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Abstract Nonlinear damping suspension is a promis-
ing method to be used in a rotor-bearing system for
vibration isolation between the bearing and environ-
ment. However, the nonlinearity of the suspension may
influence the stability of the rotor-bearing system. In
this paper, the motions of a flexible rotor in short journal
bearings with nonlinear damping suspension are stud-
ied. A computational method is used to solve the equa-
tions of motion, and the bifurcation diagrams, orbits,
Poincaré maps, and amplitude spectra are used to dis-
play the motions. The results show that the effect of
the nonlinear damping suspension on the motions of
the rotor-bearing system depends on the speed of rotor:
(a) For low speeds, the rotor- bearing system presents
the same motion pattern under the nonlinear damping
(p = 0.5, 2, 3) suspension as for the linear damping
(p = 1) suspension; (b) For high speeds, the effect
of nonlinear damping depends on a combination of
the damping exponent and damping coefficient. The
square root damping model (p = 0.5) shows a wider
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stable speed range than the linear damping for large
damping coefficients. The quadratic damping (p = 2)
shows similar results to linear damping with some spe-
cial damping coefficients. The cubic damping (p = 3)
shows more stable response than the linear damping in
general.
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List of symbols

b = ρ
δ

Dimensionless static unbalance of
rotor

c0 Damping coefficient of the supported
structure (N (s/m)p)

c2 Damping coefficient of the rotor disk
(N s/m)

e Dimensional eccentricity of journal
(m)

Fr , Ft Oil film force in radial and tangential
directions (N)

Fx , Fy Oil film force in X and Y directions
(N)

g Acceleration of gravity (m/s2)
h Film thickness (m)
k0 Stiffness coefficient of the supported

structure (N/m)
k2 Stiffness coefficient of shaft (N/m)
L Axial length of bearing (m)
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m0 Mass of bearing (kg)
m2 Mass of rotor (kg)
O0, O1, O2 Geometric centers of bearing, jour-

nal and rotor
Om Gravity center of rotor
p Damping exponent
Pm = m0

m2
Dimensionless mass ratio

Pk = k0
k2

Dimensionless stiffness ratio
Pr = m2g

δk2
Dimensionless gravity parameter

R Radius of bearing (m)
s = √

ω2/ω2
n Dimensionless rotational speed ratio

Xi , Yi , Zi Coordinates of O0, O1, O2 (m)
(i = 0, 1, 2)

xi , yi , zi = Xi
δ

, Dimensionless coordinates
Yi
δ
,

Zi
δ

(= 0, 1, 2)

α = δ3√k2m2
μRL3 Dimensionless parameter

β Unit velocity (1 m/s)
γ = δωn

β
Dimensionless velocity coefficient

ρ Dimensional static unbalance of rotor
(m)

δ Radial clearance of bearing (m)
ε = e

δ
Dimensionless eccentricity of jour-
nal

ζ0 = c0β
p−1

2
√

k0m0
Dimensionless damping coefficient

ζ2 = c2
2
√

k2m2
Dimensionless damping coefficient

μ Dynamic viscosity of lubricant (Pa s)
φ = ωt Rotational angle (rad)
ϕ Attitude angle from the gravity direc-

tion (rad)
ω Angular speed of rotor (rad/s)
ωn = √

k2/m2 Natural frequency

1 Introduction

Fluid film bearings are widely used in high speed
rotating machinery owing to their high load-carrying
capacity and long life. However, the inherent nonlinear-
ity of hydrodynamic pressure may cause nonperiodic
responses for rotors supported by fluid film bearings.

In 1978, the aperiodic behavior of a rigid shaft in
journal bearings was first found by Holmes et al. [1]
using numerical techniques, and this aperiodic motion
was complex and did not settle to a limit cycle. Ehrich
[2,3] presented the chaotic motions of a Jeffcott rotor
at high speeds. And the results showed that the low
damping and extreme nonlinearity of the bearing sys-

tem were the reasons for this high order subharmonic
response. Zhao et al. [4] reported their observation
of the quasi-periodic motions of a rigid rotor in jour-
nal bearings at speeds above twice the system critical
speed. Brown et al. [5] studied a journal supported by
short bearings using a numerical method, and the rotor
showed chaotic motions when the rotating unbalance
force exceeded the gravity force. In 1996, Adiletta et
al. [6] presented a comprehensive study on the chaotic
motions of a rotor in short journal bearings; the numer-
ical and experimental results showed that the special
values of unbalance and speed tend to cause chaos.

