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Abstract The aim of this work was to review and also
explore even further the escape properties of orbits in
a dynamical system of a two-dimensional perturbed
harmonic oscillator, which is a characteristic example
of open Hamiltonian systems. In particular, we con-
duct a thorough numerical investigation distinguishing
between trapped (ordered and chaotic) and escaping
orbits, considering only unbounded motion for several
energy levels. It is of particular interest, to locate the
basins of escape toward the different escape channels
and connect them with the corresponding escape peri-
ods of the orbits. We split our examination into three
different cases depending on the function of the per-
turbation term which determines the number of escape
channels on the physical space. In every case, we com-
puted extensive samples of orbits in both the physi-
cal and the phase space by integrating numerically the
equations of motion as well as the variational equations.
In an attempt to determine the regular or chaotic nature
of trapped motion, we applied the SALI method as a
chaos detector. It was found that in all studied cases,
regions of trapped orbits coexist with several basins
of escape. It was also observed, that for energy levels
very close to the escape value, the escape times of orbits
are large, while for values of energy much higher than
the escape energy, the vast majority of orbits escape
very quickly or even immediately to infinity. The larger
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escape periods have been measured for orbits with ini-
tial conditions in the boundaries of the escape basins
and also in the vicinity of the fractal structure. Most
of the current outcomes have been compared with pre-
vious related work. We hope that our results will be
useful for a further understanding of the escape mech-
anism of orbits in open Hamiltonian systems with two
degrees of freedom.

Keywords Hamiltonian systems · Harmonic
oscillators · Numerical simulations · Escapes · Fractals

1 Introduction

Escaping particles from dynamical systems are a sub-
ject to which has been devoted many studies over
the years. Especially the issue of escapes in Hamil-
tonian systems is directly related to the problem of
chaotic scattering which has been an active field of
research over the last decades, and it still remains
open (e.g., [8–10,19,20,23,29,37,41–44,50–54]). It is
well known that particular types of Hamiltonian sys-
tems have a finite energy of escape, and for lower
values, the equipotential surfaces of the systems are
close, and therefore escape is impossible. For energy
levels beyond the escape energy, however, these sur-
faces open creating exit channels through which the
particles can escape to infinity. The literature is replete
with studies of such “open” Hamiltonian systems (e.g.,
[7,24,38,42,48,55–57]).
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Usually, the infinity acts as an attractor for an escape
particle, which may escape through different channels
(exits) on the equipotential curve or on the equipo-
tential surface depending whether the dynamical sys-
tem has two or three degrees of freedom, respec-
tively. Therefore, it is quite possible to obtain basins of
escape, similar to basins of attraction in dissipative sys-
tems or even the Newton–Raphson fractal structures.
Basins of escape have been studied in several papers
(e.g., [10,21,40,45]). The reader can find more details
regarding basins of escape in [21]. The key idea of
studying escape of orbits in open dynamical systems is
the existence of a chaotic invariant set of orbits embed-
ded in the system and its stable and unstable manifold,
where the unstable manifold in fact coincides with the
fractal boundary.

One of the most characteristic models for time-
independent Hamiltonian systems of two degrees of
freedom is undoubtedly the well-known Hénon–Heiles
system [36]. A huge load of research on the escape
properties of this system has been conducted over the
years (e.g., [1–3,6,11,26,49]). At this point, we should
emphasize that all the above-mentioned references on
escapes in the Hénon–Heiles system are exemplary
rather than exhaustive, taking into account that a vast
quantity of related literature exists.

During the last half century, dynamical systems
made up of perturbed harmonic oscillators have been
extensively used in order to describe local motion
(i.e., near an equilibrium point) (e.g., [5,12,14–16,33–
36,47,59,61–63]). In an attempt to reveal and under-
stand the nature of orbits in these systems, scientists
have used either numerical (e.g., [16,39,64]) or ana-
lytical methods (e.g., [13,27,28,30,31]). Furthermore,
potentials made up of harmonic oscillators are fre-
quently used in galactic Astronomy, as a first step
for distinguishing between ordered and chaotic local
motion in galaxies, since it is widely accepted that the
motion of stars near the central region of a galaxy can
be approximated by harmonic oscillations.

A simple dynamical system of two coupled har-
monic oscillators for various values of the energy above
the escape energy has been investigated in [22], where it
was found that stable periodic orbits are surrounded by
stability islands that never escape. A further numerical
analysis of the same dynamical system in [25] revealed
that as the energy increases beyond the escape value,
the majority of chaotic orbits escape either directly, or
after a small or large number of intersections with the

y = 0 axis. In the same vein, the effects of different
types of perturbations on both the topology and the
escaping dynamics in the Hénon–Heiles system were
examined in [11], where basins of escape were found
to exist in the physical (x, y) as well as in the phase
(y, ẏ) space.

Escaping and trapped orbits in stellar systems are
an issue of paramount importance. In a recent article
[60], we explored the nature of the orbits of stars in
a galactic-type potential, which can be considered to
describe local motion in the meridional plane (R, z)
near the central parts of an axially symmetric galaxy.
It was observed that apart from the trapped orbits there
are two types of escaping orbits, those which escape
fast and those which need to spend vast time intervals
inside the limiting curve before they find the exit and
eventually escape. Furthermore, the chaotic dynamics
within a star cluster embedded in the tidal field of a
galaxy was explored in [32]. In particular, by scanning
thoroughly the phase space and obtaining the basins of
escape with the respective escape times, it was revealed
that the higher escape times correspond to initial con-
ditions of orbits near the fractal basin boundaries.

Thus, taking into account all the above-mentioned
facts, we decided to use a potential of a perturbed har-
monic oscillator with such perturbing terms producing
between two and four escape channels in the physical
(x, y) space. Here, we must point out that these dynami-
cal systems have been studied thoroughly in many pre-
vious papers so, in the current work, we shall try to
review the main properties of them and also present
some more detailed results regarding the escape mech-
anism of orbits. The aim of this work was twofold: (i)
to distinguish between trapped and escaping orbits and
(ii) to locate the basins of escape leading to different
escape channels and try to connect them with the cor-
responding escape times of the orbits. In the forthcom-
ing Part II, we will consider open Hamiltonian systems
with n(n ≥ 5) channels of escape which, however, have
not been explored yet.

The present article is organized as follows: in Sect. 2,
we describe the properties of the potential that we chose
for our investigation of trapped and escaping orbits. The
computational methods used in order to determine the
nature (ordered/chaotic and trapped/escaping) of orbits
are described in Sect. 3. In the following Section, we
conduct a thorough analysis of several sets of initial
conditions of orbits presenting in detail all the numer-
ical results of our computations. Our article ends with
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Sect. 5, where the conclusions and the discussion of
this research are presented.

2 Properties of the model potential

The general form of a two-dimensional perturbed har-
monic oscillator is

V (x, y) = 1

2

(
ω2

1x2 + ω2
2 y2

)
+ εV1(x, y), (1)

where ω1 and ω2 are the unperturbed frequencies of
oscillations along the x and y axes, respectively; ε is
the perturbation parameter, while V1 is the function
containing the perturbing terms. This is called a two-
dimensional perturbed elliptic oscillator.

In the present paper, we shall use a two-dimensional
perturbed harmonic oscillator at the 1:1 resonance, that
is when ω1 = ω2 = ω, in order to investigate the
escape properties of orbits. The corresponding poten-
tial is

V (x, y) = ω2

2

(
x2 + y2

)
+ εV1(x, y), (2)

where ω being the common frequency of oscillations
along the two axes. Without the loss of generality, we
may set ω = 1 and ε = 1 for more convenient numer-
ical computations.

