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Abstract A detailed numerical investigation on sta-
bility and bifurcation analysis of a highly nonlinear
electrically driven MEMS resonator has been estab-
lished. A nonlinear model has been developed by using
Hamilton’s principle and Galerkin’s method consider-
ing both transverse and longitudinal displacement of
the resonator. The special care has been paid by incor-
porating higher order correction of electrostatic pres-
sure. The pull-in results and consequences of higher
order correction on the pull-in stability have been inves-
tigated. Furthermore, investigation of nonlinear phe-
nomenon for the consequences of air-gap, electrosta-
tic forcing parameter and effective damping on overall
responses has been thoroughly studied. The possible of
undesirable catastrophic failure at the unstable critical
points has been critically examined. Basins of attrac-
tions that postulate a unique response in multi-region
state for a specific initial condition have been depicted.
The obtained responses using first-order method of
multiple scales have been cross compared with the find-
ings obtained numerically. Findings from this work can
significantly be adopted to identify the locus of instabil-
ity in microcantilever-based resonator when subjected
to AC voltage polarization. In addition, the present out-
comes provide theoretical and practical ideas for con-
trolling the systems and optimizing their operation.
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1 Introduction

The design and development of electrostatically actu-
ated microbeams/plates has been extensively studied
by MEMS community to miniaturize, reduced cost,
high durability and further improve the performance
of transducer and actuators. The microresonator has
been widely used over the years as a key component
of pressure sensors, gyroscopes and RF system. At
present, cantilever-based microresonators have been
used as one of the most useful MEMS resonators in var-
ious applications of micro and nanotechnologies such
as microswitches, sensors, microvalves and microgrip-
pers.

In general, most of the MEMS devices are made up
with either a thin beam or thin plate having cross section
in the order of microns and length in the order of hun-
dreds of microns. The air-gap between microbeam and
stationary electrode is usually maintained at the range
from 10−3 to 10−2 in order to establish an efficient
electrostatic actuation. Within this range, most simple
parallel capacitor formula is justified for calculating
the distributed electrostatic force acting on microele-
ment under the assumption that the surfaces of both
deformable beam and electrode are locally parallel to
each other. The integration of this assumption is appro-

123



1782 B. Pratiher

priate in some way when the electrostatic actuated
devices are modelled either as lumped spring–mass or
as continuous microbeams model with small deflection.
But, when this range is not necessarily small, typically
of the order of 10−2–10−1 or even higher for design-
ing small-size of electrically actuated devices, parallel
capacitor formula becomes inappropriate and insuffi-
cient. In some applications, it is recommended to main-
tain a high gap-length ratio when a large deflection of
the beam is anticipated that may lead a nonlinear elec-
trostatic interaction between deformable beam and sta-
tionary electrode. In this circumstance, the employ of
linear formulation is not appropriate for accurately sim-
ulating the dynamic performance as it does not consider
the mid-plane stretching effect which exhibits a non-
linear electrostatic pressure distribution. A higher order
approximation of electrostatic pressure is highly antic-
ipated to build an accurate and realistic distribution of
the electrostatic pressure acting on the microbeam. Sev-
eral investigators have been attempting in a long period
of time to improve the design characteristics by sub-
sequent development of MEMS model and studying
the associated dynamics. In the following subsection,
a brief literature on the current research of modelling
and dynamics of MEMS structures has been cited.

Luo and Wang [1] investigated analytically and
numerically the chaotic motion in the certain fre-
quency band of a MEMS with capacitor nonlinearity.
Pamidighantam et al. [2] derived a closed-form expres-
sion for the pull-in voltage of fixed–fixed microbeams
and fixed-free microbeams by considering axial stress,
nonlinear stiffening, charge re-distribution and fring-
ing fields. They carried out an extensive analysis of the
nonlinearities in a micromechanical clamped–lamped
beam resonator. Abdel-Rahman et al. [3] presented a
nonlinear model of electrically actuated microbeams
with consideration of electrostatic forcing of the air-
gap capacitor, restoring force of the microbeam and
axial load applied to the microbeam. The response of
a resonant microbeam subjected to an electrical actu-
ation has been investigated by Younis and Nayfeh [4].
Xie et al. [5] performed the dynamic analysis of a
microswitch using invariant manifold method. They
considered microswitch as a clamped–clamped micro-
beam subjected to a transverse electrostatic force.
An analytical approach and resultant reduced-order
model to investigate the dynamic behaviour of electri-
cally actuated microbeam-based MEMS devices have
been demonstrated by Younis et al. [6]. The natural