Besides the nonlinear hydrodynamic forces, there
are some other nonlinear sources in the rotor-bearing
system, such as the suspension between the bearing and
foundation [9–24], the restoring forces of the shaft [7],
the rub-impact effect [3,8,9], and high speed turbulent
flow [10]. In this paper, we pay special attention to the
nonlinear suspension.

In 1998, the role of nonlinear suspension in creat-
ing chaos of the rotor-bearing system was first stud-
ied by Chen and Yau [11]. In their study, a nonlinear
elastic restoring force between the bearing and founda-
tion was assumed. Numerical results showed that the
rotor-bearing system experienced complicated nonpe-
riodic motions at some speeds due to the nonlinear
stiffness suspension. Then, the same authors [12,13]
discussed the chaos of a Jeffcott rotor in short jour-
nal bearings with the same nonlinear stiffness suspen-
sion model. Based on this nonlinear suspension model,
different rotor-bearing systems were studied, such as
rub-impact rotor, couple stress fluid lubricated bear-
ings, and porous bearings [9,10,14–24]. The results
showed that the dynamic responses of these systems
with nonlinear suspension were entirely different from
those with linear suspension. And the authors pointed
out that the amplitudes of both the rotor and the bearing
may have been underestimated based on the assumption
of a linear suspension. However, the above nonlinear
suspension model consisted of a linear damping force
and a nonlinear elastic restoring force, which means
that the nonlinearity of damping was ignored.

In recent years, researchers have demonstrated that
the nonlinear (power law) damping is a useful method
for vibration isolation [25–29]. In 2009, Lang et al.
[25] theoretically proved that the nonlinear viscous
damping could lead to an ideal vibration isolation
of Single-Degree-Of-Freedom (SDOF) systems. Later,
Laalej et al. [26] made an experimental verification
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Nonlinear damping suspension of flexible rotor 1437

Fig. 1 Schematic diagram
of a flexible rotor in journal
bearings with nonlinear
damping suspension

of the above theoretical finding. In 2013, Lang et
al. [29] reported the advantages of nonlinear viscous
dampers over linear dampers for vibration control of
Multi-Degree-Of-Freedom (MDOF) systems. There-
fore, nonlinear damping suspension is a promising
method to be used in the rotor-bearing system for vibra-
tion isolation between the bearing and environment.

However, the nonlinearity of damping may pro-
duce complicated nonlinear responses for the rotor-
bearing system. The effect of nonlinear damping on
the response and bifurcations of Duffing oscillators, the
simplest nonlinear system, was considered by Ravin-
dra and Mallik [30–32]. The Ref. [30] showed that the
bifurcation structure and the structure of the chaotic
attractor of soft Duffing oscillators were insensitive to
the damping exponent, but the threshold values of the
parameters depended both on the damping exponent
and the damping coefficient. Sharma et al. [32] investi-
gated the effects on the chaos in forced Duffing oscilla-
tor due to nonlinear damping, and the results suggested
that the nonlinear damping increased the possibility of
chaos in parameter space and affected the route to chaos
in the system. Sanjuán [33] studied the effects of non-
linear damping on the dynamics of the universal escape
oscillator and the result was similar to that of reference
[30].

To investigate the effects of nonlinear damping sus-
pension on nonperiodic motions of rotor-bearing sys-
tem, a flexible rotor in short journal bearings with
nonlinear damping suspension is studied in this paper.
Computational methods are used to solve the nonlinear
dynamic equations of the system. Dynamic trajectories,
Poincaré maps, and bifurcation diagrams are applied to
analyze the effects of damping exponent and the damp-
ing coefficient.

