
Nonlinear Dyn (2014) 78:1369–1388
DOI 10.1007/s11071-014-1523-x

REVIEW

Particle filtering for nonlinear dynamic state systems
with unknown noise statistics

Jaechan Lim

Received: 24 October 2013 / Accepted: 6 June 2014 / Published online: 3 July 2014
© Springer Science+Business Media Dordrecht 2014

Abstract In this paper, we provide a tutorial for the
applications of cost-reference particle filter (CRPF) to
problems in signal processing disciplines. CRPF works
in particle filtering (PF) framework although it may not
be viewed as a Bayesian approach because the estima-
tion is not based on the expected posterior function.
CRPF has an interesting feature, i.e., the information
of the noise statistics is not needed in its applications
as opposed to the cases of the Kalman filter and stan-
dard PF approaches that work in dynamic state systems.
Therefore, it is highly effective when the noise infor-
mation is not available; nevertheless, it may not show
optimal performance in general. In this paper, we intro-
duce and disseminate this useful approach that is not
known to many researchers even in related fields, and
show how to effectively apply to problems which we
provide as examples.

Keywords Cost-reference particle filter · Dynamic
state system · Extended Kalman filter · Nonlinear
model · Particle filter

1 Introduction

We introduce the Kalman filter (KF) and particle fil-
ter (PF) before we discuss cost-reference particle filter
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(CRPF) because the CRPF is a variant of PF and PF
is developed based on the KF. In many problems of
signal processing disciplines, the estimate of a “tar-
geted state” is obtained based on some measurement
which is a function of the state. Particularly, if the state
system can be described by the discrete time-varying
states in a stochastic process, we can estimate the tar-
geted state sequentially by probabilistic approaches.
Probabilistic approaches are also called Bayesian meth-
ods which are modern approaches compared to classi-
cal maximum likelihood (ML) methods. ML methods
assume that the target to be estimated is a deterministic
variable rather than random variable. Therefore, based
on Bayesian methods, the target is estimated to be an
expected value rather than a definite value, which is a
prominent difference between the two approaches. The
dynamic state system that describes the hidden state
s and observed measurement m with zero mean and
additive noise processes of u and w at time step k are
expressed as follows:

sk = g (sk−1) + uk, (1)

mk = h (sk) + wk, (2)

where boldface denotes a vector representation, g(·)
and h(·) are the given state transition function and the
measurement function, respectively, which are possibly
nonlinear. Based on this system model, we can esti-
mate the time-varying state sk sequentially by using
the obtained measurement mk at each time step via the
dynamic filters, e.g., the Kalman filter, particle filter,
and their variants. The minimum mean squared error
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(MMSE) estimate can be obtained as follows (see [23],
Ch. 11 for detailed derivation of MMSE estimator):

ŝMMSE
k =

∫
sk p(s0:k |m1:k)dsk, (3)

where “1 : k” indicates the time indices from 1
to k,ˆ denotes a estimated version, and p(s0:k |m1:k)
is the posterior density. In the particular case, both
g(·) and h(·) are linear functions; and uk and wk are
Gaussian distributed, the Kalman filter (KF) is the opti-
mal MMSE estimator [21]. The KF estimates the state
sequentially in a closed form as follows:

ŝKF
k = s̄k + Kk [mk − h(s̄k)] , (4)

where Kk is the Kalman gain that is computed by the

algorithm at each time step, and s̄k = g
(

ŝKF
k−1

)
(see

[23], Ch. 13 and [19], Ch. 7 for details of KF).
In general cases, i.e., other than the linear and

Gaussian case, there exist a number of sub-optimal
approaches such as particle filtering (PF) [2,40]. The
Kalman filter also can be applied as a sub-optimal
approach to nonlinear model by extending it using Tay-
lor series (in this case, still Gaussian noise is assumed)
[1,17,22,27,37]. Readers can be referred to [19,24]
for more details about Kalman filtering and extended
Kalman filtering. Particle filtering generates random
particles (which represent the possible states) accord-
ing to a proposal density (or importance function) based
on the posterior function. The weight of each particle is
computed based on the relation of the proposal density
to the posterior function, and normalized. Therefore,
the posterior function is approximated by particles as
follows:

p(s0:k |m1:k) ≈
N∑

i p=1

ω
i p
k δ(s0:k − s

i p
0:k), (5)

where i p is the particle index, N is the number of

employed particles, ω
i p
k is the weight of the particle

i p at the time step k, and δ(·) denotes the Dirac delta
function that has the following property:

δ(sk − s
i p
k ) =

{
+∞, sk = s

i p
k ,

0, sk �= s
i p
k .