frequency and responses of electrostatically actuated
MEMS with time varying capacitors have been inves-
tigated by Luo and Wang [7]. Authors have demon-
strated that the numerically and analytically obtained
predictions were in good agreement with the find-
ings obtained experimentally. A simplified discrete
spring–mass mechanical model has been considered
for the dynamic analysis of MEMS device. In Teva
et al. [8], a mathematical model for an electrically
excited electromechanical system based on lateral res-
onating cantilever has been developed. The authors
obtained static deflection and the frequency response
of the oscillation amplitude for different voltage polar-
ization conditions. Kuang and Chen [9] and Najar et
al. [10] studied the dynamic characteristics of nonlin-
ear electrostatic pull-in behaviour for shaped actuators
in micro-electro-mechanical systems (MEMS) using
the differential quadrature method (DQM). Zhang and
Meng [11] analysed the resonant responses and non-
linear dynamics of idealized electrostatically actu-
ated microcantilever-based devices in micro-electro-
mechanical systems (MEMS) by using the harmonic
balance (HB) method. Rhoads et al. [12] proposed a
microbeam device which couples the inherent bene-
fits of a resonator with purely parametric excitation
with the simple geometry of a microbeam. Krylov and
Seretensky [13] developed higher order correction to
the parallel capacitor approximation of the electrostatic
pressure acting on microstructures taking into account
the influence of the curvature and slope of the beam on
the electrostatic pressure. The higher order approxima-
tion has validated through a comparison with analyti-
cal solutions for simple geometries as well as numeri-
cal results. Decuzzi et al. [14] investigated the dynamic
response of a microcantilever beam used as a transducer
in a biomechanical sensor. Here, Euler-Bernoulli beam
theory was introduced to model the cantilever motion
of the transducer. They also considered Reynolds equa-
tion of lubrication for the analysis of hydrodynamic
interactions. A number of review papers [15–18] pro-
vided an overview of the fundamental research on
modelling and dynamics of electrostatically actuated
MEMS devices under working different conditions.
Nayfeh et al. [19] studied that the characteristics of
the pull-in phenomenon in the presence of AC loads
differ from those under purely DC loads. Zhang et al.
[20] furnished a survey and analysis of the electrosta-
tic force of importance in MEMS, its physical model,
scaling effect, stability, nonlinearity and reliability in
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details. Chao et al. [21] predicted the DC dynam-
ics pull-in voltages of a clamped–clamped microbeam
based on a continuous model. They derived the equa-
tion of motion of the dynamics model by consider-
ing beam flexibility, inertia, residual stress, squeeze
film, distributed electrostatic forces and its electrical
field fringing effects. Shao et al. [22] demonstrated
the nonlinear vibration behaviour of a micromechan-
ical clamped–lamped beam resonator under different
driving conditions. They developed a nonlinear model
for the resonator by considering both mechanical and
electrostatic nonlinear effects, and the numerical simu-
lation was verified by experimental findings. Moghimi
et al. [23] investigated the nonlinear oscillations of
microbeams actuated by suddenly applied electrosta-
tic force including the effects of electrostatic actua-
tion, residual stress, mid-plane stretching and fringing
fields in modelling. Chatterjee and Pohit [24] intro-
duced a nonlinear model of an electrostatically actuated
microcantilever beam considering the nonlinearities of
the system arising out of electric forces, geometry of
the deflected beam and the inertial terms. Furthermore,
one may use the review articles [15–18] as a source
of information to the overall images about the electro-
mechanical model of MEMS devices actuated by elec-
trostatically and related dynamics. A detailed of per-
turbation techniques widely used to obtain the nonlin-
ear solution of such kind of structures can be found
in [25–27].

Nonetheless, after an extensive literature review, it
has been realized that most of the previously carried
out researches were dealing with eigenvalue problems
exhibiting the vibrations around the deflection position
of the microbeam and obtaining the natural frequencies
and mode shapes by numerically solving the eigenvalue
problem for various system parameters. It has been also
observed that several researchers have investigated the
nonlinear behaviour of micromechanical system with
different boundary conditions under various driving
conditions about its static beam positions [28–33]. A
large number of researchers have used finite element
method (FEM) simulations, analytical beam models,
or lumped element models to analyse the resonating
various microstructures. In addition, it has been noticed
that many researchers are still considering either simply
lumped spring–mass model or Euler–Bernoulli beam
theory with small deflection assumption to carry out the
theoretical and experimental investigation of dynamic
performance of MEMS devices [34–36]. Therefore,

so far enough investigation on the stability and bifur-
cation analysis of electrostatically driven cantilever-
based MEMS device accounting the effect of mid-
plane stretching and nonlinearly distributed electro-
static force between deformable microbeam and elec-
trode under periodically applied AC potential differ-
ence has been lacking in the existing available works.
Moreover, in order to enable a proper understand-
ing, a better insight into the MEMS devices and an
accurate simulation of mechanical behaviours, it is
fairly important to consider a more realistic shape
of the bending deflection of the microbeam and the
development of resulting electrostatic pressure distrib-
ution.

Keeping these points in the mind and to the best of
the author’s current knowledge, an attempt has been
made to investigate the dynamic stability and bifur-
cation analysis of electrostatically actuated MEMS
cantilever taking into account the effect of mid-plane
stretching and nonlinear distribution of electrostatic
pressure acting on the beam. Here primary aimed at
author is to investigate the qualitative assessment of
the bifurcations which usually demonstrate the locus
of instability that expresses the boundary of the sta-
ble and unstable motions of the system. Even though
the introduced equation of motion is similar to that of
considered by Pohit and Chatterjee [24], the results
obtained in the present work are completely different
with the outcomes observed in the work [24] where
only static and dynamic behaviour of the tip deflection
of the microbeam for a wide range of applied DC volt-
age has been investigated. In the present work, pull-in
results and its response on higher order correction of
electrostatic force of the proposed model have been
accomplished and compared with previously obtained
finding. Furthermore, effect of the higher order cor-
rection of electrostatic pressure in the pull-in stabil-
ity has also been investigated. In contrast to the work
[24], spatio-temporal mathematical model of electri-
cally excited cantilever-based MEMS resonator can-
tilever has been developed and further discretized into
temporal equation of motion. The method of multi-
ple scales has been used to analyse the stability and
bifurcation of the steady-state responses. The effect of
variation of air-gap, electrostatic forcing, and damping
on the dynamic behaviour of the resonator has been
investigated. The basin of attraction has been illustrated
for predicting the specific steady state solution under
certain initial condition in the region having multiple
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solutions. The solution demonstrated in this present
work enables the designer to investigate the loss of
stability in dynamical performance of the resonator
or similar structures with respect to the electrostatic
forcing.