The basic equations of motion for a test particle with
a unit mass are

ẍ = −∂V

∂x
, ÿ = −∂V

∂y
, (3)

where, as usual, the dot indicates derivative with respect
to the time. Furthermore, the variational equations
governing the evolution of a deviation vector1 w =
(δx, δy, δ ẋ, δ ẏ) are

˙(δx) = δ ẋ, ˙(δy) = δ ẏ,

( ˙δ ẋ) = −∂2V

∂x2 δx − ∂2V

∂x∂y
δy,

( ˙δ ẏ) = − ∂2V

∂y∂x
δx − ∂2V

∂y2 δy. (4)

The Hamiltonian to potential (2) (with ω = ε = 1)
reads

H = 1

2

(
ẋ2 + ẏ2 + x2 + y2

)
+ V1(x, y) = h, (5)

1 If S is the 2N dimensional phase space where the orbits of a
dynamical system evolve on, then a deviation vector w, which
describes a small perturbation of a specific orbit x, evolves on a
2N dimensional space Tx S tangent to S.

where ẋ and ẏ are the momenta per unit mass conjugate
to x and y, respectively, while h > 0 is the numeri-
cal value of the Hamiltonian, which is conserved. The
Hamiltonian can also be written in the form

H = H0 + H1, (6)

with H0 being the integrable term and H1 the non-
integrable correction.

Potential (2) has a finite energy of escape (hesc)

which can be derived as follows: First, we solve the
system

∂V

∂x
= 0,

∂V

∂y
= 0. (7)

The solutions of system (7) give all the critical points
of potential function. The saddle points of (2) are those
of the critical points that satisfy the condition

S =
(

∂2V

∂x2

) (
∂2V

∂y2

)
−

(
∂2V

∂x∂y

)
< 0. (8)

The value of the escape energy is obtained, if we insert
the solution of system (7) which satisfy the condition
(8) in the potential (2). It becomes evident that the
escape energy strongly depends on the particular func-
tion of the perturbation term V1(x, y). Here, we should
note that in the case when more than one solutions sat-
isfy simultaneously the condition (8), then hesc is the
minimum of the corresponding values of h, which are
calculated.

3 Computational methods

In order to study the escape process in our Hamiltonian
system, we need to define samples of orbits whose prop-
erties (escaping or trapped) will be identified. The best
method for this purpose would have been to choose
the sets of initial conditions of the orbits from a dis-
tribution function of the system. This, however, is not
available so we define for each set of values of the
energy (all tested energy levels are above the escape
energy), dense grids of initial conditions regularly dis-
tributed in the area allowed by the value of the energy.
Our investigation takes place both in the physical (x, y)

and the phase (x, ẋ) space for a better understanding
of the escape mechanism. In both cases, the step sepa-
ration of the initial conditions along the x and y and x
and ẋ axes (in other words the density of the grid) was
controlled in such a way that always there are about
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50,000 orbits (maximum a grid of 225 × 225 equally
spaced initial conditions of orbits).

For each initial condition, we integrated the equa-
tions of motion (3) as well as the variational equations
(4) using a double precision Bulirsch–Stoer FORTRAN
algorithm (e.g., [46]) with a small time step of order of
10−2, which is sufficient enough for the desired accu-
racy of our computations (i.e. our results practically
do not change by halving the time step). Our previous
experience suggests that the Bulirsch-Stoer integrator
is both faster and more accurate than a double preci-
sion Runge–Kutta–Fehlberg algorithm of order 7 with
Cash-Karp coefficients. In all cases, the energy integral
(Eq. (5)) was conserved better than one part in 10−10,
although for most orbits, it was better than one part in
10−11.

An issue of paramount importance is the determi-
nation of the position as well as the time at which
an orbit escapes. When the value of the energy h is
smaller than the escape energy, the zero velocity curves
(ZVCs) are closed. On the other hand, when h > hesc,
the equipotential curves are open and extend to infin-
ity. An open ZVC consists of several branches forming
channels through which an orbit can escape to infinity.
At every opening, there is a highly unstable periodic
orbit close to the line of maximum potential [18] which
is called a Lyapunov orbit. Such an orbit reaches the
ZVC, on both sides of the opening and returns along
the same path, thus connecting two opposite branches
of the ZVC. Lyapunov orbits are very important for
the escapes from the system, since if an orbit intersects
any one of these orbits with velocity pointing outward
moves always outward and eventually escapes from the
system without any further intersections with the sur-
face of section (see e.g., [20]). The passage of orbits
through Lyapunov orbits and their subsequent escape
to infinity is the most conspicuous aspect of the trans-
port, but crucial features of the bulk flow, especially at
late times, appear to be controlled by diffusion through
cantori, which can trap orbits far vary long time periods.

In our computations, we set 105 time units as a
maximum time of numerical integration. Our previous
experience in this subject indicates that usually orbits
need considerable less time to find one of the exits in
the limiting curve and eventually escape from the sys-
tem (obviously, the numerical integration is effectively
ended when an orbit passes through one of the escape
channels and intersects one of the unstable Lyapunov
orbits). Nevertheless, we decided to use such a vast inte-

gration time just to be sure that all orbits have enough
time in order to escape. Remember that there are the
so-called “sticky orbits” which behave as regular ones,
and their true chaotic character is revealed only after
the long time intervals of numerical integration. Here,
we should clarify that orbits which do not escape after a
numerical integration of 105 time units are considered
as non-escaping or trapped.

The physical and the phase space are divided into the
escaping and non-escaping (trapped) space. Usually,
the vast majority of the trapped space is occupied by ini-
tial conditions of regular orbits forming stability islands
where a third integral is present. In many systems, how-
ever, trapped chaotic orbits have also been observed.
Therefore, we decided to distinguish between regular
and chaotic trapped orbits. Over the years, several chaos
indicators have been developed in order to determine
the character of orbits. In our case, we chose to use
the smaller alignment index (SALI) method. The SALI
[58] has been proved a very fast, reliable, and effective
tool, which is defined as

SALI(t) ≡ min(d−, d+), (9)

where d− ≡ ‖w1(t) − w2(t)‖ and d+ ≡ ‖w1(t) +
w2(t)‖ are the alignments indices, while w1(t) and
w2(t) are two deviations vectors which initially point
in two random directions. For distinguishing between
ordered and chaotic motion, all we have to do is to
compute the SALI along time interval tmax of numer-
ical integration. In particular, we track simultaneously
the time evolution of the main orbit itself as well as
the two deviation vectors w1(t) and w2(t) in order to
compute the SALI. The variational equations (4), as
usual, are used for the evolution and computation of
the deviation vectors.

The time evolution of SALI strongly depends on
the nature of the computed orbit since when the orbit
is regular, the SALI exhibits small fluctuations around
non-zero values, while on the other hand, in the case of
chaotic orbits, the SALI after a small transient period
tends exponentially to zero approaching the limit of
the accuracy of the computer (10−16). Therefore, the
particular time evolution of the SALI allow us to dis-
tinguish fast and safely between regular and chaotic
motion (e.g., [65]). Nevertheless, we have to define a
specific numerical threshold value for determining the
transition from regularity to chaos. After conducting
extensive numerical experiments, integrating many sets
of orbits, we conclude that a safe threshold value for
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Fig. 1 a Equipotential curves of the potential (2) for various
values of the energy h when V1(x, y) = −xy2. The equipoten-
tial curve corresponding to the energy of escape is shown with
red color; b The open ZVC at the physical (x, y) plane when
h = 0.15.L1 and L2 indicate the two unstable Lyapunov orbits

plotted in red; c Two escaping orbits when h = 0.15. The orbit
which escapes from channel 1 is potted with green color, while
red color is used for the orbits which escapes through channel 2.
(Color figure online)

the SALI is the value 10−7. In order to decide whether
an orbit is regular or chaotic, one may use the usual
method according to which we check after a certain
and predefined time interval of numerical integration,
if the value of SALI has become less than the estab-
lished threshold value. Therefore, if SALI ≤10−7, the
orbit is chaotic, while if SALI >10−7, the orbit is reg-
ular. For the computation of SALI, we used the LP-VI
code [17], a fully operational code which efficiently
computes a suite of many chaos indicators for dynam-
ical systems in any number of dimensions.

