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Abstract Controlling system dynamics with use of
the Largest Lyapunov Exponent (LLE) is employed in
many different areas of the scientific research. Thus,
there is still need to elaborate fast and simple methods
of LLE calculation. This article is the second part of the
one presented in Dabrowski (Nonlinear Dyn 67:283—
291,2012). It develops method LLEDP of the LLE esti-
mation and shows that from the time series of two iden-
tical systems, one can simply extract value of the stabil-
ity parameter which value can be treated as largest LLE.
Unlike the method presented in part, one developed
method (LLEDPT) can be applied to the dynamical
systems of any type, continuous, with discontinuities,
with time delay and others. The theoretical improve-
ment shows simplicity of the method and its obvious
physical background. The proofs for the method effec-
tiveness are based on results of the simulations of the
experiments for Duffing and Van der Pole oscillators.
These results were compared with ones obtained with
use of the Stefanski method (Stefanski in Chaos Soli-
ton Fract 11(15):2443-2451,2000; Chaos Soliton Fract
15:233-244,2003; Chaos Soliton Fract 23:1651-1659,
2005; J Theor Appl Mech 46(3):665-678, 2008) and
LLEDP method. LLEDPT can be used also as the cri-
terion of stability of the control system, where desired
behavior of controlled system is explicitly known (Bal-
cerzak et al. in Mech Mech Eng 17(4):325-339, 2013).
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1 Introduction

Depending on the dynamical system type and kind of
the information that is useful in its investigations, there
are applied different types of invariants characterizing
the system dynamics. One can use for instance Kol-
mogorov entropy [1] or correlation dimension [2,3] to
determine chaotic level or complexity of the system
dynamics [4]. But when there is a need to predict behav-
ior of the real system with possibility of different dis-
turbances existence, Lyapunov exponents are one of the
most often applied tools. That is because, these expo-
nents determine the exponential convergence or diver-
gence of trajectories that start close to each other. The
existence of such numbers has been proved by Oseledec
theorem [5], but the first numerical study of the system
behavior using Lyapunov exponents has been done by
Henon and Heiles [6], before the Oseledec theorem
publication. The most important algorithms for calcu-
lating Lyapunov exponents for a continuous systems
have been developed by Benettin et al. [7] and Shi-
mada and Nagashima [8], later improved by Benet-
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tin et al. [9,10] and Wolf [11]. For the system with
discontinuities or time delay, one possible approach is
the estimation of Lyapunov exponents from the scalar
time series basing on Takens procedure [12]. Numer-
ical algorithms for such estimation have been devel-
oped by Wolf et al. [13], Sano and Sawada [14], and
later improved by Eckmann et al. [15], Rosenstein et
al. [16] and Parlitz [17].

The set of Lyapunov exponents contains much
physical information characterizing the considered
dynamical system, but calculation of the full spec-
trum demands much time and labor. Hence, only the
largest Lyapunov exponent (LLE), which determines
the predictability of the dynamical system, is frequently
referred. That is because, excluding systems with Per-
ron effect [39], the presence of at least one positive
Lyapunov exponent, by definition, is the most impor-
tant evidence for chaos [18]. The algorithm for cal-
culating the largest Lyapunov exponent was indepen-
dently presented by Rosentein et al. [16] and Kantz
[19] These methods make use of the statistical prop-
erties of the local divergence rates of nearby trajecto-
ries. An improved algorithm based on Rosentein and
Kantz was recently presented by Kim and Choe [20].
The next method of the LLE calculation was introduced
by Stefanski [21-24]. This method based on the syn-
chronization phenomena allows the LLE estimation for
both, continuous and not continuous systems, and thus
can be applied for system with flow and maps dynamics
representation.

Nowadays, LLE is employed in many different areas
of the scientific research [25-37]. Thus, there is still
need to elaborate fast and simple methods of LLE cal-
culation. The new method of the LLE estimation is pre-
sented in this paper. It is shown that from the behavior
of the two identical systems, one can extract stability
parameter LLEL which value can be treated as the LLE.

2 The LLEDPT method

Generally presented method bases on the analysis of
the disturbance changes dz(¢) in direction of the gen-
eral disturbance vector z(¢) (Fig. 1) and was discussed
in [38]. Note that presented here and in [38] theoret-
ical background is just only general way of thinking
and cannot be treated as a formal proof. Proofs of the
method efficiency one can find in results of the numer-
ical simulations.
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Fig. 1 Graphic illustration of the method

Vector z(t) determines difference between reference
flow y(¢) and disturbed flow x(7): The main idea fol-
lows the fact that system is stable when the average
changes of perturbation dz(z) cause average decrease
of z(1).