2 Problem formulation

Figure 1 illustrates the pictorial diagram of a con-
tinuous microcantilever beam subjected to AC poten-
tial difference by stationery electrode. The microres-
onantor is modelled as a microcantilever beam in the
present study as shown in Fig. 1. One end of the can-
tilever beam is clamped at a dielectric support and for
sake of simplicity; it has assumed that the microcan-
tilever beam has electrostatically actuated by a sim-

ple square root voltage signal V = [V0 cos (Ωt)]
1
2

[11,28,29] with the objective of keeping apart the para-
metric effects from harmonic effects where V0, Ω are
the amplitude and frequency of AC polarization volt-
age, respectively. The equation of motion has been
derived using Euler–Bernoulli beam neglecting the
effect of variation of shear stresses across a section
and rotary inertia of the beam. Under the potential dif-
ference, a transverse deflection v(x, t) and axial dis-
placement component u(x, t) take place along the iner-
tial direction (x, y) of the displacement of the beam
centroid axis. When subjected to potential difference,
microbeam undergoes a large deformation and devel-
ops nonlinear deflection-dependent electrostatic pres-
sure acting on the microcantilever beam. The vari-
ables v(x, t) and u(x, t) are pertained through a con-
straint equation originating from inextensibility con-
dition (1 + ∂u

∂x )2 + ( ∂v
∂x )2 = 1 of the beam. For large

oscillation model, axial displacements u(x, t) can be
explicitly written as u (x, t) = ∫ ξ

0

√
1 − v′2dx − ξ

in term of transverse deflection v(x, t). Considering
a small element at a distancex from fixed end (Fig. 1)
along elastic line of the beam, bending moment M(s)
can be expressed according to Euler–Bernoulli beam
theory as

M (x) ≈ E Iκ(x). (1)

Here, E is elastic modulus, and I is cross-sectional
moment of inertia, and nonlinear curvature κ(s) at any
section is expressed as follows in terms of transverse
deflection.

κ(x) = ∂φ

∂x
= φ/ =

{

1 −
(

∂v

∂x

)2
}

∂2v

∂x2

+
(

∂v

∂x

∂2v

∂x2

)
∂v

∂x
, and sin(φ) = ∂v

∂x
= v′.

(2)

Here, tan(φ) is slope of the rotation φ. Taking time
derivative of u (x, t), and sin(φ), expanding by using
binomial expansion and eliminating terms of order
higher than three one may yield the following
expressions.

ü (x, t) =
ξ∫

0

{(
v̇′)2 + v′v̈′} dx, and φ̇ = v̇′ + 1

2
v′v̇′.

(3)

Hence, the potential energy due to elastic bending and
kinetic energy, respectively, is expressed as

Ub = 1

2

L∫

0

E I

(
∂φ (x, t)

∂x

)2

dx, and T

= 1

2

L∫

0

ρ A

{(
∂v (x, t)

∂t

)2

+
(

∂u (x, t)

∂t

)2
}

dx .

(4)

The potential energy stored in the beam owing to
the development of higher order electrostatic pressure
induced between microbeam and fixed electrode main-
tained at relatively large gap is expressed [12,23,24]
as

Ue = −ε0wV 2

2

L∫

0

dx

(d0 − v)

−ε0wV 2

2

L∫

0

1

3 (d0 − v)

{
∂

∂x

(
d0 − v

L

)}2

dx .

(5)

Using the extended Hamilton’s Principle with con-
sidering Eqs. 1–5 and Taylor’s expansion, finally the
beam governing equation is obtained as terms of order
higher than three are eliminated in term of transverse
deflection v [24].

ρ Av̈ + cv̇

+E Iv′′ ′′ + E I
[(

v′′)3 + 4v′v′′v′′′ + (v′)2 v′′ ′′]
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Fig. 1 a A pictorial
diagram of microcantilever
beam separated from a
stationery electrode at a
distance of d, b a schematic
diagram of a deflected
resonator considering large
displacements as the
mid-plane stretching effect

+ρ A

⎡

⎣v′
ξ∫

0

{
v̈′v′ + (v̇′)2} dξ

⎤

⎦

−ρ A

⎡

⎢
⎣v′′

L∫

ξ

η∫

0

{
v̈′v′ + (v̇′)2} dξdη

⎤

⎥
⎦

= 1

2

ε0bV 2

(d0 − v)2 + 1

2

ε0bV 2

(d0 − v)2

×
⎡

⎣

{(
v′)2 + 2 (d0 − v) v′′

}

3L2

⎤

⎦ , (6)

with the boundary conditions i.e. essential or imposed
and natural or dynamic boundary condition neglecting
the higher order terms as

v (x, t) = ∂
∂x v (x, t)=0 at x = 0, L

E I ∂2

∂x2 v (x, t)= ∂
∂x

(
E I ∂2

∂x2 v (x, t)
)
=0 at x = 0, L .

(7)

Here, v is transverse displacement of the beam. ()′

and
·

( ) stand for first derivative with respect to s and
time, respectively. Here, E I, ρ, A, L , b and h are flex-
ural rigidity, mass density, cross-sectional area, length,

width and height of the beam, respectively. While ε0

is permittivity constant for free space, d0 is initial gap
between microbeam and stationery electrode and c is
effective viscous damping constant for this model. It
may also be noted that ξ, η are the integration vari-
ables. Using nondimensional parameters w = (v/d0),

s = (x/ l), τ = (t/l2)
√

E I/ρ A, η̄ = (η/ l) and
ξ̄ = (ξ/ l), the above Eq. (7) can be rewritten as

ẅ + (c/ρ A) ẇ + w′′ ′′ + (δ)2
[(

w′′)3 + 4w′w′′w′′′

+ (w′)2 w′′′′]+ (δ)2

⎡

⎢
⎣w′

ξ̄∫

0

{
ẅ′w′ + (ẇ′)2

}
dξ̄

⎤

⎥
⎦

− (δ)2

⎡

⎢
⎣w′′

1∫

ξ̄

η̄∫

0

{
ẅ′w′ + (ẇ′)2

}
dξ̄dη̄

⎤

⎥
⎦

= α
(

1 + 2w + 3w2 + · · ·
)

−αδ

3

(
2w′′ + 2ww′′ + w′2 + · · ·

)
, (8)

with boundary conditions as

w = ∂
∂s w = 0 at s = 0, 1

E I ∂2w
∂s2 = ∂

∂s

(
E I ∂2w

∂s2

)
= 0 at s = 0, 1.