Fig. 2 Positions of bearing, journal, and rotor

2 Mathematical modeling

A flexible rotor, shown in Fig. 1, is supported by two
journal bearings with nonlinear damping suspension.
Figure 2 shows the positions of bearing, journal, and
rotor. O0, O1, and O2 are the geometric centers of bear-
ing, journal, and rotor; Om is the gravity center of rotor;
Xi , Yi , and Zi (i = 0,1,2) are the coordinates of O0, O1,
and O2; m0 and m2 are the mass of bearing and rotor; k0

and c0 are the stiffness coefficient and damping coef-
ficient of the supported structure; k2 and c2 are the
stiffness coefficient and damping coefficient of shaft; e
is the dimensional eccentricity of journal; and ϕ is the
attitude angle of journal;

Several assumptions are made to simplify the math-
ematical model [11]: the mass of shaft and the torque of
rotor disk are negligible; the mass center of the bearing
is at its geometric center; axial and torsional vibrations
are negligible; the damping in the rotor disk due to
aerodynamics is viscous; the lubricant is isothermal,
laminar, and incompressible; the short bearing approx-
imation is applicable.
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2.1 Nonlinear dissipative force

Among the empirical mathematical models of non-
linear damping, the power law model is one of the
simplest and most widely discussed [27,28,32,34,35].
This model is defined as follows:

Fd (v) = sgn (v) c |v|p , (1)

where Fd is the damping force; v is the relative veloc-
ity; sgn() is the signum function; c is the damping
coefficient; and p is the damping exponent. The case
p = 1 retrieves the linear viscous damping model. The
case p < 1 can be found in civil engineering, where
the damping is used as a vibration absorber [28,36].
The case p > 1 has been studied in some applied sci-
ences, such as ship dynamics and vibration engineering
[25,26,29,33–35].

In this study, the effects of damping exponent (p =
0.5, 1, 2 and 3) and damping coefficient on the nonpe-
riodic motions of a flexible rotor in short bearings are
investigated.

2.2 Oil film force

In this study, the length–diameter ratio of the bearing
is less than 0.25, so the short bearing approximation
and the half Sommerfeld boundary condition are used
to solve the Reynolds equation to compute the oil film
force. Hence, a reasonable calculation accuracy can be
ensured in a short computational time [37,38]. Under
the above approximations, the oil film forces on the
journal center in the radial and tangential directions
are [12,21]

Fr = −μRL

(
L

δ

)2
[

(ω − 2ϕ̇)
ε2

(
1 − ε2

)2

+ π

2

(
1 + 2ε2

)
ε̇

(
1 − ε2

)5/2

]

, (2)

Ft = μRL

(
L

δ

)2
[

(ω − 2ϕ̇)
πε

4
(
1 − ε2

)3/2

+ 2εε̇
(
1 − ε2

)2

]

, (3)

where Fr and Ft are the oil film force in radial and tan-
gential directions, μ is the dynamic viscosity of lubri-
cant, R is the radius of bearing, L is the axial length

of bearing, δ is the radial clearance of the bearing, ω

is the angular speed of rotor, ϕ is the attitude angle,
ϕ̇ = dϕ/dt, ε = e/δ is the dimensionless eccentricity
of journal, and ε̇ = dε/dt .

The oil film forces on the journal center in the X, Y
directions can be given by

Fx = Fr sin ϕ + Ft cos ϕ, (4)

Fy = −Fr cos ϕ + Ft sin ϕ, (5)

Knowing the eccentricity (e) and the attitude angle (ϕ),
the coordinates of journal center O1 can be written as
follows:

X1 = X0 + e sin ϕ, (6)

Y1 = Y0 − e cos ϕ. (7)

2.3 Equations of motion

In this study, we assume that the bearing is supported
with a nonlinear damping force and a linear elastic
restoring force. The equations of motion of the cen-
ter O0 of the bearing in the Cartesian coordinates are

m0 Ẍ0 = −Fx − sgn
(
Ẋ0

)
c0

∣
∣Ẋ0

∣
∣p − k0 X0, (8)

m0Ÿ0 = −Fy − sgn
(
Ẏ0

)
c0

∣
∣Ẏ0

∣
∣p − k0Y0 − m0g. (9)