At each fixed time ¢, disturbance vector z(¢) can
obtained from:

z(t)=x()—-y(#) x,y,zeR" (1)

While in [38] behavior of z(¢) was analyzed with use
of the linearized variational Eq. (2)

dz/dt =U(y (0)) z, (2)

where: U(y(¢#)) is the Jacobi matrix in the point y(#)
in present case, we can calculate actual z(7) and dz(r)
from the behavior of the two real systems x(¢) and y(¢).
Thus, U(y(?)) is no longer needed in the procedure of
studying behavior of the perturbation z(¢). It is one
of the advantages of the presented method. One can
investigate stability of the dynamical system without
any knowledge about analysed systems equations.

Analysis of the transformation of the vector z in
the direction of the chosen transversal eigenvector w*
(Fig. 1):

In each step of the simulations for fixed time ¢ trans-
formation, U can be considered as linear transformation
of the vector z. Assuming that 1* is eigenvalue of the
transformation U in direction of the eigenvector w* it
can be written:

|dz*|
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After the transformation:

|dz*|

- A*dr 4)

and the integration for z*(0) = z;, one obtains:
|z*| = |z} e ©)

where:

|z*|—norm of the projection of vector z on to the
direction of the eigenvector w*.
A*—eigenvalue in the direction of the eigenvector

w*.

Equation (5) describes a mean transformation of the
vector z* after time r. For + — *, where r*
is a time of stabilization of mean A*, it can be
treated as a value of the stability parameter that
allows to estimate exponential convergence, or diver-
gence of nearby trajectories measured in the direction
of w*. For the m-dimensional transversal eigenvec-
tor set (W}, wj, ..., wi) and respective eigenvalues
(M, 23, ..., ), one can obtain the whole distur-
bance z transformation in the following form:

* * *
z=aiwieM + aawie’? 4 ... 4 aywietn! (6)

where ay, ay, ..., a, depend on the initial conditions.
In the case \* > N}, N3, ..., N}, ast — t*, the terms
Mt Mt e*n' become negligible and the pertur-
bation evolves as ¢! , which is of the most importance
for the presented method. The LLES is of course a mean
value of \*.

In the presented method, Eq. (3) is used for the sys-
tem stability determination. Using vectors dot product
properties (Fig. 1):

z dz
zo— =|z||—
dr

< cos(e) (N

After simple transformations:

bl b
t =—‘;t=k*=LLEL (8)
|z| |z|

The average value A* of real part of A* is the parameter
allowing us to determine stability of the system along
the direction of the disturbance z.

Taking also into account that the direction of the
disturbance vector z and directions of the initial frame
of the orthonormal vectors during the evolution con-
verge to the eigenvector with the largest eigenvalue, of

the mean transformation I} (y(2)) of all transformations
U(y(¢)) along the phase trajectory, one can conclude
that the obtained value A* is similar to the value of the
LLE.

However, values A* and the LLE can differ slightly.
That is because the disturbance vector z is influenced
not only by the largest eigenvalue (see Eq. 6). Direc-
tions of the eigenvector with the biggest eigenvalue and
main principal axis with the biggest length change are
convergent to direction of the disturbance z. But these
directions are not the same. As has been mentioned
earlier, the direction respective to the LLE has the
main influence on vector z changes. Simultaneously,
during the evolution of the system, other eigenvalues
exert their influence in that direction as well. It causes
that A* shows general stability of the synchronization
manifold. A simplified graphical interpretation of such
deliberations is presented in Fig. 2. One can see vectors
w1 and w7 on it. These are eigenvectors of the U trans-
formation (Eq. 3) treated as the mean transformation
along the disturbance z trajectory. The eigenvectors wy
and w, can form a new basis of the space, and the vector
z can be decomposed into directions of these eigenvec-
tors. One gets the component vectors z; and z; then.
The transformation U acts in those directions by the
eigenvalues A1 and A; in the following way:

d11
dr

It means that the differences dz; and dz; depend
straightly on the eigenvalues X1, A2 and the compo-
nents z; and zp. Assuming that Re(\1) > Re()2). >
0 Im(x;) = Im(\2). = 0, one can see in Fig. 2 that in
the case ||z1|| = ||z2]|, it causes ||dz;| > |/dz;||. From
Fig. 2 it follows that the vector z rotates and after some
transformations, the direction of the vector z + dz is
closer to the vector w; connected to the larger eigen-
value 1. Following further the causes of that transfor-
mation, it can be seen from Fig. 2 that the vector z grows
more in the direction of w; than w,. From Eqgs. (9), one
can conclude that in the next step of the transformation,
the growth of the vector z in that direction will be bigger
than in the first step. Thus, the direction of the vector z
in each step approaches asymptotically the direction of
the vector wi connected to a larger eigenvalue ). Con-

d22
= A —— = 9
1z 22 9
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Z)

Fig. 2 Simplified graphical interpretation of the U transforma-
tion influence onto vector z

cluding that reasoning, the proposed method of the LLE
determination applies the feature of the convergence of
the vector z to the direction of the eigenvector con-
nected to the largest eigenvalue of the mean transfor-

mation l/]\(y(t)), which is in our case the LLEL value.
In results of the numerical simulations, one can find
that LLEL has the same value as LLE. Thus, since that
moment LLEL and LLE will be treated and named as
the same stability parameter LLE.