(9)
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Here, δ = d0/ l, and α = 6ε0l4V 2
0

Eh3d3
0

. The deflection of

the microbeam undergoing an electrostatically actua-
tion can be written as

w (s, τ ) =
n∑

i=1

γn (s) ϕn (τ ),

n = 1, 2, 3, . . . , 0 ≤ s ≤ 1. (10)

Here, ϕn (τ ) is the time modulation, and γn(s) is a
companion function that satisfies the boundary condi-
tions, both geometric and natural, and not necessarily
the equation of motion. Here, companion function is
assumed to be an eigenfunction γn(s) of the cantilever
beam expressed as

γn (s)= sin (βn)+sinh (βn)

cos (βn)+cosh (βn)
{cosh (βns)−cos (βns)}

+ (sinh (βns) − sin (βns)) . (11)

One may find βn from the following characteristic
equation.

1 + cos βn cosh βn = 0. (12)

By adopting the Galerkin’s techniques, the weighting
function is chosen to be the same as that of admissible

function. Here author has used a single admissible trial
function for solving the problem as first mode is con-
sidered to be dominant mode of the system. The partial
governing equation is then discretized with single mode
assumption, and it has expressed as

1∫

0

R (s, τ ) γ (s, τ ) = 0. (13)

Here, R(s, t) is a nonlinear residual operator of the
governing equation that can be obtained by substitut-
ing Eq. (10) into Eq. (8). For further analysis, one may
obtain the following nondimensional time-dependent
equation of motion neglecting higher order terms and
considering viscous damping effect.

ϕ̈ + ϕ + ε
(

2ζ ϕ̇ + αϕ3 + βϕ̈ϕ2 + Γ ϕ̇2ϕ
)

= ε
(

f cos Θτ + hϕ cos Θτ + kϕ2 cos Θτ
)

. (14)

Here, Θ = (Ω/ωe). The expression for the sym-
bolic nondimensional parameters (i.e. ωe, ζ, α, β, Γ,

f, h, k) in Eq. (14) is manifested below.

ω2
e = E I

ρ Al4

(∫ 1
0 γ (s) γ iv (s) ds
∫ 1

0 γ 2(s)ds

)

= E I

ρ Al4

(
h1

h2

)

, ζ = c

2ερ Aωe
,

εα =
(

d0

l

)2 (h1

h2

)(∫ 1
0 γ (s)

(
γ ′′(s)

)3 ds+4
∫ 1

0 γ s)
(
γ ′′(s)

)3 ds
∫ 1

0 γ 2(s)ds

)

,

εβ =
(

d0

l

)2
⎛

⎝

∫ 1
0 γ ′(s)γ (s)

[∫ ξ̄

0

{
γ ′ (ξ̄

)}2
dξ̄
]

ds − ∫ 1
0 γ ′′(s)γ (s)

[∫ 1
ξ̄

∫ η̄

0

{
γ ′ (ξ̄

)}2
dη̄dξ̄

]
ds

∫ 1
0 γ 2(s)ds

⎞

⎠ ,

εΓ =
(

d0

l

)2
⎛

⎝

∫ 1
0 γ ′ (s) γ (s)

[∫ ξ̄

0

{
γ ′ (ξ̄

)}2
dξ̄
]

ds − ∫ 1
0 γ ′′(s)γ (s)

[∫ 1
ξ̄

∫ η̄

0

{
γ ′ (ξ̄

)}2
dη̄dξ̄

]
ds

∫ 1
0 γ 2(s)ds

⎞

⎠ ,

ε f = α
h2

h1

( ∫ 1
0 γ (s)ds
∫ 1

0 γ 2(s)ds

)

, εh = α
h2

h1

⎛

⎝

∫ 1
0 γ 2(s)ds −

(
d0
3l

) ∫ 1
0 γ (s)γ ′′(s)ds

∫ 1
0 γ 2(s)ds

⎞

⎠

εk = α
h2

h1

⎛

⎝

∫ 1
0 γ 3 (s) ds −

(
2d0
3l

) ∫ 1
0 {γ (s)}2 γ ′′ (s) ds

∫ 1
0 γ 2 (s) ds

⎞

⎠ . (15)
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The temporal equation of motion (14) comprises linear
(2ζ ϕ̇), cubic geometric (αq3) and inertial (βq2q̈ +
Γ q̇2q) nonlinear terms, direct forced term f cos (Θτ),
parametric term h cos (Θτ) ϕ and nonlinear parametric
term k cos (Θτ) ϕ2. However, the temporal equation of
motion (14) contains many nonlinear terms, and it is
difficult to find closed-form solution. Hence, one may
go for approximate solution by using the perturbation
method. Here method of multiple scales is used, which
has been described in the following section.

3 Perturbation technique: method of multiple
scales

By using similar procedure as explained in [25–27,31],
substituting Tn = εnτ, n = 0, 1, 2, 3, . . . and dis-
placement ϕ(τ ; ε) = ϕ0 (T0, T1) + εϕ1 (T0, T1) +
O
(
ε2
)

in Eq. (14) and equating the coefficients of like
powers of ε, one may find the following expressions:

Order ε0 : D2
0ϕ0 + ϕ0 = 0, (16)

Order ε1 : D2
0ϕ1 + ϕ1 = −2D0 D1ϕ0 − 2iζϕ0 − α ϕ3

0

−β
(

D2
0ϕ0

)
ϕ0 − Γ (D0ϕ0)

2 ϕ2
0

+ f cos (ΘT0) + h cos (ΘT0) ϕ0 + k cos (ΘT0) ϕ2
0 .