Due to the mass of the shaft is negligible, the forces
applied to the center O1 of the journal are

Fx = 1

2
k2 (X1−X2)= 1

2
k2 (X0+e sin ϕ−X2) , (10)

Fy = 1

2
k2 (Y1−Y2)= 1

2
k2 (Y0−e cos ϕ−Y2) . (11)

The equations of motion of the center O2 of the rotor
in the Cartesian coordinates are

m2 Ẍ2 = −c2 Ẋ2 − k2 (X2 − X1) + m2ρω2 cos φ

=−c2 Ẋ2−k2 (X2−X0−e sin ϕ)+m2ρω2 cos φ, (12)

m2Ÿ2 = −c2Ẏ2 − k2 (Y2 − Y1) − m2g + m2ρω2 sin φ

=−c2Ẏ2−k2 (Y2−Y0+e cos ϕ1)−m2g+m2ρω2 sin φ.

(13)

Substituting Eqs. (4) and (5) into Eqs. (10) and (11),
we obtain

Fr sin ϕ+Ft cos ϕ− 1

2
k2 (X0+e sin ϕ − X2) = 0,

(14)

−Fr cos ϕ+Ft sin ϕ− 1

2
k2 (Y0−e cos ϕ1 − Y2) = 0.

(15)
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Substituting Eqs. (2) and (3) into Eqs. (14) and (15),
the ε̇ and ϕ̇ can be obtained as follows:

ε̇=

⎧
⎪⎨

⎪⎩

πk2
(
1−ε2

)5/2
[(X2−X0) sin ϕ−(Y2−Y0)

cos ϕ−e]+4εk2
(
1−ε2

)2
[(X2−X0) cos ϕ

+(Y2−Y0) sin ϕ]

⎫
⎪⎬

⎪⎭

2μRL (L/δ)2 [
π2

(
1 + 2ε2

)
/2 − 8ε2

] ,

(16)

ϕ̇ = ω

2
−

⎧
⎪⎨

⎪⎩

4k2ε
(
1−ε2

)2
[(X2−X0) sin ϕ−(Y2−Y0)

cos ϕ−e]+πk2
(
1+2ε2

) (
1−ε2

)3/2
[(X2−X0)

cos ϕ+(Y2−Y0) sin ϕ]

⎫
⎪⎬

⎪⎭

μRL (L/δ)2 ε
[
16ε2 − π2

(
1 + 2ε2

)] .

(17)

2.4 Dimensionless equations of motion

With the following dimensionless substitutions

xi = Xi

δ
, yi = Yi

δ
, φ = ωt, ẋi = dxi

dφ

dφ

dt
= x ′

iω,

ẏi = dyi

dφ

dφ

dt
= y′

iω,

ωn = √
k2/m2, s =

√
ω2/ω2

n, Pk = k0/k2,

Pm = m0/m2, Pr = m2g

k2δ
, γ = δωn

β

ζ0 = c0β
p−1

2
√

k0m0
, ζ2 = c2

2
√

k2m2
, b = ρ/δ,

α = δ3√k2m2

μRL3

Equations (8), (9), (12), (13), (16), and (17) can be put
into a convenient nondimensional form:

x ′′
0 = −2ζ0

s

√
Pk

Pm
(γ s)p−1 sgn

(
x ′

0
) ∣
∣x ′

0

∣
∣p − Pk

Pms2 x0

+ x2 − x0 − ε sin ϕ

2Pms2 , (18)

y′′
0 = −2ζ0

s

√
Pk

Pm
(γ s)p−1 sgn

(
y′

0
) ∣
∣y′

0

∣
∣p − Pk

Pms2 y0

+ y2 − y0 + ε cos ϕ

2Pms2 − Pr

s2 , (19)

x ′′
2 = −2ζ2

s
x ′

2 − x2 − x0 − ε sin ϕ

s2 + b cos φ, (20)

y′′
2 =−2ζ2

s
y′

2− y2−y0+ε cos ϕ

s2 +b sin φ − Pr

s2 , (21)