The estimate is obtained in two criteria: i.e., MMSE and
maximum a posteriori (MAP) estimates as follows:

ŝPF
k =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŝMMSE
k =

N∑
i p=1

ω
i p
k s

i p
k

ŝMAP
k = arg max

sk∈
{

s
i p
k

}N

i p=1

[
N∑

i p=1
δ
(

s
i p
k − sk

)
ω

i p
k

]
.

(6)

There are variants of the extended KF (EKF) and
those of PF approaches: e.g., unscented KF (UKF),
Gaussian PF, auxiliary PF, likelihood PF, etc. Although
PF approaches require high computational cost, they
outperform EKF and its variants in most highly non-
linear problems; furthermore, the noise does not have
to be assumed Gaussian.

Incidently, all these approaches require the knowl-
edge of noise statistics in their applications. Therefore,
it is assumed that the means and the variances of u
and w are assumed to be known in their applications.
However, we may encounter the situation when we
need to solve the problem with unknown noise statis-
tics in practice. Therefore, in this paper, we introduce
the approach, i.e., CRPF that we can apply in that sit-
uation. This approach was initially developed in [34],
and is still not known to many researchers even in signal
processing disciplines. CRPF is highly effective in the
scenario when the problem is highly nonlinear and the
information of the noise statistics is unknown. In this
paper, we explain the step-by-step algorithm of CRPF
with a number of example problems where CRPF has
been successfully applied. Readers can be referred to
[8,44] for further reading for better understanding of
CRPF.

For readability facilitation, the list of abbreviations
used in this paper is provided as follows:

Abbreviations

• ACK: acknowledgement
• BER: bit error rate
• CIR: channel impulse response
• CFO: carrier frequency offset
• CTS: clear-to-send
• CRB: Cramer–Rao bound
• CRPF: cost-reference particle filter
• CSMA/CA: carrier sense multiple access with the

collision avoidance
• CUSUM: cumulative summary
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PF for nonlinear dynamic state systems 1371

• DCF: distributed coordination function
• DIFS: distributed inter-frame space
• DSSS: direct sequence spread spectrum
• EHIF: extended H infinity filter
• EKF: extended Kalman filter
• Eb

N0
: bit energy to noise ratio

• GMM: Gaussian mixture model
• GMSPPF: Gaussian mixture sigma point particle

filter
• GPF: Gaussian particle filter
• HF: extended H infinity filter
• KF: Kalman filter
• MAC: medium access control
• MAP: maximum a posteriori
• MMSE: minimum mean squared error
• MSE: mean squared error
• OFDM: orthogonal frequency division multiplexing
• PF: particle filter
• PHY: physical layer
• PMF: probability mass function
• RLS: recursive least squares
• RMSE: root mean squared error
• PI: particle impoverishment
• RTS: request-to-send
• SIFS: short inter-frame space
• SNR: signal to noise ratio
• SIR-PF: sequential importance resampling particle

filter
• UKF: unscented Kalman filter
• WLAN: wireless local area network

2 Cost-reference particle filter

Since the 1990s, the so-called sequential Monte Carlo
filtering or sequential importance sampling technique
was developed, which is also addressed “particle fil-
tering.” Standard particle filtering works well for the
problems that are modeled by nonlinear functions of the
state and/or the measurement. Furthermore, the noise
does not have to be Gaussian; nonetheless, the noise
information is required in its application. Recently,
CRPF algorithm was developed [8,30,34,44], which
works in PF framework although it may not be rea-
sonable to view it as a Bayesian approach due to the
reason that the estimation is not based on the posterior
function as opposed to the case of standard PF. CRPF
does not need the information of statistics of both the
state process noise and measurement noise [46,47]. In

CRPF algorithm, we need to define a couple of impor-
tant functions, i.e., the cost function and the risk func-
tion. These functions are adopted as the measure of
the quality of particles in the algorithm. The cost func-
tion needs to satisfy strictly convex with respect to sk to
avoid the ambiguities in estimates and in the resampling
step. The risk function needs to be simple and highly
tractable in computation for practical implementation
of the algorithm

The cost function in CRPF is a measure of “particle
quality” including past particles, which is defined by

C(s
i p
0:k |m1:k , λ)=λC(s

i p
0:k−1|m1:k−1, λ)+�C(s

i p
k |mk),

(7)

and can be simply expressed as

Ci p
k = λCi p

k−1 + �Ci p
k , (8)

where i p denotes the particle index, and λ is the forget-
ting factor (0 ≤ λ ≤ 1) which is the amount of contri-
butions of past particles to evaluating the cost function.