(17)

General solutions of Eq. (16) can be written as

ϕ0 = A(T1) exp(iT0) + Ā(T1) exp(−iT0). (18)

Substituting Eq. (18) into Eq. (17) leads to

D2
0ϕ1 + ϕ1 = −2i D1 A exp (iT0) − 2iζ A exp (iT0)

−3 (α − β + Γ ) A2 Ā exp (iT0)

− (α − β − Γ ) A3 exp (3iT0) + f

2
exp (iΘT0)

+h

2
A exp i (Θ + 1) T0 + h

2
Ā exp i (Θ − 1) T0

+k

2
A2 exp i (Θ + 2) T0 + k

2
A2 exp i (Θ − 2) T0

+k

2
AĀ exp (iΘT0) + cc. (19)

Here, cc stands for the complex conjugate of preced-
ing terms. It is clearly observed that system comprises
secular terms or small divisor terms viz., terms that
are directly proportional to exp (iT0) or ≈ (iΘT0) , ≈
exp i (Θ − 1) T0, ≈ exp i (Θ − 2) T0 depending on
various resonance conditions. It is noteworthy that Eq.
(19) will contain secular or small divisor terms when
Θ ≈ 1, Θ ≈ 3 or Θ ≈ 2. In the following subsec-
tions, three resonance conditions viz., primary reso-
nance when Θ ≈ 1, principal parametric resonance
condition when Θ ≈ 2, and third-order subharmonic
conditions when Θ ≈ 3 have been discussed.

3.1 Primary resonance condition when (Θ ≈ 1)

Using detuning parameter σ to express the nearness
of Θ to 1, one may substitute equation Θ = 1 + εσ ,
into Eq. (19) and setting A equal to (1/2) a (T1) eiβ(T1)

and φ = σ T1 − β. Separating the real and imaginary
terms, one may obtain a set of reduced equations as
given below.

a′ = −ζa +
(

f

2

)

sin φ +
(

k

8

)

a2 sin φ, (20)

aφ′ = aσ − 3

8

(

α − β + Γ

3

)

a3 +
(

f

2

)

cos φ

+
(

3k

8

)

a2 cos φ. (21)

In simple resonance condition, system has only non-
trivial responses i.e. a �= 0 obtained from Eqs. (20–
21). Steady-state responses have been determined by
converting differential Eqs. (20–21) into set of alge-
braic equations by setting a′ = 0, and φ′ = 0. Here,
Newton’s method has used for obtaining steady-state
solutions by simultaneously solving algebraic equa-
tions. Stability of the steady state responses has been
analysed by investigating eigen-values of the Jacobian
matrix which has been obtained by perturbing the alge-
braic equations with a = ao+a1 and γ = γ0+γ1 where
a0, γ0 are singular points.

J =
⎡

⎣
−ζ + ( k

4

)
a0 sin φ0

(
f
2

)
cos φ0 + ( k

8

)
a2

0 cos φ0

σ − 9
8 a2

0

(
α − β + Γ

3

)+ ( 9k
8

)
a2

0 cos φ0 −
(

f
2

)
sin φ0 − ( 3k

8

)
a2

0 sin φ0

⎤

⎦ . (22)
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System is stable if and only if all real parts of the
eigen-values are negative. Now the first-order nontriv-
ial steady-state response of the cantilever-based MEMS
devices is as follows.

ϕ = a cos (Θτ − φ) + O (ε) + · · · . (23)

3.2 Principal parametric resonance (Θ ≈ 2)

Here, one may substitute equation Θ = 2 + εσ ,
into Eq. (19) and setting A = (1/2) a (T1) eiβ(T1) and
φ = σ T1 −β. Separating the real and imaginary terms,
one may obtain a set of reduced equations as given
below.

a′ = −ζa +
(

h

4

)

a sin φ, (24)

aφ′ = aσ − 3

8

(

α − β + Γ

3

)

a3 +
(

h

2

)

cos φ.(25)

Here, it has been observed that system possesses
both trivial and nontrivial responses determined by
solving the reduced nonlinear algebraic equations at
steady-state condition by using Newton’s method,
simultaneously. To find the stability of the steady-state
responses, one may perturb Eqs. (24–25) by substi-
tuting a = ao + a1 and γ = γ0 + γ1 where a0, γ0

are the equilibrium points and then investigating the
eigen-values of the resulting Jacobian matrix (J ). The
Jacobian matrix (J ) is given by

J =
[ −ζ+ h

4 sin φ0
h
4 a0 cos φ0

σ− 9
8

(
α−β + Γ

3

)
a2

0+ h
2 cos φ0 − h

2 a0 sin φ0

]

.

(26)

For this case the system will be stable if and only if
all the real parts of the eigen-values are negative. Now
the first-order nontrivial steady-state response of the
system can be given as

ϕ = a cos

(
Θτ

2
− φ

)

+ O (ε) + · · · . (27)

3.3 Subharmonic resonance case (Θ ≈ 3)

Following similar procedure as described in Sects. 3.1
and 3.2, here one may use the detuning parameter σ to
express the nearness of Θ to 3 (Θ = 3 + εσ ) and

substituting similar A equal to 1
2 a (T1) e(iβT1) in Eq.

(19) and separating the real and imaginary parts, yields
the following reduced equations.

a′ = −ζa + k

8
a2 sin φ, (28)

aφ′ = aσ − 3

8

(

α − β + Γ

3

)

a3 + 3k

8
a2 cos φ (29)

Here, γ = σ T1 −3β. For steady-state condition, a′ and
γ ′ equal to zero. Similar to the primary resonance case,
one may determine here the system responses numer-
ically by solving the equations obtained after setting
a′ and γ ′ equal to zero using similar Newton’s method
for different system parameters. It is clear that unlike
primary resonance case and similar to the principle
resonance conditions, here the system has both trivial
and nontrivial solutions. So, stability of the steady-state
response of this case can be determined by investigat-
ing the nature of the equilibrium points.