ε′ =

⎧
⎪⎪⎨

⎪⎪⎩

απ
(

1 − ε2
)5/2

[(x2 − x0) sin ϕ − (y2 − y0)

cos ϕ − ε] + 4αε
(

1 − ε2
)2

[(x2 − x0)

cos ϕ + (y2 − y0) sin ϕ]

⎫
⎪⎪⎬

⎪⎪⎭

s
[
π2

(
1 + 2ε2

) − 16ε2
] ,

(22)

ϕ′ = 1

2

+

⎧
⎪⎪⎨

⎪⎪⎩

4αε
(

1−ε2
)2

[(x2−x0) sin ϕ−(y2−y0)

cos ϕ − ε] + απ
(

1 + 2ε2
) (

1 − ε2
)3/2

[(x2 − x0) cos ϕ + (y2 − y0) sin ϕ]

⎫
⎪⎪⎬

⎪⎪⎭

sε
[
π2

(
1 + 2ε2

) − 16ε2
] .

(23)

Hence, the motion of this rotor-bearing system is
described by Eqs. (18)–(23).

3 Numerical studies

In order to solve the dimensionless equations of motion,
a fourth order Runge–Kutta numerical method was
used. In the solution procedure, the time step for the cal-
culations was 1/600 of the nondimensional rotational
period of the rotor, and the error tolerance was less than
0.0001. The integration results of the initial 1,000 rev-
olutions were excluded to ensure that the analyzed data
correspond to steady-state conditions.

In order to know the influence of nonlinear damping,
the bifurcation diagrams were plotted from the inte-
gration results to check the dynamic motions of the
rotor-bearing system. The bifurcation diagrams were
obtained by increasing the rotational speed ratio, s, with
a constant step size. It should be noted that the initial
condition of the numerical integration was only set to
the first speed ratio (s = 0), the steady-state solution
of the first speed then became the initial condition of
the next speed ratio [11], and so on.

In the numerical integration, the following sys-
tem parameters were used [12,21]: Pm = 0.2, Pk =
0.5, Pr = 0.3, b = 0.5, α = 0.735, δ = 0.025 mm,

β = 1 m/s, ωn = 1, 143.1 rad/s, ζ2 = 0.02.
The rotor unbalance is one of the important fac-

tors influencing the responses of the rotor-bearing sys-
tem. References [5,6] presented the unbalanced rotor in
journal bearings, and the results showed that the special
values of unbalance tend to cause chaos. In this paper,
we pay special attention to the nonlinear suspension.
In the numerical integration of this study, the system
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Fig. 3 Bifurcation diagrams of bearing center and rotor center: a x0(nT), b y0(nT), c x2(nT), and d y2(nT); function of the dimensionless
rotational speed ratio s (ζ0 = 0.05, p = 3)

parameters of Refs. [12,21] were used, so only a single
rotor unbalance value was assumed.

In nonlinear rotor-bearing system, possible co-
existing stable and different periodic or nonperiodic
motions may exist in the same intervals of speed. The
initial condition may influence the numerical result, so
different initial conditions were investigated: (a) The
static state initial condition: x0 = 0, x ′

0 = 0, y0 =
−0.42, y′

0 = 0, x2 = 0, x ′
2 = 0, y2 = −1.72, y′

2 = 0;
(b) The “0” initial condition: x0 = 0, x ′

0 = 0, y0 =
0, y′

0 = 0, x2 = 0, x ′
2 = 0, y2 = 0, y′

2 = 0; (c)
The initial condition of Ref. [15]: x0 = 0.2, x ′

0 =
0.00000001, y0 = 0.4, y′

0 = 0.00000001, x2 = 0.5,

x ′
2 = 0.00000001, y2 = 0.2, y′

2 = 0.00000001. How-
ever, the results of different initial conditions were
almost the same. In this study, we chose the static
state initial condition, which is most consistent with
the experimental situation.

4 Results and discussion

From the results of numerical integration, we plotted
bifurcation diagrams, orbits, Poincaré maps, and ampli-
tude spectra, which could be used to check the effect

of nonlinear damping suspension on the rotor-bearing
system response.

