h)

2
− λab

)
∂2

X R

+ ε4a

[
∂T R −

(
kV ′

0(h)

6
+ λb

2

)
∂3

X R
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− kV ′′′
0 (h)

3
∂X R3

]

+ ε5
[
(2b − aλ)∂X∂T R − akV ′

0(h) + 4λab

24
∂4

X R

− akV ′′′
0 (h)

6
∂2

X R3
]

= 0. (37)

Supposing

ac

a
= 1 + ε2 (38)

for a near the critical point (hc, ac), where ac = 4∓sin θ
1+2λ

.

Let b = 4∓sin θ
2 V ′

0(h), the second- and third-order terms
of ε can be eliminated from Eq. (37). Then Eq. (37) can
be rewritten as

ε4
[
∂T R − g1∂

3
X R + g2∂X R3

]

+ ε5
[
g3∂

2
X R + g4∂

2
X R3 + g5∂

4
X R

]
= 0

(39)

where

g1 = 1 + 3λ

6
kV ′

0(h), g2 = −kV ′′′
0 (h)

6
,

g3 = 1 + 2λ

2
kV ′

0(h),

g4 =
(

kV ′
0(h)

3a
− 1 + 2λ

12

)
kV ′′′

0 (h),

g5 = 1 + 3λ

6a
kV ′

0(h)[2kV ′
0(h) − aλ] − 1 + 4λ

24
kV ′

0(h).

In order to derive the standard mKdV equation with
higher-order correction, we make the following trans-
formation in Eq. (39)

T = 1

g1
Tm, R =

√
g1

g2
Rm . (40)

Then we obtain the standard MKdV equation with
higher-order correction term

∂Tm Rm − ∂3
X Rm + ∂X R3

m

+ ε

g1

[
g3∂

2
X Rm + g1g4

g2
∂2

X R3
m + g5∂

4
X Rm

]
= 0.

(41)

If we ignore the O(ε) term in Eq. (41), it is just the
MKdV equation with the kink-antikink solution

Rm0(X, Tm) = √
B tanh

√
B

2
(X − BTm). (42)

Similar to the process of deriving the amplitude A
for KdV equation, we obtain the value of propagation
velocity B for the kink-antikink solution as follows:

B = 5g2g3

2g2g5 − 3g1g4
(43)

which is the same as the one in Ref. [22]. Inserting Eq.
(40) into Eq. (42), we get the solution of the MKdV
equation

R(X, T ) =
√

g1 B

g2
tanh

√
B

2
(X − Bg1T ). (44)

Then we gain the kink-antikink solution of the head-
way

�xn = h +
√

g1 B

g2
(
ac

a
− 1)

tanh

[√
B

2
(
ac

a
−1)(n+c1t−Bg1(

ac

a
−1)t)

]
.

(45)

And the amplitude C of the kink-antikink solution
equation (45) is given by

C =
√

g1 B

g2

(ac

a
− 1

)
.

The kink solution represents the coexisting phase,
which consists of the freely moving phase with low
density and the congested phase with high density. The
headway of the freely moving phase and the jammed
phase is given by �x = hc + C and �x = hc − C ,
respectively. Therefore, we get the coexisting curve in
the (�x, a) plane (see Figs. 2, 3, 4).

4 Numerical simulations

To check the theoretical results, we carry out numerical
simulations for the second-order differential equation
(12). The boundary conditions selected are periodic
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Fig. 5 Space–time evolution after t = 10, 000 and corresponding headway at t = 10, 080 of the density wave with no slope

Fig. 6 Space–time evolution after t = 10, 000 and corresponding headway at t = 10, 080 of the density wave on a uphill slope 6◦

ones. We investigate the impact of local small distur-
bances to the whole system with different λ. The uni-
form flow is such that the vehicles move with the con-
stant headway h = 4.0, and the initial conditions are

xn(0)=4.0(n 
= 50, 51), xn(0)=4.0 − 0.1(n =50),

xn(0) = 4.0 + 0.1(n = 51)

where the total number of cars is N = 100, hc =
4.0, v f,max = 4.0, the slope θ = 0◦ for no slope, and
θ = 6◦ for uphill and downhill.