4 Numerical results

Our main objective was to distinguish between trapped
and escaping orbits for values of energy larger than
the escape energy where the ZVC are open and sev-
eral channels of escape are present. Moreover, two
additional properties of the orbits will be examined:
(i) the directions or channels through which the parti-
cles escape, and (ii) the time-scale of the escapes (we
shall also use the term escape period). In the present
paper, we explore these aspects for various values of
the energy h, as well as for three different types of per-
turbation. The function of the perturbation term plays
a key role as it determines the location as well as the
number of the escape channels both in the physical and
the phase space. In particular, three different cases of
perturbation are considered which produces two, three,
and four channels of escape at the physical (x, y) space,
respectively. In both cases, the grids of initial conditions

of orbits whose properties will be examined are defined
as follows: For the physical (x, y) space, we consider
orbits with initial conditions (x0, y0) with ẋ0 = 0,
while the initial value of ẏ0 is always obtained from the
energy integral (5) as ẏ0 = ẏ(x0, ẋ0, h) > 0. Similarly,
for the phase (x, ẋ) space, we consider orbits with ini-
tial conditions (x0, ẋ0) with y0 = 0, while again the ini-
tial value of ẏ0 is obtained from the energy integral (5).

4.1 Case I: two channels of escape

In this case, the perturbation term is V1(x, y) = −xy2,
and the corresponding Hamiltonian is

H1 = 1

2

(
ẋ2 + ẏ2 + x2 + y2

)
− xy2 = h. (10)

This Hamiltonian system has an escape energy which
equals to 1/8, and it has been studied extensively in
numerous previous papers (e.g., [20,22,25,38,55]).
This dynamical system has a special symmetry; H1 is
symmetric with respect to y → −y. The equipoten-
tial curves of the potential (2) for various values of the
energy h are shown in Fig. 1a. The equipotential corre-
sponding to the energy of escape hesc is plotted with red
color in the same plot. The open ZVC at the physical
(x, y) plane when h = 0.15 > hesc is presented with
green color in Fig. 1b, and the two channels of escape
are shown. In the same plot, we denote the two unsta-
ble Lyapunov orbits by L1 and L2 using red color. In
Fig. 1c, we depict with different colors two orbits, one
escaping from channel 1 and the other from channel 2,
when h = 0.15.
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Fig. 2 The structure of the physical (x, y) plane for several
values of the energy h, distinguishing between different escape
channels. The color code is as follows: Trapped (gray); escape

through channel 1 (green); escape through channel 2 (red). (Color
figure online)

In our investigation, we shall deal only with unbou-
nded motion of test particles for values of energy in the
set h = {0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27,

0.30}. First of all, we will explore the escape process
in the physical (x, y) plane. Figure 2 shows the struc-
ture of the (x, y) plane for different values of the
energy. Each initial condition is colored according to
the escape channel through which the particular orbit

escapes. The gray regions, on the other hand, denote ini-
tial conditions where the test particles do not escape.
The outermost black solid line is the ZVC (limiting
curve) which is defined as V (x, y) = h. It is seen
that for values of energy larger but yet very close to
the escape energy (h < 0.16), a large portion of the
(x, y) plane is covered by stability islands which cor-
respond to initial conditions of trapped orbits surround-
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Fig. 3 Evolution of the
percentages of trapped and
escaping orbits when
varying the energy h a on
the physical (x, y) plane
and b on the phase (x, ẋ)

plane. (Color figure online)

ing by a very rich fractal structure. Looking carefully
the grids, we also observe that there is a highly sen-
sitive dependence of the escape process on the initial
conditions, that is, a slight change in the initial con-
ditions makes the test particle escape through another
channel, which is a classical indication of chaos. As
the value of the energy increases the stability islands
with trapped regular orbits are reduced and basins of
escape emerge. Indeed, when h = 0.30, all the com-
puted orbits of the grid escape, and there is no indication
of bounded motion or whatsoever. By the term basin of
escape, we refer to a set of initial conditions that cor-
respond to a certain escape channel. The escape basins
become smoother and more well defined as the energy
increases, and the degree of fractility decreases.2 The
fractility is strongly related with the unpredictability in
the evolution of a dynamical system. In our case, it can
be interpreted that for high enough energy levels, the
test particles escape very fast from the scattering region,
and therefore the system’s predictability increases.

Figure 3a shows the evolution of the percentages
of trapped and escaping orbits on the physical (x, y)

plane when the value of the energy h varies. One may
observe that when h = 0.13, that is just above the
escape energy, trapped and escaping orbits through
channel 1 and channel 2 almost share the entire plane.
As the value of the energy increases, however, the rate
of trapped orbits drops rapidly, and when h > 0.28,
it vanishes. At the same time, the percentage of orbits
escaping through channel 1 increases steadily and for
h > 0.35, it seems to saturate around 65 %, thus occu-

2 The fat-fractal exponent increases, approaching the value 1
which means no fractal geometry, when the energy of the system
is high enough (see [6]).

pying around two-thirds of the (x, y) plane. On the
other hand, the rate of orbits escaping through channel
2 increases for h < 0.17 but then it exhibits a slow
reduction, and for h > 0.37, it saturates around 35 %.
Therefore, one may conclude that for high energy lev-
els (h > 0.35), all orbits in the (x, y) plane escape and
about two-thirds of them choose channel 1.

The following Fig. 4 shows how the escape times
tesc of orbits are distributed on the (x, y) plane. Light
reddish colors correspond to fast escaping orbits, dark
blue/purple colors indicate large escape periods, while
gray color denotes trapped orbits. We observe that when
h = 0.13, that is a value of energy very close to the
escape energy, the escape periods of the majority of
orbits are huge corresponding to tens of thousands of
time units. This, however, is anticipated because in this
case, the width of the escape channels is very small,
and therefore the orbits should spend much time inside
the equipotential curve until they find one of the open-
ings and eventually escape to infinity. As the value
of the energy increases, however, the escape channels
become more and more wide leading to faster escaping
orbits, which means that the escape period decreases
rapidly. We found that the longest escape rates corre-
spond to initial conditions near the boundaries between
the escape basins and near the vicinity of stability
islands. On the other hand, the shortest escape periods
have been measured for the regions without sensitive
dependence on the initial conditions (basins of escape),
that is, those far away from the fractal basin boundaries.

We continue our exploration of the escape process
in the phase (x, ẋ) plane. The structure of the (x, ẋ)

phase plane for several values of the energy is shown in
Fig. 5. We observe a similar behavior to that discussed
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Fig. 4 Distribution of the escape times tesc of the orbits on the (x, y) plane. The darker the color, the larger the escape time. Trapped
orbits are indicated by gray color. (Color figure online)

for the physical (x, y) plane in Fig. 2. The outermost
black solid line is the ZVC (limiting curve) which is
defined as

f (x, ẋ) = 1

2
ẋ2 + V (x, y = 0) = h. (11)

It is worth noticing that in the phase plane, the limit-
ing curve is closed but this does not mean that there is
no escape. Remember that we decided to choose such
perturbation terms that produce the escape channels on
the physical (x, y) plane which is a subspace of the
entire four-dimensional (x, y, ẋ, ẏ) space of the sys-
tem. Here, we must point out that this (x, ẋ) phase
plane is not a Poincaré Surface of Section (PSS), sim-
ply because escaping orbits, in general, do not intersect

the y = 0 axis after a certain time, thus preventing us
from defying a recurrent time. A classical Poincaré sur-
face of section exists only if orbits intersect an axis like
y = 0 at least once within a certain time interval. Nev-
ertheless, in the case of escaping orbits, we can still
define local surfaces of section which help us to under-
stand the orbital behavior of the dynamical system.