�Ci p
k is the “incremental cost function” which indi-

cates the accuracy of s
i p
k given the measurement mk ,

and is computed by ‖ mk − h(s
i p
k ) ‖q with q ≥ 1. The

cost-based random measure is represented by a set of
“particles and associated costs” as

Ξk = {
s

i p
k , Ci p

k

}N
i p=1, (9)

where N is the number of employed particles. The risk
function is also defined by

R(s
i p
k−1|mk)=�C(E[si p

k ]|mk)=�C(s
i p
k−1|mk). (10)

The risk function represents the adequacy of s
i p
k−1 given

the measurement mk . In addition, the risk function is a
prediction of the cost increment �Ci p

k . Then, the pre-
dictive cost function is defined as follows:

Ri p
k = λCi p

k−1 + R(s
i p
k−1|mk). (11)

The probability mass function (PMF) is computed by
using the risk function as follows:

π̃
i p
k ∝μ1(Ri p

k )=1/(Ri p
k −min {Ri p

k }N

i p=1+δ)β, (12)

where δ, β > 0.
With the parameters defined above, the sequential

algorithm recursively repeats the steps of risk evalua-
tion, selection, particle propagation, and updating the
cost with time. The detailed steps for the sequential
estimation of s are given as follows:
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1372 J. Lim

1. Initialization for i p = 1, . . . , N (number of par-

ticles), generate s
i p
0 ∼ p0(s0) which is a known

prior density, and assign the cost Ci p
0 = 0, and ini-

tialize the variance of the propagation density σ
2,i p
0 .

In simulations, usually an uniform distribution or
a Gaussian distribution is employed for the prior
density.

2. Recursive update for k = 1, . . . , K (total time
steps)

(a) Compute (for i p = 1, . . . , N )

Ri p
k = λCi p

k−1+ ‖ mk − h[g(s
i p
k−1)] ‖q for

q ≥ 1, and probability mass function (PMF),

π̃
i p
k ∝ μ1(Ri p

k ) = 1(
Ri p

k −min
{
Ri p

k

}N

i p=1
+δ

)β ,

where δ, β > 0: small value of δ is to ensure
the denominator is not zero.

(b) Do the selection (resampling) Ξ̌k−1 = {
š

i p
k−1,

Či p
k−1

}N
i p=1 according to π̃

i p
k , where “ˇ” denotes

the resampled version. Resampling process is
performed by randomly reselecting N particles
based on PMF; therefore, some particles are res-
elected to multiply depending on the PMF. See
[2] for pseudocode of resampling algorithm.

(c) Particle propagation (for i p = 1, . . . , N )

s
i p
k ∼ pk(sk |ši p

k−1) = N
(

g(š
i p
k−1), σ

2,i p
k−1 I

)
,

which is a Gaussian density, where σ
2,i p
k =

k−1
k σ

2,i p
k−1 + ‖s

i p
k −g(š

i p
k−1)‖2

k×dim[s] , and I is the identity
matrix with the dimension of s. Therefore, the
variance of the propagation density is adjusted
online in the CRPF algorithm although we need
to determine the initial one.

(d) Compute the cost (for i p = 1, . . . , N ), Ci p
k

= λČi p
k−1+ ‖ mk − h(s

i p
k ) ‖q , and normalized

PMF, π
i p
k ∼μ2

(
Ci p

k

)
= 1(

Ci p
k −min

{
Ci p

k

}N

i p=1
+δ

)β .

(e) Estimate ŝk = ŝCRPF
k = ∑N

i p=1 π
i p
k s

i p
k .

As described in the above algorithm, there is not any
usage of information regarding u and w.

2.1 Discussion

Generally, 0.1 and 2 are successfully employed for δ

and β, respectively, for satisfactory performance of

CRPF. Apart from δ and β, we need to perform pre-
liminary tuning process for the initial variance of the
propagation density (σ 2

0), the forgetting factor (λ), and
q based on the size of the variances of the system
noise u and w. Well-tuned parameters enhance the per-
formance of CRPF. Particularly, σ 2

0 needs to be care-
fully selected while λ and q are usually selected from
{0, 0.95} and {1, 2}, respectively. The values of λ and q
need to satisfy: 0 ≤ λ ≤ 1 and q ≥ 1. The value of zero
is also considered for λ because the mean state estimate
(smean

k ) becomes asymptotically optimal in terms of its
incremental cost when λ = 0 [34]. The selections of q
and λ affect the risk and the cost functions that conse-
quently affect the performance of CRPF.