A set of bifurcation diagrams is shown in Fig. 3a–d,
which plots the dimensionless displacement of bearing
and rotor center against the dimensionless rotational
speed ratio s in the range (0, 6), with ζ0 = 0.05 and p =
3. The four bifurcation diagrams show that the motions
of x0, y0, x2, and y2 are almost synchronous, which
agrees with to the results of references [12,15,21]. To
confirm the dynamic behaviors of the rotor- bearing
system, the orbits, Poincaré map, and amplitude spectra
of rotor center were used: Figs. 4a, 5a, 6a, 7a, and 8a
are the orbits in (x2, y2) plane, Figs. 4b, 5b, 6b, 7b, and
8b are the orbits in (x2, x ′

2) plane, Figs. 4c, 5c, 6c, 7c,
and 8c are the orbits in (y2, y′

2) plane, Figs. 4d, 5d, 6d,
7d, and 8d are the Poincaré map in (x2, y2) plane; Figs.
4e, 5e, 6e, 7e, and 8e are the amplitude spectra of x2,
and Figs. 4f, 5f, 6f, 7f, and 8f are the amplitude spectra
of y2.

Form Fig. 3, the rotor-bearing system shows a T
periodic motion at low speed (0 < s ≤ 0.5). This
T periodic motion corresponds to the orbits, Poincaré
map, and amplitude spectra of rotor center in Fig. 4,
which are plotted for s = 0.5. Figure 4d displays a
single return point.
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Nonlinear damping suspension of flexible rotor 1441

Fig. 4 Orbits, Poincaré map, and amplitude spectrum of rotor center at s = 0.5 (ζ0 = 0.05, p = 3)

Fig. 5 Orbits, Poincaré map, and amplitude spectrum of rotor center at s = 0.55 (ζ0 = 0.05, p = 3)

For s in the range (0.5, 1.2), 2T periodic motion
occurs. This period doubling corresponds to orbits,
Poincaré map, and amplitude spectrum of rotor cen-
ter in Fig. 5, which are plotted for s = 0.55.

When s reaches to 1.2, the system shows a nonperi-
odic motion, which is illustrated by Fig. 6. The Poincaré
map in Fig. 6d is a closed curve, which means the
motion is quasi-periodic. And this nonperiodic motion
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Fig. 6 Orbits, Poincaré map, and amplitude spectrum of rotor center at s = 1.2 (ζ0 = 0.05, p = 3)

Fig. 7 Orbits, Poincaré map, and amplitude spectrum of rotor center at s = 2.35 (ζ0 = 0.05, p = 3)

is replaced by a 2T periodic motion from s = 2.35
(Fig. 7). For 4.6 ≤ s ≤ 6 the rotor-bearing system
returns to a quasi-periodic motion (Fig. 8).

In order to investigate the effects of nonlinear damp-
ing suspension on nonperiodic motions of the system,

different damping coefficients (ζ0 = 0.01, 0.02, 0.05,

0.1, 0.2) and damping exponents (p = 0.5, 1, 2, 3)
were used to plot the bifurcation diagrams. Figures 9,
10, 11, 12, and 13 are the bifurcation diagrams of rotor
center in vertical direction.
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Fig. 8 Orbits, Poincaré map, and amplitude spectrum of rotor center at s = 4.6 (ζ0 = 0.05, p = 3)

Fig. 9 Bifurcation diagrams of rotor center in vertical direction when ζ0 = 0.01: a p = 0.5, b p = 1, c p = 2, and d p = 3
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1444 S. Yan et al.