4 Numerical simulations and discussion

The nondimensional equation of motion with nondi-
mensional design parameters of the device has been
stated in Eq. (14). Therefore, this equation of motion
may be used to study the dynamic behaviours for any
other similar kind of electrically driven microbeam.
Both static and dynamic analyses have been numer-
ically investigated in this section. Though the static
analysis has been demonstrated in order to verify the
correctness of the present work obtained numerically,
in dynamic analysis, the effect of air-gap length ratio
( d0

l = δ), electrostatic forcing parameter α which is
directly proportional to the square of the amplitude of
applied voltage (V 2

0 ) for a particular air-gap, and vis-
cous dissipative element on the vibratory motion of
the system has been examined. An effective numeri-
cal solution technique for the computation of steady-
state nonlinear dynamic behaviour based on first-order
method of multiple scales (MMS) has been investigated
for various resonance conditions. It may be noted that in
all the numerical simulations for finding the frequency
response curve, the vibration amplitude (a), a gener-
alized coordinator of ϕ equal to v(l, t)/γ (l) has been
considered in comparison to the beam tip deflection
v(l, t)). The simulation for finding a, i.e. an ampli-
tude for single mode discretization for different excita-
tion frequencies, i.e. equivalently different σ , has been
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reported here. Kindly note that in this present work,
the values considered for the variables of forcing para-
meter and air-gap length are well below the value that
produces the pull-in stability.

4.1 Static analysis

In this subsection, static deflection of the tip of the
microcantilever beam has been determined by directly
solving the BVP by setting all time derivatives in Eq. (8)
equal to zero. The two-point boundary value problem
for solving the deflection of w (s) at s = 1 using MAT-
LAB BVP solver (bvp4c) within relative and absolute
tolerance of 10−6. In this present work, static deflection
of microcantilever beam has been only plotted in Fig.
2 that represents the stable equilibrium solutions prac-
tically achieved by the system. The stable solutions for
the proposed model in pull-in results has been verified
and are found to be in very good agreement with the pre-
viously obtained numerical and experimental results.
The influence of nonlinear elastic deformation in the
beam for investigating the static deflection of the beam
under a wide range of electrostatic forces (α) has been
illustrated. Fig. 2a exhibits a representative nondimen-
sional deflection of the tip with voltages (α) for various
values of δ = (d0/ l) ranging from zero to forcing level
where the pull-in stability occurs. It has been found
that the estimated static pull-in voltage increases with
increase in gap-length ratio δ = (d0/ l). It is worthy
to note that the pull-in results occur at lowest value
of electrostatic force for the system with higher non-
linear curvature, and it has been observed that for the
same parameters considered in Ref. [24], the pull-in
condition starts at α equal to 1.69 that represents the
pull-in voltage of 66.83 compared to the pull-in voltage
66.78 obtained in Ref. [24] and 68.5 V obtained in Ref.
[25], experimentally as mentioned in the work of Pohit
and Chatterjee [24]. Hence, the pull-in results shown in
Fig. 2 are in better agreement in comparison to the ana-
lytical results [24] and the experimental results [34].
Also the effect of higher order correction factor of elec-
trostatic pressure shows in Fig. 2b. It has been observed
that the critical point at which the structural instability
(pull-in) develops is occurred at lower value of α for
the electrostatic pressure neglecting the effect of higher
order correction. It can be observed that the nondi-
mensional static pull-in deflection starts in the range of
0.45–0.5 as compared to value of 0.33 obtained using

linear theories. Thus, the effect of nonlinear electrosta-
tic forces with higher order correction terms operates
the stability limit through the critical pull-in voltage
which provides a better estimation for the design of
nonpull-in devices, and the linear estimation underes-
timates the stability limits of the microcantilever.

4.2 Dynamic performance

4.2.1 Primary resonance condition

Here, the resonator has been excited with a frequency
of the applied alternative voltage nearly equal to the
fundamental frequency of the resonator. In this vibrat-
ing state, it is observed that the amplitude of vibra-
tion is always equal to a nonzero solution. Both stable
and unstable nontrivial solutions are being observed.
Stability of those solutions has been analysed in order
to avoid the sudden change in behaviour as a para-
meter passes through a critical value called a bifurca-
tion point. The sudden change in amplitude leads the
catastrophic failure of the whole system. The graphical
representation of vibration amplitude for varying var-
ious system control parameters has been constructed.
Figure 3 illustrates a representative frequency response
curves or a typical solution for various values of air-gap
between resonator and stationary electrode (d0/ l) = δ,
while the forcing parameter α is keeping constant equal
to 1. It is worthy to note that amplitude of vibratory
motion of the resonator is increased for sweeping up
the frequency, and finally it is reached to a critical
point A which is called as saddle-node fixed bifur-
cation point. Any further increase of the frequency at
this point leads a spontaneous amplitude increase to
a point A/ i.e. a sudden upward jump in the ampli-
tude from lower to higher amplitude. Further increase
in frequency, the amplitude of vibratory motion varies
along the path AB. For sweeping down condition, when
the frequency of applied voltage is decreasing from
point C , the response amplitude goes on increasing and
finally reaches a point D. A slight decrease in frequency
at this critical point leads a similar sudden upward jump
up phenomenon. Further decrease in frequency brings
down the amplitude of responses to a lower value con-
tinuously, and a sudden jump down phenomenon takes
place at point E . It may be observed by experimen-
tal investigation that this jump phenomenon results
in developing and propagating the mechanical crack
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Fig. 2 a Variations of the
nondimensional tip
deflection w|x=1 with
variable α for various values
of δ b effect of higher order
correction of electrostatic
pressure on the
nondimensional tip
deflection w|x=1 with
variable α

across the width of the beam, and subsequent jump
up and down in response amplitude is associated with
the crack growth. Simultaneously, it is observed that
with increase in δ, response amplitude decreases pre-
dominantly. For instance, a sharp decrease in response
amplitude from 10.59 to 0.9388 is found as δ steps
up from 0.05 to 0.3. Hence, it is noteworthy that with
increase in air-gap between resonator and ground, the
amplitude of responses is reduced due to the fact of
dominating the terms containing the coefficients of f, k
over the terms function of δ. It is observed that with
increase in δ, forward saddle-node bifurcation point A
and backward saddle-node bifurcation point E disap-

pear from the response curve. Hence, sudden change in
amplitude due to these critical points is reduced. The
system dynamics becomes stable in forward path for
higher values of δ.