This tuning process is a tedious work if we want to
obtain perfectly and optimally tuned CRPF for every
parameter although we do not need to plug in the exact
information of noise statistics. Among the all parame-
ters, the initial variance of the propagation density is
the most impactive factor for satisfactory performance
of CRPF, and we will show the result of the difference
of the performance made by the different selections of
σ 2

0 in the following example problems.

3 Applications of CRPF

Via the following example problems, we explain the
step-by-step algorithm of CRPF, and show how to
obtain satisfactory performance. The main measure for
the assessed performance is mean squared error (MSE)
which can be obtained as follows:

MSE =
∑S

iS=1

(
n − ŝiS

)2

S
, (13)

where S is the number of simulations, iS denotes the
simulation index, s is the state of interest to be esti-
mated, and ŝiS is the estimate in the iS-th simulation.

3.1 Carrier frequency offset estimation in OFDM
systems

In data communication systems, by employing orthog-
onal frequency division multiplexing (OFDM) scheme,
we can eliminate intersymbol interference problem
based on additionally inserted prefix codes. On the
other hand, this system has unavoidable defect of inter-
carrier interference problem caused by carrier fre-
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Table 1 CRPF algorithm
for estimating CFO Initialization for i p =1, . . . , N , generate ε

i p
0 ∼p0(ε0), and assign the cost Ci p

0 =0, and initialize σ
2,i p
0 .

Recursive update for k =1, . . . , K

(1) Compute, (for i p = 1, . . . , N )

Ri p
k =λCi p

k−1+‖ mk − hk [g(ε
i p
k−1)] ‖q for q ≥1, and PMF, π̃

i p
k ∝μ(Ri p

k )= 1(
Ri p

k −min
{
Ri p

k

}N

i p=1
+δ

)β .

(2) Selection, or resampling Ξ̌k−1 = {
ε̌

i p
k−1, Či p

k−1

}N
i p=1 according to π̃

i p
k ,

where “ˇ” denotes resampled version of the particle set.

(3) Particle propagation (for i p = 1, . . . , N )

ε
i p
k ∼ pk(εk |ε̌i p

k−1) = N
(

g(ε
i p
k−1), σ

2,i p
k−1 I [ε]

)
, where σ

2,i p
k = k−1

k σ
2,i p
k−1 + ‖εi p

k −g(ε̌
i p
k−1)‖2

k×dim[ε] .

(4) Compute the cost (for i p = 1, . . . , N ), Ci p
k = λCi p

k−1+ | mk − hk(ε
i p
k ) |q , and

normalized PMF, π
i p
k ∝ μ2

(
Ci p

k

)
= 1(

Ci p
k −min{Ci p

k }N
i p=1+δ

)β , where α, β > 0.

(5) Estimation of ε̂k = ε̂CRPF
k = ∑N

i p=1 π
i p
k ε

i p
k .

quency offset (CFO). Therefore, estimating CFO is
important in OFDM systems [16,18,32].

The binary bits are mapped to data symbols (A(r))

on the complex signal constellation space. Grouped
symbols (i.e., an OFDM symbol) are modulated onto
subcarriers in the form of inverse fast Fourier transform
(IFFT) as follows:

a(k)= 1

K

K−1∑
r=0

A(r)e j 2πrk
K , k = 0, 1, . . . , K − 1,

(14)

where A(r) is a data symbol (for example, 1+ j,−1+
j,−1− j , and 1− j in the case of quadrature phase shift
keying), and K is the number of subcarriers. The cyclic
prefix is added up to the signal to mitigate the intersym-
bol interference, and is removed at the receiver. Then,
the received signal is expressed in the time domain as
follows:

m(k) = e j 2πkε
K

L−1∑
l=0

ak−l fl +wk k =0, 1, . . . , K −1,

(15)

where ε is a normalized CFO (meaning the relative
offset from a carrier frequency); fl (l = 0, 1, . . . ,

L−1) is the L-tap channel impulse response; and wk is
unknown additive noise. We want to estimate ε based
on the received signals, and then decode the symbols.