Fig. 10 Bifurcation diagrams of rotor center in vertical direction when ζ0 = 0.02: a p = 0.5, b p = 1, c p = 2, and d p = 3

Fig. 11 Bifurcation diagrams of rotor center in vertical direction when ζ0 = 0.05: a p = 0.5, b p = 1, c p = 2, and d p = 3
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Fig. 12 Bifurcation diagrams of rotor center in vertical direction when ζ0 = 0.1: a p = 0.5, b p = 1, c p = 2, and d p = 3

Fig. 13 Bifurcation diagrams of rotor center in vertical direction when ζ0 = 0.2: a p = 0.5, b p = 1, c p = 2, and d p = 3

The bifurcation diagrams are almost the same when
0 < s < 2.35, which is a “T periodic - 2T periodic -
nonperiodic” pattern. However, for 2.35 ≤ s ≤ 6, the

motions of rotor-bearing system with a different damp-
ing are different, so we need to compare the results for
s in this range (2.35, 6). Table 1 is the ranges of the
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Table 1 Ranges of the speed ratio s (within [2.35, 6]) when the system shows periodic motions

Damping coefficient ζ0 Damping exponent p

0.5 1 2 3

0.01 [3.45, 6] [2.35, 4.55] [2.35, 4.55] [2.35, 4.55]

0.02 – [4.15, 4.4] [2.35, 4.55] [2.35, 4.55]

0.05 [4.35, 6] [3.65, 6] [4.35, 4.5] [2.35, 4.55]

0.1 [2.35, 6] – [4.35, 4.45] [2.35, 4.55]

0.2 [3.35, 6] [5.6, 6] – [2.35, 4.55]

Fig. 14 Bearing transmitted forces (a), journal orbit (b), and rotor orbit (c) with ζ0 = 0.05, p = 0.5, s = 4.4

speed ratio s (within (2.35, 6)) when the system shows
periodic motions. Compared with the linear damping
suspension (p = 1), when the damping coefficients
is large (ζ0 = 0.1 and 0.2), the half nonlinear damp-
ing (p = 0.5) shows a wider speed range for periodic
motions, while when the damping coefficients is small
(ζ0 = 0.02 and 0.05) the speed range is more narrow.
The difference between the linear damping (p = 1) and
the quadratic damping (p = 2) is less apparent under
some special damping coefficients. For the cubic damp-
ing suspension (p = 3), the speed range for periodic
motions is wider than that for linear damping (p = 1)
suspension in general, and the dynamic motions of the
system are the same under different damping coeffi-
cients when p = 3.

The above results show that for low speeds (0 < s <

2.35), the nonlinear damping suspension has no influ-
ence on the motion pattern of the rotor-bearing system.
So for a low speed rotor-bearing system, if the nonlinear
damping suspension damping is used for vibration iso-
lation or other purpose, there is no need to worry about

the nonlinear influence of damping on the motions of
the system. The comparisons between the linear damp-
ing (p = 1) and the nonlinear damping (p = 0.5, 2, 3)
show that for high speeds (2.35 ≤ s ≤ 6) the nonlinear
damping has a complicated influence on the motion
pattern of the system. If the half nonlinear damping
(p = 0.5) is used in a high speed system, higher damp-
ing coefficients may give rise to more stable 1-T or 2-T
periodic motions. If the quadratic damping (p = 2)
is used, however, lower damping coefficients may give
rise to more stable motions. If the cubic damping sus-
pension (p = 3) is used, the stability of motion is gen-
erally better than that for the linear damping suspen-
sion, and the damping coefficients have no effect on the
motions.

The above bifurcation diagrams showed the speed
ranges of periodic motions, but more quantitative
analysis should be conducted to make clear the nature
and character of these stable motions. Bearing trans-
mitted forces and the rotor orbit amplitudes are often
used to characterize the system during operation [39].
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Fig. 15 Bearing transmitted forces (a), journal orbit (b), and rotor orbit (c) with ζ0 = 0.05, p = 1, s = 4.4

Fig. 16 Bearing transmitted forces (a), journal orbit (b), and rotor orbit (c) with ζ0 = 0.05, p = 2, s = 4.4

Figures 14, 15, 16, and 17 are the bearing transmitted
forces (Fx , Fy), the journal orbits (x1, y1), and the rotor
orbits (x2, y2) when the rotor shows periodic motions,
with ζ0 = 0.05 and s = 4.4. From the results of
Fig. 14, the bearing forces, journal motion, and rotor
motion are both T periodic when p = 0.5. The peak–
peak amplitude of the bearing force is about 600 N,
the dimensionless peak–peak amplitude of the journal
motion is about 0.25, and the dimensionless peak–peak
amplitude of the rotor motion is about 1. With the same
speed, the higher damping exponents (p = 1, 2, 3) pro-
duce 2T periodic rotor motions and T periodic journal
motions/bearing forces. The peak–peak amplitude of
the bearing force is about 4,000 N, the dimensionless
peak–peak amplitude of the journal motion is about

5, and the dimensionless peak–peak amplitude of the
rotor motion is about 2.