Figure 5 shows the typical traffic patterns after a suf-
ficiently long time t = 104 with different λ for a = 2.5
on no slope highway. Figure 5 exhibits the time evo-
lution of the headway and correspond headway profile

obtained at t = 10, 080 for λ = 0.0, 0.1, 0.2. By using
the linear stability condition (19), the traffic flow is lin-
ear unstable for λ = 0.0, 0.1. The traffic flow is stable
for λ = 0.2. So the small disturbances will be ampli-
fied, and the density waves appear for λ = 0.0, 0.1.
The small disturbances dissipate for λ = 0.2 as time
goes on.

When λ = 0.0 in Fig. 5, it exhibits the space-
time evolution of the headway for the coexisting phase
after a sufficiently long time. The kink-antikink den-
sity waves appear as traffic jams. From the theoretic
aspect, the traffic flow of λ = 0.0 in Fig. 5 with the
given parameters is in the unstable flow region, and the
kink-antikink density waves appear as traffic jam.
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Fig. 7 Space–time evolution after t = 10, 000 and corresponding headway at t = 10, 080 of the density wave on a downhill slope 6◦

Fig. 8 Space–time evolution of the headway after t = 10, 000 on a uphill slope 6◦
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Fig. 9 Headway profile of the density wave at t = 10, 080 correspond to Fig. 8 respectively

When λ = 0.1 in Fig. 5, it exhibits the space-time
evolution of the headway after a sufficiently long time.
The soliton density waves appear as traffic jams. From
the theoretic aspect, the traffic flow of λ = 0.1 in Fig.
5 with the given parameters is near the neutral stability
line and in the metastable flow region and the soliton
density waves appear as traffic jam.

When λ = 0.2 in Fig. 5, it exhibits the space-time
evolution of the headway for the freely moving phase
after a sufficiently long time. For λ = 0.2, the density
waves disappear, and traffic flow is uniform over the
whole space.

Figure 6 shows the typical traffic patterns after a
sufficiently long time t = 104 with different λ for
a = 2.4 on uphill highway with slope θ = 6◦.

Figure 6 exhibits the time evolution of the headway and
correspond headway profile obtained at t = 10, 080
for λ = 0.0, 0.1, 0.2. By using the linear stability
condition (19), the traffic flow is linear unstable for
λ = 0.0, 0.1. The traffic flow is stable for λ = 0.2. So
the small disturbances will be amplified, and the density
waves appear for λ = 0.0, 0.1. The small disturbances
dissipate for λ = 0.2 as time goes on.

When λ = 0.0 in Fig. 6, it exhibits the space-
time evolution of the headway for the coexisting phase
after a sufficiently long time. The kink-antikink den-
sity waves appear as traffic jams. From the theoretic
aspect, the traffic flow of λ = 0.0 in Fig. 6 with the
given parameters is in the unstable flow region, and the
kink-antikink density waves appear as traffic jam.
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Fig. 10 Space–time evolution of the headway after t = 10, 000 on a downhill slope 6◦

When λ = 0.1 in Fig. 6, it exhibits the space-time
evolution of the headway after a sufficiently long time.
The soliton density waves appear as traffic jams. From
the theoretic aspect, the traffic flow of λ = 0.1 in Fig.
6 with the given parameters is near the neutral stability
line and in the metastable flow region, and the soliton
density waves appear as traffic jam.

When λ = 0.2 in Fig. 6, it exhibits the space-time
evolution of the headway for the freely moving phase
after a sufficiently long time. For λ = 0.2, the density
waves disappear, and traffic flow is uniform over the
whole space.