The mostimportant attribute of the LLEDPT method
is its simplicity and a possibility of building fast acting
algorithms. There is no need to calculate eigenvalues
of the Jacobi matrix in each step of the integration, no
need of the Gram—Schmidt vector orthonormalization.
The vector z has to be only normalized, which stops it
from the growth which introduces inaccuracy into the
method. That inaccuracy has its background in the fact,
that the method bases on the behavior of the linearized
system. Thus, in the case, when z grows too much,
Eq. (2) is no longer valid. The LLEDPT is straightly
connected to the real stability of the system because
of the analysis of the exponential divergence and con-
vergence in the direction of the perturbation vector z.
Thus, it could be more efficient in experimental inves-
tigations of the real systems.

3 Numerical simulations
Behavior of two real dynamical systems was simulated
with use of the program written in Delphi. The numer-

ical simulations were based on integration of the dif-
ferential equations (8, 9) with use of the Runge Kutta
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(RK4) method of the fourth order. The step of integra-
tion was fit to the system type with use of the proce-
dure of integration with control of the integration error.
Then, it was applied into the procedure RK4 with con-
stant integration step. Both the equations sets x(¢) and
y(t), the system variables x and the perturbation vari-
ables z, were integrated in each step of RK4. After each
integration step considered in Eq. (6), the value A* was
calculated.

Zo ==
ds *

— 49— 10

2P (10)

An average value of the A* was calculated in time of
all the computations. The attained value of the LLE
was the A* value for the A* increment smaller than the
matched ¢ value.

Dynamical state of the perturbed system has been
reduced into reference one neighborhood on each 15
periods of external excitation.

3.1 Van Der Pol oscillator with external excitation

First, analyzed example shows results of LLE extrac-
tion from behavior of two Van der Pol oscillators with
external excitation (11)

X1=x2 Y=y
Xy = B —xlz)xz — ax| + g cos(nt)
2= B — yDy2 — axi + g cos(nr) (11)

In the bifurcation diagram (Fig. 3), one can see differ-
ent types of the system dynamics and values of LLE
obtained with use of the presented method confirming
its efficiency. One can observe negative LLE in peri-
odic regions, positive in chaotic ones and zero LLE val-
ues that determine period doubling bifurcation points
are visible as well. The time of the LLE estimation
for each bifurcation parameter value depends on the
actual A* increment. The attained value of the LLE
was the A* value for the A* increment smaller than
the matched ¢ value. To determine the exact bifurca-
tion parameter values maintaining the fast algorithm
operation, € was changed depending on the actual LLE
value.

Comparison of the LLE estimated with use of the
LLEDPT method and LLEDP method [38] is shown in
Fig. 4. As the results are very similar, one cannot easily
see differences between white and black curves.
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Fig. 3 Duffing system cecese X;
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q
3.2 Duffing oscillator with external excitation Xp = —Bxy — axf + g sin(nt)
. 3 .
y2 = —By2 —ayj + g sin(nr) (12)
Next, analyzed example shows results of LLE extrac-
tion from behavior of two Duffing oscillators with Analogically to Van der Pol example in Fig. 5, one
external excitation (12). can see the bifurcation diagram with different types of
the system dynamics of the Duffing system. Presented
X1 =x2 Yy1I=»0n values of LLE confirm for the next time efficiency of
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Fig.5 Van der Pol
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— 0,02 H
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-0,01
-0,02
-0,03 — T
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the presented method. One can observe negative LLE
in periodic regions, positive in chaotic ones and zero
LLE values that determine period doubling bifurcation
points are visible as well. Comparison of the LLEs esti-

@ Springer

mated with use of three methods: presented one, Ste-
fanski method [20] and LLEDPT method [38] is shown
in Fig. 6. For the next time, it proves the validity of the
taken assumptions.
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4 Conclusions

The next step of development of new LLE estimation
method was presented. As the method does not need
equations of motion, it can be applied to the dynamical
systems of any type, continuous, with discontinuities,
with time delay or as the method that allows estimation
of LLE from the real time series. Other proposition is
to exploit the method as criterion of the control system
stability, where desired behavior of controlled system
is explicitly known.

The theoretical improvement was also introduced. It
shows simplicity of the method and its obvious phys-
ical background. Presented results are based on simu-
lations of the experiments for Duffing and Van der Pol
oscillators. Results of the numerical simulations were
compared with ones obtained with use of the Stefan-
ski method [21-24] and LLEDPT method presented in
[38]. The study confirms effectiveness of the presented
method of LLE estimation.
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