One may observe that at some frequencies in the
entire frequency range from 0.5 to 1.5, theoretically
more than one solution exists. For relatively small value
of δ, system has two bistable regions and two sin-
gle stable zones as shown in Fig. 3a, while for higher
value, system has only one bi-stable region. Being exis-
tence of three solutions in Fig. 3a–d, it is desirable
to check the stability of these solutions. For a spe-
cific initial condition, the behaviour of amplitude and
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Fig. 3 Effect of varying the ratio of δ keeping α and ζ constant equal to 1.0 and 0.1 a δ = 0.05, b δ = 0.1, c δ = 0.2, and δ = 0.3

phase has been plotted as time progresses. It has been
observed from Fig. 3 that the system has two stable
solutions in these regions. For specific parameters, the
system possesses theoretical response as shown in Fig.
3 where the points P1, P2, and P3 are representing dif-
ferent amplitudes corresponding to a single frequency.
It is expected that the point P2 is unstable and can-
not be realised by the system physically. This obser-
vation is clearly portrayed by the representation of
the basin of attractions as shown in Fig. 4 in a ∼ φ

plane which is obtained by numerically solving the
reduced Eqs. (20–21) for Θ equal to 0.7 and 1.15,
respectively. Hence, inappropriate selection of initial
conditions mostly leads the wrong output response. It
is important for finding the appropriate condition for a

specific solution that would be achieved physically by
the system.

One may validate the results obtained by using
perturbation techniques with the results obtained by
numerically solving the temporal equation of motion
(14). Fourth order Runge–Kutta method is used to
solve the temporal equation of motion for finding the
time response of the system as illustrated in Fig. 5.
Four points viz., A, B, C and D identified with cross
marks on the frequency response curves shown in Fig.
3b are considered for the comparison purpose. The
amplitude of the periodic response obtained by numer-
ically integrating the temporal equation is found to
be 0.07517, while the amplitude obtained by using
first-order method of multiple scales is observed to
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Fig. 4 Basin of attractions for a ω̄ = 0.7, b ω̄ = 1.15 as key to the Fig. 2a

be 0.07164. Hence, the error in the amplitude of the
response is found to be 4.92 %. Similarly, after inves-
tigation, it has been observed that the errors for other
three points B, C and D are found to be nearly equal
to 4.5 %. From the steady-state response, one may note
that the result obtained by numerically solving the tem-
poral equation of motion (14) is found to be in good
agreement with that determined by using the method of
multiple scales. The amount of error in amplitude can
be substantially reduced by using higher order method
of multiple scales. However, incorporating higher order
perturbation techniques will enhance the computation
process and complexity of problem. In order to avoid
this complexity, first-order method of multiple scales
has been employed.

Figure 6 describes the behaviour of the response
curves with changing forcing parameter α from 0.25
to 1.25. It is worthy to note that pattern of response
curve remains the same, but the response amplitude
is decreased as increase in forcing quantity of the sys-
tem. The backward saddle-node bifurcation point starts
as higher frequency and jump length increase with
increase in forcing parameter α. The stating amplitude
of the MEMS device gets higher with increase in the
forcing function α as shown in Fig. 6d.

Figure 7 demonstrates the effect of damping on
the system dynamic behaviour considering four dif-
ferent values of viscous damping constant ζ . With
increase in damping, a slight decrease in amplitude

of the response has been observed. For high value of
damping, the system experiences a number of saddle-
node bifurcation points because of possessing two sep-
arate response curves. Discontinuity in amplitude of
the results at the critical points can be observed in the
dynamic responses of the system. Furthermore, it is
investigated that the upper response curve disappears
for a higher value of damping, and system becomes
stable.

4.2.2 Principle parametric resonance condition

In this condition, the microcantilever beam is vibrating
with a frequency of the applied voltage nearly equal to
the twice the fundamental frequency of the resonator. In
this vibrating situation, it is observed that the amplitude
of vibration may switch from zero to nonzero value and
vice-versa depending upon the state of vibration being
considered. Interestingly, the trivial and nontrivial solu-
tions are found to be both stable and unstable relying
on the selected value of various system control parame-
ters and chosen frequency of the potential difference.
Sudden change in amplitude has taken place because
of subcritical pitchfork bifurcation point, and the dis-
continuity in amplitude leads the catastrophic failure
of the system. The influence of forcing parameter α on
the dynamic behaviour of the entire system in response
to the forcing frequency has been investigated in Fig. 8.
With increase in forcing parameter α, a slight increase
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Fig. 5 Time history for the points A, B, C and D as marked in Fig. 2b

in response amplitude is observed. The jump length
increases with increase in α. The pitchfork bifurcation
point starts at higher frequency when the air-gap length
ratio increases.

Response obtained by using the method of multi-
ple scales is compared with those found by numer-
ically solving the temporal Eq. (14). Time response
illustrated in Fig. 9a for point A clearly depicts that
the steady-state response is stable trivial state which
is same as that of observed in Fig. 8. Similarly, the
amplitude of steady-state response obtained by solv-
ing the temporal Eq. (14) is same as the response
shown in Fig. 9b, (point B) obtained by method of
multiple scales. Time response clearly shows that the
trajectory is initiated from the unstable fixed-point
response and finally moves towards stable fixed-point

response. Hence, these response obtained by solving
the temporal equation of motion is in good agreement
with those obtained by using the method of multiple
scales.