Figure 7 shows the typical traffic patterns after a
sufficiently long time t = 104 with different λ for
a = 2.52 on downhill highway with slope θ = 6◦.

Figure 7 exhibits the time evolution of the headway and
corresponds headway profile obtained at t = 10, 080
for λ = 0.0, 0.1, 0.2. By using the linear stability
condition (19), the traffic flow is linear unstable for
λ = 0.0, 0.1. The traffic flow is stable for λ = 0.2.
So the small disturbances will be amplified, and the
density waves appear for λ = 0.0, 0.1. The small dis-
turbances dissipate for λ = 0.2 as time goes on. From
Fig. 7, we can obtain the similar conclusions, that is,
when λ = 0.0 in Fig. 7, the traffic flow is unstable, and
the kink-antikink density waves appear as traffic jam;
when λ = 0.1 in Fig. 7, the traffic flow is metastable,
and the soliton density waves appear as traffic jam; for
λ = 0.2, the density waves disappear, and traffic flow
is uniform over the whole space.
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Fig. 11 Headway profile of the density wave at t = 10, 080 correspond to Fig. 10, respectively

From Figs. 5, 6, and 7, we can see that by introducing
the relative velocity which leads to the stabilization of
the traffic flow.

Figure 8 shows the typical traffic patterns in the
unstable region after a sufficiently long time t = 104

with different λ for a = 1.5 on uphill highway with
slope θ = 6◦. Figure 8 exhibits the time evolution of
the headway for λ = 0.0, 0.1, 0, 2, 0.3. As same as in
Fig. 5, because the linear stability condition (19) is not
satisfied, the traffic flow is linear unstable. But we find
that the amplitude of the density wave decreases as λ

increases. Figure 9 shows the headway profile obtained
at t = 10, 080 corresponding to Fig. 8, respectively.
From Figs. 8 and 9, we find that in the unstable region

the kink-antikink waves appear as traffic jams, and they
propagate backwards.

Figure 10 shows the typical traffic patterns in the
unstable region after a sufficiently long time t = 104

with different λ for a = 1.5 on downhill highway with
slope θ = 6◦. Figure 10 exhibits the time evolution of
the headway for λ = 0.0, 0.1, 0, 2, 0.3. The traffic flow
is linear unstable, but we also find that the amplitude
of the density wave decreases as λ increases. Figure
11 shows the headway profile obtained at t = 10, 080
corresponding to Fig. 10, respectively. From Figs. 10
and 11, we see that the kink-antikink waves appear
as traffic jams, and they propagate backwards in the
unstable region.
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5 Summary

We have investigated the effect of relative velocity upon
traffic flow on a highway with uphill and downhill; we
extend the model proposed by Komada et al. through
taking the relative velocity into account. We obtain the
stability condition of the extended FVDM by using lin-
ear stability theory. The stability condition shows that
the slope and the relative velocity play an important role
in influencing the stability of the traffic flow. The Burg-
ers, KdV, and MKdV equations are obtained to describe
the traffic behavior in the stable, metastable, and unsta-
ble flow region, respectively. The results show that the
stability of traffic flow varies with different slopes, and
the increase of λ leads to the stabilization of the traffic
flow. When λ = 0, the results are consistent with those
in previous work. The simulation results are consistent
with the analytical ones.

The road visibility and mixed traffic may influence
the driver’s action in real traffic. In the Ref. [33,34],
based on the optimal velocity model and FVDM, the
authors considered the mixed traffic flow and visual
information of the follower’s driver and proposed cor-
responding models. Thus, the model proposed in the
paper can be developed by taking these factors into
account, since the methods applied in the paper may
also work in that case. However, it will be more com-
plicated and the focus of the paper in considering the
effect of relative velocity upon the traffic flow on a gra-
dient highway. But taking visual information and mixed
traffic into account will make the car-following model
more realistic, so the visual information and mixed traf-
fic in the gradient highway need to be investigated in
the future.
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