Again, we can distinguish in the phase plane fractal
regions where we cannot predict the particular escape
channel and regions occupied by escape basins. These
basins are either broad well-defined regions or elon-
gated bands of complicated structure spiraling around
the center. We see that again for values of energy close
to the escape energy, there is a considerable amount of
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Fig. 5 The structure of the phase (x, ẋ) plane for several values
of the energy h, distinguishing between different escape chan-
nels. The color code is as follows: Trapped (gray); escape through

channel 1 (green); escape through channel 2 (red). (Color figure
online)

trapped orbits, and the degree of fractalization of the
phase plane is high. As we proceed to higher energy
levels, however, the rate of trapped orbits reduces, the
phase plane becomes less and less fractal and is occu-
pied by well-defined basins of escape. In Fig. 3b, we
present the evolution of the percentages of trapped and
escaping orbits on the phase plane when the value of

the energy h varies. It is observed that the pattern and
the evolution of the percentages are almost identical to
that discussed in Fig. 3a regarding the physical plane.
In particular, for h = 0.13, about half of the phase
plane is covered by initial conditions corresponding
to trapped orbits, while the escaping orbits share the
rest half of the (x, ẋ) plane. At the highest energy level
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Fig. 6 Distribution of the escape times tesc of the orbits on the (x, ẋ) plane. The darker the color, the larger the escape time. Trapped
orbits are indicated by gray color. (Color figure online)

studied (h = 0.5), about 60 % of the total orbits escape
through channel 1 and 40 % through channel 2; the per-
centage of trapped orbits has already reached the zero
value from h > 0.3.

The distribution of the escape times tesc of orbits
on the (x, ẋ) plane is shown in Fig. 6. It is evi-
dent that orbits with initial conditions inside the exit
basins escape from the system very quickly, or in other
words, they possess extremely small escape periods.
On the contrary, orbits with initial conditions located
in the fractal parts of the phase plane need consider-
able amount of time in order to escape. Another inter-
esting way of measuring the escape rate of an orbit is
by counting how many intersection the orbit has with

the axis y = 0 before it escapes. The regions in Fig. 7
are colored according to the number of intersections
with the axis y = 0 upward (ẏ > 0). We observe
that orbits with initial conditions inside the two red
basins escape directly without any intersection with the
y = 0 axis. Furthermore, as the value of the energy
increases, these red regions grow in relative size (pro-
portion of the total area on the phase plane) and for high
enough energy levels, they occupy around 90 % of the
grid. We should also note that orbits with initial con-
ditions located at the vicinity of the stability islands
perform numerous intersections with the y = 0 axis
before they eventually escape to infinity. On the other
hand, orbits with initial conditions in the elongated

123



Escapes in Hamiltonian systems 1399

Fig. 7 Color scale of the escape regions as a function of the
number of intersections with the y = 0 axis upward (ẏ > 0).
The color code is as follows: 0 intersections (red); 1 intersection

(blue); 2 intersections (magenta); 3–10 intersections (orange);
>10 intersections (green). The gray regions represent stability
islands of trapped orbits. (Color figure online)

spiral bands need only a couple of intersection until
they escape.

The grids in physical (x, y) as well as the phase
(x, ẋ) plane provide information on the phase space
mixing for only a fixed value of energy. Hénon, how-
ever, back in the 60s, considered a plane which provides
information about regions of stability and regions of
escaping orbits using the section y = ẋ = 0, ẏ > 0,

i.e., the test particle starts on the x-axis, parallel to the
y-axis and in the positive y-direction. Thus, in con-
trast to the previously discussed grids, only orbits with
pericenters on the x-axis are included, and therefore
the value of the energy h is used as an ordinate. Fig-
ure 8 shows the structure of the (x, h)-plane when
h ∈ (0.125, 0.5]. The boundaries between bounded
and unbounded motion are now seen to be more jagged
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Fig. 8 Orbital structure of the (x, h)-plane when two channels
of escape are present. This diagram gives a detailed analysis of
the evolution of the trapped and escaping orbits of the dynamical
system when the parameter h changes. The color code is as in
Fig. 2. (Color figure online)

than shown in the previous grids. In addition, we found,
in the blowups of the diagram, many tiny islands of sta-
bility.3 We see that for low values of the energy close
to the escape energy, there is a considerable amount of
trapped orbits inside stability regions surrounding by a
highly fractal structure. This pattern, however, changes
for larger energy levels, where there are no trapped
orbits, and the vast majority of the grid is covered by
well-formed basins of escape, while fractal structure is
confined only near the boundaries of the escape basins.

It is of particular interest to conduct a statistical
analysis of the escape process in the case of the (x, ẋ)

phase plane. For this purpose, we shall follow the
numerical approach used recently in [25]. Our results
are shown in Fig. 9a–d, where curve fit approxima-
tion versus results from numerical integration is pre-
sented in (a–b) panels. To begin with, Fig. 9a shows
the proportion of escaping orbits Ne/N0 as a function
of the energy h. For values of energy beyond the escape
energy, the majority of orbits escape from the system.
Our numerical calculation verify that the evolution of
the proportion of escaping orbits can be approximated
by the formula

3 From chaos theory, we expect an infinite number of islands of
(stable) quasi-periodic (or small scale chaotic) motion.

Ne/N0(h) = 0.5 [1 + tanh (30h − 4)] , (12)

proposed in [25]. In Fig. 9b, we present the evolution
of the direct escaping orbits Nde/N0 (by the term direct
escaping orbits, we refer to orbits that escape to infinity
immediately without any intersection with the y = 0
axis) as a function of the energy h. We see that the
amount of direct escaping orbits grows rapidly with
increasing h, and for high energy levels (h > 0.5),
they take over almost all the phase plane (more than
90 %). The proportion of direct escapes can be given
by the approximate formula

Nde/N0(h) = −1.7 + 19.24h − 49.15h2 + 42.16h3.

(13)

Moreover, Fig. 9c depicts the logarithm of the pro-
portion of escaping orbits d Nn/N0, where d Nn cor-
responds to the number of escaping orbits after the nth
intersection with the y = 0 axis upward (ẏ > 0). It
is seen that the escape time of orbits decreases with
increasing n. In particular, the escape rates are high for
relatively small n, while they drop rapidly for larger n.
Last but not the least, we computed the probability of
escape as a function of the number of intersections for
various values of the energy. Specifically, the probabil-
ity is defined as

pn = d Nn

Nn
, (14)

where Nn is the number of orbits that have not yet
escaped before the nth intersection. The evolution of
pn as a function of n for various energy levels is given
in Fig. 9d. Here, we have to stress out that the prop-
erties of the probability of escape in this system and
in other similar systems have been studied in detail
in previous papers (e.g., [24,55–57]. Furthermore, our
numerical calculations regarding the statistical analysis
of the dynamical system in the case where two escape
channels are present have found to coincide with the
corresponding results given in [25].

4.2 Case II: three channels of escape

We continue our exploration of escapes in a Hamil-
tonian system with three exit channels and escape
energy equal to 1/6. In order to obtain this number of
exits in the limiting curve in the (x, y) plane, the per-
turbation term should be V1(x, y) = −x

(
x2/3 − y2

)
and the corresponding Hamiltonian reads
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Fig. 9 a Evolution of the
proportion of escaping
orbits Ne/N0 as a function
of the energy h, b evolution
of the proportion of directly
escaping orbits Nde/N0 as a
function of the energy h, c
evolution of the logarithmic
proportion d Nn/N0 as a
function of the number of
the intersections n, for
various values of the energy
and d evolution of the
probability pn of escapes as
a function of n for several
energy levels. (Color figure
online)

H2 = 1

2

(
ẋ2+ ẏ2 + x2 + y2

)
− x

(
x2/3 − y2

)
= h.