Figure 10 provides the behavioural description of
response curves for four different values of (d0/ l) = δ.
The amplitude of response decreases with increase in
air-gap δ. The unstable zone, i.e. region between super-
critical and subcritical pitchfork bifurcation points,
remains the same for all value of air-gaps δ, and hence,
the jump up phenomenon always occurs at almost fre-
quency.

The influences of damping on the response curves
have been depicted in Fig. 11 for four different values
of damping ratio ζ . A similar observation to that of
explained in Fig. 9 has also been reported here. With
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Fig. 6 Effect of varying the ratio of α keeping δ constant equal to 0.2 a α = 0.25, b α = 0.75, c α = 1.0, and d α = 1.25

increase in damping, the response amplitude and jump
length decrease. Unlike the condition of varying air-
gap, here unstable zone is reduced with increase in
damping.

4.2.3 Subharmonic resonance condition

This resonance is took place when the frequency of
the applied voltage is nearly equal to thrice the fun-
damental frequency of the resonator. It is worthy to
note that the amplitude of vibration may switch from
nonzero to zero value as trivial solutions are found
to be stable for wide range of frequency and control
parameters of the system. Similar to the primary res-
onance conditions, stability of the system depends on

the position of critical point. Hence, the system may
be brought to stable condition by simply choosing
the appropriate frequency and other system parame-
ters. Figure 12 describes the effect of changing air-
gap between resonant and electrode on the frequency
response curves. With increase in air-gap δ the response
amplitude is decreased, and jump down phenomenon
takes place on account of saddle-node bifurcation point.
The jump length is found to be decreased with increase
in air-gap. Also, it has been noticed that this non-
linear phenomenon occurs at a higher value of fre-
quency with increase in air-gap δ. From Figs. 12, 13,
and 14, it may observe that with increase in forcing
parameter α and decrease in damping, the response
amplitude is increased. Similarly, jump length will
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Fig. 7 Effect of varying the damping ratio ζ keeping δ and α are constant equal to 0.2 and 0.5, respectively, a ζ = 0.25, b ζ = 0.35, c
ζ = 0.365 and d ζ = 0.375

increase with increase in both forcing parameter α and
damping ζ .

5 Conclusions

Unlike to the existing research, in the present work,
the stability and bifurcation analysis of electrically
driven microbeam has been investigated using a model
accounting for mid-plane stretching and nonlinear elec-
trostatic forcing. The present nonlinear model has
strong potential to deal with the nonlinearities in the
geometric of the deformable microbeam and in the
electrostatic force. The pull-in results from the pro-
posed model have been examined and are found in
very good agreement with the findings previously

obtained experimentally and numerically. The effect
of the higher order correction of electrostatic pressure
in the pull-instability has also been investigated. It has
been observed that the structural instability (pull-in)
occurs at a lower value of the forcing parameter when
the effect of higher order correction is neglected. It
may kindly note that the effect of electrostatic force
with higher order correction terms operates the stabil-
ity limit through the critical pull-in voltage which pro-
vides a better estimation for the design of nonpull-in
devices, and the linear estimation underestimates the
stability limits of the microcantilever. Effect of various
design parameters on the mechanical behaviours of the
system has been accomplished. Saddle-node and pitch-
fork bifurcations points have been found and resulting
the catastrophic failure of the system. Basins of attrac-
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Fig. 8 Effect of changing the value of α keeping δ and ζconstant equal to 0.2 and 0.1, respectively, a α = 0.5, b α = 0.75, c α = 1.0
and d α = 1.5

Fig. 9 Time history for the points A, B as marked in Fig. 7a
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Fig. 10 Influences of changing ( d
l ) = δ, keeping α and ζ constant equal to 0.5 and 0.1 a δ = 0.2, b δ = 0.3, c δ = 0.4, and δ = 0.5

Fig. 11 a ζ = 0.2, b ζ = 0.35 while keeping δ and α are constant equal to 0.2 and 0.1, respectively
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Fig. 12 Effect of varying the gap δ keeping α and ζconstant equal to 1.0 and 0.1 a δ = 0.05, b δ = 0.07, c δ = 0.1, d δ = 0.2

tions are being illustrated in order to find the initial
condition for a specific solution in multi-regions.

In simple resonance condition, it has been observed
that with increase in air-gap distance, response ampli-
tude goes on predominantly decreasing. The dynamic
instability for sudden change in amplitude with increase
in air-gap is truncated. With increase in forcing parame-
ter and damping, the response amplitude is decreased,
and a jump phenomenon occurs at higher frequency
with the increase in forcing parameter.

In principle parametric resonance condition, both
trivial and nontrivial solutions are found to be stable and
unstable, and sudden change in amplitude takes place
due to pitchfork bifurcation point. The jump length
increases with increase in forcing quantity, and sub-
critical pitchfork point starts at higher frequency with
increase in air-gap-beam length ratio. While the ampli-
tude of response decreases with increase in air-gap, the
unstable zone remains the same for all values of air-gap.

But, unstable zone is reduced with increase in damping
effect.

In subharmonic resonance condition, it has been
found that the system may be brought to the sta-
ble condition by selecting the appropriate frequency
and controlling the other design parameters. Like pri-
mary and principle parametric resonance conditions,
similar investigation has been established taken into
account the varying different system parameters. With
increase in air-gap-length ratio, the response ampli-
tude decreases, and jump down phenomenon has taken
place due to the backward S–N bifurcation point. It
may observe that with increase in electric actuation
force, i.e. applying voltage for a specific value of gap
length and decrease in damping, the response ampli-
tude is increased. The obtained results can successfully
be used for designing the cantilever-based electrosta-
tically controlled microdevices in the field of MEMS
application.
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Fig. 13 Effect of changing the value of α keeping δ and ζ constant equal to 0.2 and 0.1, respectively a α = 0.75, b α = 1.25

Fig. 14 Frequency response curves for a ζ = 0.05, b ζ = 0.25 while keeping δ and α are constant equal to 0.75 and 0.75, respectively
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