The corresponding dynamic state system and the
measurement equations for the problem can be mod-
eled as follows:

εk = εk−1, (16)

m(k) = hk(ε) + wk, (17)

where we can assume CFO ε is a constant within the
data frame (k is from 0 to K − 1) since each OFDM
frame is short enough. In this example, the measure-
ment function h(·) is time varying, i.e., hk(·). Then,
from (15), we obtain

hk(ε) = e j 2πkε
K

L−1∑
l=0

, ak−l fl . (18)

Now, we are ready to apply CRPF to the problem of
estimating CFO with known preamble symbols “A(r)”;
we also assume the channel impulse response “ fl” is
given. The state noise u is assumed known and zero
while the measurement noise w is non-zero and ini-
tially unknown in this system model. We apply CRPF
to this problem under the above-noted noise scenario:
although the state noise is known, we do not take advan-
tage of it in the algorithm. On the other hand, per-
fectly known noise information is given to all the other
approaches that are compared with CRPF in this exam-
ple. Table 1 describes the steps of the CRPF algorithm
for estimating CFO.

We consider that a single antenna, 64 subcarrier
OFDM system and the quadrature-phase shift keying
(QPSK) scheme is employed for the simulation. Vari-
ous additive Gaussian noise power levels are applied to
the measurement for different ratios of Eb

N0
(bit energy

to noise ratio). The normalized CFO ε is uniformly and
randomly generated from the range between −0.9 and
0.9 that we estimate. The employed parameters for the
application of CRPF are q = 1; λ = 0; δ = 0.1; and
β = 2. The initial 500 particles for CRPF are generated
as the way the true CFO is generated. 3,000 indepen-
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Fig. 1 Tracking example with σ
2,(i p)

0 = 0.8 and Eb
N0

= 40dB

0 10 20 30 40 50 60 70
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

σ2
0 = 0.0006, Eb

N0
= 40dB

Sub-carrier

O
ffs

et

True offset

Tracking by CRPF

Fig. 2 Tracking example with σ
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dent, 64 preamble data symbols, which are known at
the receiver, are generated for the MSE performance
evaluation of the methods.

In Figs. 1 and 2, examples of single tracking trajec-
tories are depicted, where the performance is affected

depending on how well σ
2,(i p)

0 is selected. Figure 1
shows the result of the scenario when a badly selected

σ
2,(i p)

0 is employed with a high Eb
N0

, where CRPF
diverges at the end of the tracking. If we employ a well-

selected σ
2,(i p)

0 , the tracking performance is greatly
improved as shown in Fig. 2. Figure 3 shows the result
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Fig. 3 Tuning the initial variance of particles, i.e., σ
2,(i p)
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Fig. 4 MSE performance of the approaches, only 10 particles
were employed for PF approaches

of tuning of σ
2,(i p)

0 , where the dotted line with no mark

shows the performance when we employ σ
2,(i p)

0 =
0.0006. Therefore, we use σ

2,(i p)

0 = 0.0006 for the
assessment of MSE performance of CRPF. Figure 4
shows the MSE performance of the various approaches,
where 10 particles are employed for particle filtering
approaches. It shows that CRPF outperforms sequential
importance resampling PF (SIR-PF) and Gaussian PF
(GPF) when only 10 particles are employed. Extended
H infinity filter (EHIF) shows good performance at
15dB and above while extended KF shows bad per-
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Fig. 5 MSE performance of the approaches, only 10 particles
were employed for PF approaches

formance in this range. EKF does not show a stable
performance for highly nonlinear problems. Standard
PF such as SIR-PF has a drawback for estimating a
static parameter due to particle impoverishment (PI)
phenomenon, particularly when the number of parti-
cles is small and/or the frequency offset is large. PI is
caused by the resampling process which results in the
particles that have high weights statistically selected
many times; consequently, resultant particles contain
many repeated particles. Usually, PI is severe when the
state process noise is very small or zero in the dynamic
state equation, and hence all particles may turn into an
identical particles within a few iterations [2]. In this
example problem, the state process noise is zero. PI
phenomenon degrades the performance since the left
identical particles do not converge to the true value,
and it may not be eliminated unless sufficiently many
particles are employed. CRPF does not undergo the PI
problem because new particles are generated based on
a Gaussian distribution rather than a posterior function.
Nonetheless, we do not obtain optimal performance by
CRPF when highly increased number of particles are
employed for PF approaches as shown in the following.

Figure 5 shows the MSE performance of the various
approaches, where 500 particles are employed for par-
ticle filtering approaches. Overall, GPF shows optimal
performance when we increase the number of particles
[31]. CRPF shows similar performance regardless of
the number of employed particles.