(15)

H2 manifests a 2π/3 rotation symmetry, but for ε, this
discrete symmetry is broken. Here, we should like to
note that the particular type of the perturbation is very
similar to that of the classical Hénon–Heiles Hamil-
tonian system [36] (in fact, we changed the position
of the x and y variables). We made this choice mainly
for two reasons: (i) the standard Hénon–Heiles dynam-
ical system has been studied extensively and thor-
oughly in numerous papers over the last years (e.g.,
[1–3,6,11,26,49]) so we preferred to work on some-
thing rather different and (ii) in all cases, we wanted
the (x, ẋ) phase plane.4 It should be pointed out how-
ever, that this change in the variables affects only the
symmetry, while all the measured quantities remain
the same as in the classical Hénon-Heiles system. In

4 The (x, ẋ) phase plane is constructible only if the potential has
terms with even powers regarding the y variable.

Fig. 10a, we see the equipotential curves of the poten-
tial (2) for various values of the energy h, while the
equipotential corresponding to the energy of escape
hesc is plotted with red color in the same plot. Fur-
thermore, the open ZVC at the physical (x, y) plane
when h = 0.2 > hesc is presented with green color in
Fig. 10b, and the three channels of escape are shown.
In the same figure, the three unstable Lyapunov orbits
L1, L2, and L3 are denoted using red color. Figure 10c
depicts with different colors three orbits, one escaping
from channel 1, one from channel 2, and the other from
channel 3, when h = 0.2.

In this case, we shall investigate the escape proper-
ties of unbounded motion of test particles for values
of energy in the set h = {0.17, 0.18, 0.19, 0.20, 0.22,

0.24, 0.26, 0.28, 0.30}. We begin with initial condi-
tions of orbits in the physical (x, y) plane. The orbital
structure of the physical plane for different values of
the energy h is shown in Fig. 11. Again, following
the approach of the previous case, each initial condi-
tion is colored according to the escape channel through
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Fig. 10 a Equipotential curves of the potential (2) for various
values of the energy h when V1(x, y) = −x

(
x2/3 − y2

)
. The

equipotential curve corresponding to the energy of escape is
shown with red color; b The open ZVC at the physical (x, y)

plane when h = 0.2. L1, L2 and L3 indicate the three unstable

Lyapunov orbits plotted in red; c Three escaping orbits when
h = 0.2. The orbit which escapes from channel 1 is potted with
green color, the orbit escaping from channel 2 with red color,
while blue color is used for the orbits which escapes through
channel 3. (Color figure online)

which the particular orbit escapes. Stability islands, on
the other hand, filled with initial conditions of orbits
which do not escape are indicated as gray regions. We
observe that things are quite similar to that discussed
previously in Fig. 2. In fact, for energy levels very close
to the escape energy, the central region of the plot is
highly fractal, and it is also occupied by several sta-
bility islands. However, as we increase the value of
the energy, the regions of regular trapped orbits are
reduced, and the physical plane becomes less and less
fractal and well-defined basins of escape emerge.

The evolution of the percentages of trapped and
escaping orbits on the physical (x, y) plane when the
value of the energy h varies is presented in Fig. 12a.
It is seen that when h = 0.17, that is the first inves-
tigated energy level above the escape energy, escap-
ing orbits through channels 2 and 3 share the same
percentage (around 32 %), escapers through channel
1 have a slightly elevated percentage (around 34 %),
while trapped orbits possess a very low rate corre-
sponding only to 4 % of the physical plane. Once-
more, as we increase the value of the energy, the rate
of trapped orbits decreases and eventually vanishes for
h > 0.2. Furthermore, we observe that the percent-
age of escaping orbits through channel 2 grows with
increasing energy and for h > 0.4, it seems to satu-
rate around 44 %. The percentage of escaping orbits
through channel 3, on the other hand, exhibits a slow
but constant decrease, while the rate of escaping orbits
through exit 1 after small fluctuations saturates around
32 % for h > 0.4. In general terms, we may conclude
that throughout the energy range studied, the majority

of orbits in the physical (x, y) plane choose to escape
through channel 2, while exit 3 seems to be the least
favorable among the escape channels.

The following Fig. 13 shows how the escape times
tesc of orbits are distributed on the (x, y) plane. Light
reddish colors correspond to fast escaping orbits, dark
blue/purple colors indicate large escape periods, while
gray color denotes trapped orbits. This grid representa-
tion of the physical plane gives us a much more clearer
view of the orbital structure and especially about the
trapped orbits. In particular, we see that for h = 0.2,
we have the last indication of stability islands, as for
all higher energy levels studied all orbits escape, thus
defying basins of escape.

Our exploration continuous in the phase (x, ẋ)

plane. The structure of the (x, ẋ) phase plane for dif-
ferent values of the energy is shown in Fig. 14. We
observe a similar behavior to that discussed for the
physical (x, y) plane in Fig. 11. Again, we can dis-
tinguish in the phase plane fractal regions where the
prediction of the particular escape channel is impossi-
ble and regions occupied by escape basins. It is inter-
esting to note that the limiting curve (ZVC) is open at
the right part due to the x3 term entering the pertur-
bation function. The rich fractal structure of the phase
space shown in the grids of Fig. 14 implies that our
system has also a strong topological property, which
is known as the Wada property. This special topologi-
cal property has been identified and studied in several
dynamical systems (e.g., [4,40,45]), and it is a typi-
cal property in open Hamiltonian systems with three or
more escape channels. An escape basin is a Wada basin
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Fig. 11 The structure of the physical (x, y) plane for several
values of the energy h, distinguishing between different escape
channels. The color code is as follows: trapped (gray); escape

through channel 1 (green); escape through channel 2 (red);
escape through channel 3 (blue). (Color figure online)

if any boundary point also belongs to the boundary of
at least two other basins [11,40]. It is seen in Fig. 14
that for h > 0.25, all the KAM regime vanishes [6],
and therefore all the initial conditions of orbits escape
through one of the exits.

It is evident from Fig. 12b, where the evolution of
the percentages of trapped and escaping orbits on the
phase plane as a function of the value of the energy h is

presented, that the pattern has many differences com-
paring to that discussed previously in Fig. 12a; only the
percentage of trapped orbits exhibits similar behavior.
To begin with, we observe that for h = 0.17, more than
half of the phase plane (around 55 %) corresponds to
initial conditions of orbits that escape through channel
1, while orbits escaping through exits 2 and 3 share
about 44 % of the grid. As the value of the energy
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Fig. 12 Evolution of the
percentages of trapped and
escaping orbits when
varying the energy h a on
the physical (x, y) plane
and b on the phase (x, ẋ)

plane. (Color figure online)

Fig. 13 Distribution of the escape times tesc of the orbits on the (x, y) plane. The darker the color, the larger the escape time. Trapped
orbits are indicated by gray color. (Color figure online)
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Fig. 14 The structure of the phase (x, ẋ) plane for several val-
ues of the energy h, distinguishing between different escape
channels. The color code is as follows: Trapped (gray); escape

through channel 1 (green); escape through channel 2 (red);
escape through channel 3 (blue). (Color figure online)

increases and we move away from the escape energy,
it is seen that the rate of orbits escaping through exit
1 increases and always dominates, while on the other
hand, the percentages of orbits escaping through chan-
nels 2 and 3 drop. At the highest energy level stud-
ied (h = 0.5), about 70 % of the total orbits escape
through channel 1, about 20 % through channel 2 and

only 10 % through channel 3. Thus, one may reasonably
conclude that throughout the energy range studied, the
vast majority of orbits in the phase (x, ẋ) plane choose
to escape through channel 1, while channels 2 and 3
are much less likely to be chosen.