References [1–7] presented the nonperiodic motions
of a rotor, and the results showed that the extreme non-
linearity of the bearing system was the reason for this
nonperiodic response. In the rotor-bearing system, the
inherent nonlinearity of hydrodynamic pressure is the
main source of nonlinearity which causes nonperiodic
responses. In our study, the results at the top-right cor-
ner of Table 1 showed that, at high speeds, similar non-
periodic behaviors could be reached when the damping
coefficient is small or the damping exponent is high.
These results show that the introduction of nonlinear
damping will not induce but just change the nonperi-
odic system responses.
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Fig. 17 Bearing transmitted forces (a), journal orbit (b), and rotor orbit (c) with ζ0 = 0.05, p = 3, s = 4.4

References [9–24] discussed the effect of nonlinear
stiffness suspension in rotor-bearing system, their non-
linear stiffness model included a simple linear stiffness
term plus a cubic stiffness term. The results showed that
the introduction of a cubic stiffness term changed the
responses of the system, but a systematic research of
the nonlinear stiffness in the rotor-bearing system has
not been conducted as yet. For a nonlinear stiffness sus-
pension, the rotor-bearing system of Ref. [13] showed
similar bifurcation diagrams as that of our study. In
our future work, the nonlinear damping and nonlinear
stiffness will be studied further.

Nonlinear damping Duffing oscillator is a simple
nonlinear system [30–32]; its equation of motion is
Ẍ + sgn

(
Ẋ

)
C ′ ∣∣Ẋ

∣
∣p + X + X3 = F cos ωt . The ref-

erence [30] showed that the bifurcation structure and
the structure of the chaotic attractor of Duffing oscil-
lators were insensitive to the damping exponent, but
the threshold values of the parameters depended both
on the damping exponent and the damping coefficient.
Sanjuán [33] studied the effects of nonlinear damping
on the dynamics of the universal escape oscillator, and
the results suggest that increasing the power of the non-
linear damping has a similar effect as decreasing the
damping coefficient for a linearly damped case. In our
study, the rotor-bearing system with nonlinear damp-
ing showed insensitive characteristics at low speeds. At
high speeds, the system with low damping coefficient
or high damping exponent showed similar responses,
which agrees with the results of Ref. [33].

When the nonlinear damping suspension is consid-
ered for vibration isolation between the bearing and

environment in a flexible rotor- bearing system, the
rotor speed should be taken into account in the first
place. For low speed system, the nonlinear damping
has no effect on the nonperiodic motions of the system,
so the nonlinear damping can be used conveniently.
For high speed system, however, the effect of nonlin-
ear damping is due to a combination of the damping
exponent and damping coefficient, which means the
designers need to take everything into consideration.

5 Conclusions

A computational investigation of the effect of nonlin-
ear damping suspension on the nonperiodic motions of
a flexible rotor in journal bearings has been carried out.
The results show that the effect of nonlinear damping
is more complicated for the rotor- bearing system than
for Duffing oscillators. Specifically, the effect depends
on the speed of the rotor: (a) For low speeds, there is no
difference in the motion patterns of the rotor-bearing
system between the nonlinear damping suspension and
the linear damping suspension; (b) For high speeds,
the effect of nonlinear damping is due to a combi-
nation of the damping exponent and damping coeffi-
cient. The square root damping (p = 0.5) shows wider
stable speed ranges than linear damping with large
damping coefficients. The quadratic damping (p = 2)
has similar results to most of linear damping under
some special damping coefficients. The cubic damping
(p = 3) shows a more stable response than the linear
damping.
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