Figure 15 shows the distribution of the escape times
tesc of orbits on the (x, ẋ) plane. It is evident that orbits
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Fig. 15 Distribution of the escape times tesc of the orbits on the (x, ẋ) plane. The darker the color, the larger the escape time. Trapped
orbits are indicated by gray color. (Color figure online)

with initial conditions inside the exit basins escape
from the system after short time intervals, or in other
words, they possess extremely small escape periods.
On the contrary, orbits with initial conditions located
in the fractal parts of the phase plane need consider-
able amount of time in order to find one of the exits
and escape. We see that for h > 0.2, there is no indica-
tion of stability islands corresponding to trapped orbits.
In another point of view, Fig. 16 shows the regions
of the phase plane, which are now colored accord-
ing to the number of intersections the orbits perform
with the axis y = 0 upward (ẏ > 0). The red regions
denote initial conditions of orbits that escape directly

from the system without ever intersecting the y = 0
axis. The proportion of the total area on the phase
plane occupied by these regions of direct escapes grows
with increasing energy and for high enough energy
levels, they occupy more than 70 % of the grid. In
Fig. 17, we present the structure of the (x, h)-plane
when h ∈ (1/6, 1/2]. It is seen that trapped orbits
exist only at low energies very close to the escape
energy (h < 0.22), while for larger energy levels, all
the orbits escape to infinity. Once more, highly fractal
structure is observed near the stability islands of reg-
ular motion, while the degree of fractalization, or in
other words the unpredictability of the system, reduces
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Fig. 16 Color scale of the escape regions as a function of the
number of intersections with the y = 0 axis upward (ẏ > 0).
The color code is as follows: 0 intersections (red); 1 intersection

(blue); 2 intersections (magenta); 3–10 intersections (orange);
>10 intersections (green). The gray regions represent stability
islands of trapped orbits. (Color figure online)

significantly where there are no trapped orbits and well-
defined basins of escape cover the vast majority of the
(x, h)-plane.

At this point, we shall follow the approach discussed
in subsection 4.2 in order to perform a statistical analy-
sis of the escape process in the case of the (x, ẋ) phase
plane for the Hamiltonian system with three channels
of escape. Figure 18a shows the proportion of escaping

orbits Ne/N0 as a function of the energy h. For values
of energy beyond the escape energy, more than 95 %
of the total orbits escape from the system. According
to our numerical calculation, the evolution of the pro-
portion of escaping orbits can be approximated by the
formula

Ne/N0(h) = 0.5 [1 + tanh (49h − 6.5)] . (16)
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Fig. 17 Orbital structure of the (x, h)-plane when three channels
of escape are present. This diagram gives a detailed analysis of
the evolution of the trapped and escaping orbits of the dynamical
system when the parameter h changes. The color code is as in
Fig. 11. (Color figure online)

In Fig. 18b, we present the evolution of the direct escap-
ing orbits Nde/N0 as a function of the energy h. We see
that the amount of direct escaping orbits grows rapidly
with increasing h and for high energy levels (h > 0.5),
they populate about 80 % of the phase plane. The pro-
portion of direct escapes can be given by the approxi-
mate formula

Nde/N0(h)=−2.2 + 22.86h − 59.24h2+51.42h3.

(17)

Furthermore, Fig. 18c depicts the logarithm of the pro-
portion of escaping orbits d Nn/N0, as a function of
the intersections with the y = 0 axis upward an orbit
performs before it escapes. We observe that the escape
time of orbits decreases with increasing n. In particular,
the escape rates are high for relatively small n, while
they drop rapidly for larger n. Finally, we calculated
the probability of escape as a function of the number
of intersections for various values of the energy. The
evolution of pn as a function of n for various energy
levels is shown in Fig. 18d.

4.3 Case III: four channels of escape

The last case under investigation is a Hamiltonian sys-
tem with four channels of escape. In order to obtain
this number of exits in the limiting curve in the physical

(x, y)plane, we chose the perturbation term V1(x, y) =
−x2 y2 and the corresponding Hamiltonian is the fol-
lowing:

H3 = 1

2

(
ẋ2 + ẏ2 + x2 + y2

)
− x2 y2 = h. (18)

The Hamiltonian H3 is invariant under x → −x and/or
y → −y. The escape mechanism in this particular
Hamiltonian system with the four escape channels and
escape energy equals to 1/4 has already been exam-
ined (e.g., [20,23,24,38,42]). In Fig. 19a, we present
the equipotential curves of the potential (2) for various
values of the energy h, while the equipotential corre-
sponding to the energy of escape hesc is plotted with
red color in the same plot. In addition, the open ZVC
at the physical (x, y) plane when h = 0.3 > hesc is
given with green color in Fig. 19b, while the four chan-
nels of escape are also shown. In the same figure, the
four unstable Lyapunov orbits L1, L2, L3, and L4 are
denoted using red color. In Fig. 19c, we plotted with
different colors four orbits, one escaping from channel
1, one from channel 2, one from channel 3, and the last
one from channel 4, when h = 0.3.

The escape properties and mechanism of unbounded
motion of test particles for values of energy in the
set h = {0.26, 0.28, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,

0.60} will be examined. We begin, as usual, with initial
conditions of orbits in the physical (x, y) plane. Fig-
ure 20 shows the orbital structure of the physical plane
for different values of the energy h. Again, following
the same approach of the previous cases, each initial
condition is colored according to the escape channel
through which the particular orbit escapes. Areas cor-
responding to trapped orbits on the other hand are indi-
cated as gray regions. It is evident that the structure
of the (x, y) plane differs significantly with respect
to the plots shown previously in Figs. 2 and 11. We
see that for values of energy very close to the escape
energy, almost all the central regions of the grid are
covered by initial conditions of trapped orbits, while
escaping orbits exist only near the four exits. However,
with increasing energy, the area on the physical plane
occupied by trapped orbits reduces and several basins
of escape begin to emerge. At the highest energy level
studied (h = 0.6), there is no indication of trapped
motion, and all orbits escape to infinity through one
of the four escape channels. We also observe the exis-
tence of well-formed basins of escape, while the central
region of the grid still remains highly fractal. Here, we
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Fig. 18 a Evolution of the
proportion of escaping
orbits Ne/N0 as a function
of the energy h, b evolution
of the proportion of directly
escaping orbits Nde/N0 as a
function of the energy h, c
evolution of the logarithmic
proportion d Nn/N0 as a
function of the number of
the intersections n, for
various values of the energy
and d Evolution of the
probability pn of escapes as
a function of n for several
energy levels. (Color figure
online)

Fig. 19 a Equipotential curves of the potential (2) for various
values of the energy h when V1(x, y) = −x2 y2. The equipoten-
tial curve corresponding to the energy of escape is shown with
red color; b The open ZVC at the physical (x, y) plane when
h = 0.3. L1, L2, L3, and L4 indicate the four unstable Lyapunov

orbits plotted in red; c Four escaping orbits when h = 0.3. The
orbit which escapes from channel 1 is potted with green color,
the orbit escaping from channel 2 with red color, the one from
channel 3 with blue, while orange color is used for the orbits
which escapes through channel 4. (Color figure online)

should like to note that in general terms, throughout the
energy range, the structure of the physical plane (x, y)

is symmetrical with respect to the x = 0 axis.

It is of particular interest to monitor the evolution
of the percentages of trapped and escaping orbits on
the physical (x, y) plane when the value of the energy
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Fig. 20 The structure of the physical (x, y) plane for sev-
eral values of the energy h, distinguishing between different
escape channels. The color code is as follows: Trapped (gray);

escape through channel 1 (green); escape through channel 2
(red); escape through channel 3 (blue); escape through channel
4 (orange). (Color figure online)

h varies. A diagram depicting this evolution is pre-
sented in Fig. 21a. We see that for h = 0.26, that is an
energy level just above the escape energy, about 50 %
of the physical plane is covered by initial conditions
of trapped orbits. As the value of the energy increases,
however, the rate of trapped orbits drops rapidly and
eventually at h = 0.6, it vanishes. We also observe

that the evolutions of the percentages of orbits escaping
through channels 1 and 3 coincide with the evolution
of the percentages escaping through channels 2 and 4,
respectively. We anticipated this behavior of the escape
percentages, which is a natural result of the symmetri-
cal structure of the (x, y) plane. It is seen that initially
(h = 0.26), all rates of escaping orbits coincide at
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Fig. 21 Evolution of the
percentages of trapped and
escaping orbits when
varying the energy h a on
the physical (x, y) plane
and b on the phase (x, ẋ)

plane. (Color figure online)

Fig. 22 Distribution of the escape times tesc of the orbits on the (x, y) plane. The darker the color, the larger the escape time. Trapped
orbits are indicated by gray color. (Color figure online)
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Fig. 23 The structure of the phase (x, ẋ) plane for several val-
ues of the energy h, distinguishing between different escape
channels. The color code is as follows: Trapped (gray); escape

through channel 1 (green); escape through channel 2 (red);
escape through channel 3 (blue); escape through channel 4
(orange). (Color figure online)

about 14 %. Then, with increasing energy, the rates of
escaping orbits increase and also start to diverge. At the
highest energy studied, escaping orbits through chan-
nels 1 and 2 share about 65 % of the physical plane,
while escaping orbits trough channels 3 and 4 occupy
the remaining 35 % of the grid. Therefore, one may rea-
sonably conclude that in general terms, throughout the

range of the values of the energy studied, the majority
of orbits in the physical (x, y) plane choose to escape
either through channel 1 or channel 2.

The distribution of the escape times tesc of orbits on
the physical plane is given in Fig. 22. Light reddish col-
ors correspond to fast escaping orbits, dark blue/purple
colors indicate large escape periods, while gray color
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Fig. 24 a The structure of the phase (x, ẋ) plane for h = 0.26,
distinguishing between trapped regular orbits (cyan), trapped
chaotic orbits (magenta), and escaping orbits (white). b Time
evolution of R2 = x2+y2 for a super sticky orbit when h = 0.26.

The horizontal, red, dashed line at 1.26 approximates the posi-
tion of the unstable Lyapunov orbits at the four exits, while the
vertical, blue, dashed line denotes the initial integration interval
of 105 time units. (Color figure online)

denotes trapped orbits. Here, we have a better view
regarding the amount of trapped orbits. Indeed, we see
that for h = 0.6, all orbits escape from the system.
Moreover, we observe that orbits with initial condi-
tions close to the area occupied by trapped orbits have
significantly large escape periods, while on the other
hand, orbits located near the escape channels escape
very quickly having escaping rates of about two orders
smaller.

We continue our investigation to the phase (x, ẋ)

plane, the structure of which for different values of the
energy is presented in Fig. 23. One may observe that
for h < 0.3, most of the phase plane is covered by a
vast region corresponding to trapped orbits, while only
two small islands of initial conditions of escaping orbits
exit. However, as the value of the energy increases and
we move far away for the escape energy, the extent of
these two islands grows and for h > 0.35, the trapped
orbits are mainly confined to the central region of the
phase plane. At the same time, small elongated spiral
basins of escape emerge inside the fractal region which
surrounds the area of trapped orbits. Furthermore, at
very high energy levels (h > 0.55), we see that trapped
orbits disappear completely from the grid, and the two
main basins of escape take over the vast majority of the
phase plane, while the elongated escape basins remain
confined to the central region. As we noticed previously
when discussing the physical (x, y) plane, there is also

a symmetry in the phase plane. In particular, throughout
the energy range, the structure of the phase plane (x, ẋ)

is somehow symmetrical (not with the strick sense)
with respect to the ẋ = 0 axis.

The evolution of the percentages of trapped and
escaping orbits on the phase plane as a function of the
value of the energy h is given in Fig. 21b. For h = 0.26,
we see that trapped orbits dominate the phase plane as
they occupy about 90 % of the gird. However, as usual,
with increasing energy, the dominance of trapped orbits
deteriorates rapidly due to the increase of the rates
of escaping orbits which form basins of escape. We
observe that once more as in Fig. 21a, the evolution of
the percentages of orbits escaping through channels 1
and 3 coincides with the evolution of the percentages
escaping trough channels 2 and 4, respectively. The per-
centages of all types of escaping orbits increase but with
different rates and for h > 0.35, and they overwhelm
the amount of trapped orbits. In particular, we see that
the percentages of orbits escaping through exits 1 and
2 are always higher than those corresponding to orbits
escaping through channels 3 and 4. Moreover, the rates
of exits 1 and 2 increase constantly and at the highest
energy level studied (h = 0.6), the share about 90 % of
the entire phase plane. On the other hand, the percent-
ages of exits 3 and 4, even though they also grow with
increasing energy, always possess significantly smaller
values than exits 1 and 2 and for h > 0.4, they seem to
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Fig. 25 Distribution of the escape times tesc of the orbits on the (x, ẋ) plane. The darker the color, the larger the escape time. Trapped
orbits are indicated by gray color. (Color figure online)

saturate around 5 %. Thus, we may conclude that the
vast majority of orbits in the phase (x, ẋ) plane exhibit
clear sings of preference through exits 1 and 2, while
channels 3 and 4 have considerable less probability to
be chosen.

Taking into account that for low values of the energy,
there is a considerable amount of trapped motion in
the phase plane, we decided to use the SALI method
in order to distinguish between regular and chaotic
trapped orbits. In Fig. 24a, we present the phase plane
for h = 0.26, where each initial condition is plotted
according to the regular (cyan) or chaotic (magenta)
character of the orbit, while white areas correspond to
escaping orbits. It is seen that the vast majority of the

trapped orbits are regular; however, a thin layer com-
posed of chaotic trapped orbits is also present. There-
fore, a natural and very important question arises: do
these chaotic bounded orbits remain trapped forever?
Remember that in the current investigation, we set the
maximum time of the numerical integration to be equal
to 105 time units. We suspect that all these trapped
chaotic orbits will eventually escape from the system
if they have enough time to evolve. Thus, in order to
shed some light to this issue, we let the time running
and we integrated these orbits until they escape. Our
numerical calculations revealed that these orbits are in
fact super sticky orbits which possess extremely high
escape periods up to 3.5 × 106 time units. A charac-
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Fig. 26 Color scale of the escape regions as a function of the
number of intersections with the y = 0 axis upward (ẏ > 0).
The color code is as follows: 0 intersections (red); 1 intersection

(blue); 2 intersections (magenta); 3–10 intersections (orange);
> 10 intersections (green). The gray regions represent stability
islands of trapped orbits. (Color figure online)

teristic example of such a super sticky orbit is given
in Fig. 24b, where we monitor the time evolution of
R2 = x2 + y2. The horizontal, red, dashed line at 1.26
approximates the position of the unstable Lyapunov
orbits at the four exits, while the vertical, blue, dashed
line denotes the initial integration time (105 time units).
We see that the particular orbit escapes through chan-

nel 2 after a time interval of about 8.51 × 105 time
units which is more than 8.5 times the initial inte-
gration period. Our additional computations indicate
that these super sticky orbits correspond to less than
10 % of the total (regular plus chaotic) trapped orbits
so using 105 time units for the numerical integration
and counting them as trapped, even though they escape
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Fig. 27 Orbital structure of the (x, h)-plane when four escape
channels are present. This diagram gives a detailed analysis of
the evolution of the trapped and escaping orbits of the dynamical
system when the parameter h changes. The color code is as shown
in Fig. 20. (Color figure online)

after vast time intervals, does not have a huge impact
in our results.

The following Fig. 25 shows the distribution of the
escape times tesc of orbits on the (x, ẋ) plane. It is clear
that orbits with initial conditions inside the exit basins
escape to infinity after short time intervals, or in other
words, they possess extremely small escape periods.
On the contrary, orbits with initial conditions located
in the fractal parts of the phase plane need considerable
amount of time in order to find one of the four exits and
escape. It is seen that at the highest energy level studied
(h = 0.6), there is no indication of bounded motion,
and all orbits escape to infinity sooner or later.

In Fig. 26, we reconstructed the grids in the phase
plane using different color codes, and now the regions
of the phase plane are colored according to the number
of intersections the orbits perform with the axis y = 0
upward (ẏ > 0). Specifically, red regions correspond
to initial conditions of orbits that escape directly from
the system without any intersection with the y = 0 axis.
We see that the proportion of the total area on the phase
plane occupied by orbits which escape directly from the
system grows rapidly with increasing energy and for
h > 0.6, they occupy more than 90 % of the entire grid.
Fig. 27 depicts the structure of the (x, h)-plane when
h ∈ (0.25, 1]. At low energy levels, one may observe
three important issues: (i) the vast majority of oribis are

trapped, (ii) the structure of the (x, h)-plane exhibits a
high degree of fractalization, and (iii) basins of escape
are present only at the outer parts of the grid. However,
when h > 0.6, that is when trapped orbits cease to
exist, we see that the fractal structure disappears and
all the (x, h)-planes are covered by well-defined basins
of escape. It should also be pointed out that the structure
of the (x, h)-plane is symmetrical with respect to the
x = 0 axis.

Before closing this section, we would like to per-
form a statistical analysis of the escape process in the
case of the (x, ẋ) phase plane for the Hamiltonian sys-
tem with four channels of escape. The proportion of
escaping orbits Ne/N0 as a function of the energy h is
presented in Fig. 28a. We see that for h > 0.45, more
than 90 % of the total orbits escape from the system.
Our numerical computations suggest that the evolution
of the proportion of escaping orbits can be approxi-
mated by the formula

Ne/N0(h) = 0.5 [1 + tanh (15.85h − 4.93)] . (19)

Furthermore, in Fig. 28b, we present the evolution of
the direct escaping orbits Nde/N0 as a function of the
energy h. As it was found in the previously exam-
ined cases, the amount of direct escaping orbits grows
rapidly with increasing h and for high energy levels
(h > 0.6), they populate more than 90 % of the phase
plane. The proportion of direct escapes can be given by
the approximate formula

Nde/N0(h) = −1.496 + 7.585h − 5.938h2. (20)

The evolution of the logarithm of the proportion of
escaping orbits d Nn/N0, as a function of the intersec-
tions with the y = 0 axis upward an orbit performs
before it escapes, is given in Fig. 28c. One may observe
that the escape time of orbits decreases with increasing
n. Being more precise, the escape rates are high enough
for relatively small number of intersections n, while
they fall rapidly for larger n. Finally, we computed the
probability of escape as a function of the number of
intersections for various values of the energy h. Our
results are shown in Fig. 28d, where we present the
evolution of pn as a function of n for various energy
levels.

5 Conclusions and discussion

The main objective of this work was to review but
also numerically investigate even further the escape
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Fig. 28 a Evolution of the
proportion of escaping
orbits Ne/N0 as a function
of the energy h, b evolution
of the proportion of directly
escaping orbits Nde/N0 as a
function of the energy h, c
evolution of the logarithmic
proportion d Nn/N0 as a
function of the number of
the intersections n, for
various values of the energy
and d evolution of the
probability pn of escapes as
a function of n for several
energy levels. (Color figure
online)

properties of orbits in a dynamical system of two-
dimensional coupled perturbed harmonic oscillators,
which is a characteristic example of open Hamiltonian
systems. The key feature of this type of Hamiltonians is
that they have a finite energy of escape. In particular, for
energies smaller than the escape value, the equipoten-
tial surfaces are close, and therefore escape is impos-
sible. For energy levels larger than the escape energy,
however, the equipotential surfaces open and several
channels of escape appear through which the particles
can escape to infinity. Here, we should emphasize that
if a test particle has energy larger than the escape value,
then this does not necessarily mean that the particle will
certainly escape from the system and even if escape
does occur, then the time required for an orbit to cross
a Lyapunov orbit and hence escape to infinity may be
vary long compared with the natural crossing time. The
function containing the perturbation terms affects sig-
nificantly the structure of the equipotential curves and
determines the exact number of the escape channels.
We chose such forms of perturbations and divided our

study into three cases with respect to the number of the
escape channels.

Since a distribution function of the system was not
available so as to use it for extracting the different sam-
ples of orbits, we had to follow an alternative path. We
defined for each set of values of the energy, dense grids
of initial conditions regularly distributed in the area
allowed by the value of the energy in both the phys-
ical and the phase space. In both cases, the density
of the grids was controlled in such a way that always
there are about 50,000 orbits to be examined. For the
numerical integration of the orbits in each grid, we
needed roughly between 1 minute and 3 days of CPU
time on a Pentium Dual-Core 2.2 GHz PC, depend-
ing both on the amount of trapped orbits and on the
escape rates of orbits in each case. For each initial
condition, the maximum time of the numerical inte-
gration was set to be equal to 105 time units, however,
when a particle escapes the numerical integration is
effectively ended and proceeds to the next initial con-
dition.
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The structure of both the physical (x, y) and phase
(x, ẋ) space has been explored for several values of
the energy h. We managed to distinguish between
trapped (non-escaping) and escaping orbits and we
also located the basins of escape leading to different
exit channels, finding correlations with the correspond-
ing escape times of the orbits. Among the escaping
orbits, we separated between those escaping fast or late
from the system. Our extensive numerical calculations
strongly suggest that the overall escape process is very
dependent on the value of the total orbital energy. We
also performed a statistical analysis in each case, relat-
ing the proportion of escaping and directly escaping
orbits with the value of the energy. In the same vein,
the evolution of the proportion of escaping orbits and
the corresponding probability, as functions of the nth
intersection with the y = 0 axis upward, was also pre-
sented.

The main numerical results of our investigation can
be summarized as follows:

1. In all three cases studied, areas of trapped orbits
and regions of initial conditions leading to escape
in a given direction (basins of escape) were found to
exist in both the physical and the phase space. The
several escape basins are very intricately interwo-
ven, and they appear either as well-defined broad
regions or thin elongated spiral bands. Regions of
trapped orbits first and foremost correspond to sta-
bility islands of regular orbits, where a third integral
of motion is present.

2. A strong correlation between the extent of the
basins of escape and the value of the energy h was
found to exists. Indeed, for low values of h, the
structure of both physical and phase space exhibits
a large degree of fractalization, and therefore the
majority of orbits escape choosing randomly escape
channels. As the value of h increases, however, the
structure becomes less and less fractal and several
basins of escape emerge. The extent of these basins
of escape is more prominent at high energy levels,
where they occupy about 90 % of the entire area on
the grids.

3. It was found that for energy levels slightly above the
escape energy, the majority of the escaping orbits
have considerable long escape rates (or escape peri-
ods), while as we proceed to higher energies, the
proportion of fast escaping orbits increases signif-
icantly. This phenomenon can be justified, if we

take into account that with increasing energy the
exit channels on the equipotential curves become
more and more wide; thus, the test particles can
find easily and faster one of the exits and escape to
infinity.

4. We observed that in several exit regions, the escape
process is highly sensitive dependent on the initial
conditions, which means that a minor change in
the initial conditions of an orbit lead the test parti-
cle to escape through another exit channel. These
regions are the opposite of the escape basins, are
completely intertwined with respect to each other
(fractal structure), and are mainly located in the
vicinity of stability islands. This sensitivity toward
slight changes in the initial conditions in the frac-
tal regions implies that it is impossible to predict
through which exit the particle will escape.

5. Our calculations revealed that the escape times of
orbits are directly linked to the basins of escape.
In particular, inside the basins of escape as well as
relatively away from the fractal domains, the short-
est escape rates of the orbits had been measured.
On the other hand, the longest escape periods cor-
respond to initial conditions of orbits either near
the boundaries between the escape basins or in the
vicinity of stability islands.

6. In the case where the perturbation term creates
four channels of escape in the physical space, we
found that a small portion of chaotic orbits with ini-
tial conditions close to the outermost KAM islands
remain trapped in the neighborhood of these islands
for vast time intervals having sticky periods which
correspond to hundreds of thousands time units.
On the contrary, in systems with two and three exit
channels, all non-escaping orbits are regular, while
all tested chaotic orbits escape to infinity within the
predefined integration time.

We hope that the present review analysis and the
corresponding numerical results will be useful in the
active field of open Hamiltonian systems which may
have implications in different aspects of chaotic scatter-
ing with applications in several areas of physics. In Part
II of our investigation, we shall try to reveal the escape
properties of orbits in dynamical systems with n(n ≥ 5)

channels of escape in the physical space. Furthermore,
it is in our future plans to expand our exploration in
other more complicated potentials, focusing our inter-
est in revealing the escape process of orbits of stars
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in realistic galactic systems (i.e., star clusters, binary
stellar systems, rotating galaxies leaking stars, etc).
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