3.2 Estimating the number of competing terminals in
WLAN

In IEEE 802.11 systems, the system throughput perfor-
mance is affected by the back-off window size of termi-
nals that try to transmit packets. The optimal back-off
window size needs to be selected based on the number
(n) of competing terminals in the system. In this exam-
ple, we apply CRPF for estimating n in IEEE 802.11
systems. Contrary to previously proposed approaches,
CRPF does not require extra computational cost, and
furthermore, tracking latency is avoided as well, due
to the nonnecessity of additional state detection algo-
rithm. Prompt tracking performance is obtained by
avoiding tracking latency, which results in accurate
estimate of n. Based on estimated n, we apply optimally
selected back-off window to obtain enhanced through-
put performance.

Following [4,6], we consider a scenario of the fixed
number of n competing terminals. Each terminal oper-
ates in the saturated network and ideal channel condi-
tions: the saturated network condition means that all
terminals always have a packet waiting for transmis-
sion. ζ denotes the collision probability that a packet
is transmitted on a collided channel. Then, n can be
expressed as the function of ζ as follows [6]:

n = F(ζ ) = 1 + log (1 − ζ )

log

(
1 − 2(1−2ζ )

(1−2ζ )(Dmin+1)+ζ Dmin(1−(2ζ )κ )

) ,

(19)

where κ and Dmin denote the maximum back-off stage
and the minimum contention window size, respec-
tively. After a collision, each terminal doubles its con-
tention window size up to the maximum value Dmax =
2κ Dmin, where κ = log2 (Dmax/Dmin). In order to
maximize the saturation throughput, Dmin is optimally
selected, which satisfies the following [4,5]:

Dmin = n
√

2T , (20)

where T is the packet transmission time. From (19), we
can estimate n by measuring collision probability ζ . ζ

is measured by each terminal at the time step k (each
time step comprises B slots) as follows:

ζk = 1

B

k B−1∑
i=(k−1)B

Ci , (21)

where Ci = 0 if the corresponding slot is empty or
the transmission is successful during the slot i while
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Fig. 6 Model time and
actual time of the
observation slots B

Table 2 CRPF algorithm
for estimating n Initialization Initialize for i p =1, . . . , N generate n

i p
0 ∼ p0(n0), which is a known prior density,

assign the cost Ci p
0 = 0, and initialize the variance of the propagation density σ

2,i p
0 and CRPF

parameters λ, δ, q, β.
Recursive update for k = 1, . . . , K

(1) Compute the risk (for i p = 1, . . . , N ).

Ri p
k = λCi p

k−1 +
∥∥∥ζk − h(n

i p
k−1)

∥∥∥q
, where q ≥ 1.

(2) Compute the probability mas function (PMF)

(for i p = 1, . . . , N ). π̃
i p
k ∝ μ1(Ri p

k ) = 1/(Ri p
k − min {Ri p

k }N

i p=1 + δ)β where δ, β > 0.

(3) Select {ňi p
k−1,

ˇ Ci p
k−1}

N

i p=1
by resampling with π̃

i p
k .

(4) Particle propagation (for i p =1, . . . , N )

n
i p
k ∼pk (nk |ňi p

k−1)=N (ň
i p
k−1, σ

2,i p
k ), which is a Gaussian density, where σ

2,i p
k = k−1

k σ
2,i p
k−1 +

∥∥∥n
i p
k −ň

i p
k−1

∥∥∥2

k .

(5) Compute the cost (for i p = 1, . . . , N ),

Ci p
k = λČi p

k−1+
∥∥∥ζk − h(n

i p
k−1)

∥∥∥q
and normalized PMF π

i p
k ∝ μ2(Ci p

k ) = 1/(Ci p
k − min {Ci p

k }N

i p=1 + δ)β .

(6) Estimate n̂k = n̂CRPF
k

∑N
i p=1 π

i p
k n

i p
k .

Ci = 1 if the slot is busy or collided. As shown in
Fig. 6, one slot can be either one actual slot or a packet
length depending on the channel state. If the packet
length or n increases, then the actual observation time
increases even if B remains the same. This will degrade
the prompt tracking performance.

The discrete time dynamic state system model for
the number of competing terminals is defined as follows
[6]:

nk = nk−1 + wk, (22)

where wk is the state process noise; determine the vary-
ing pattern of n which is hard to be known. The obtained
measurement (21) is related with the state nk based on
(19) as follows:

ζk = F−1(nk) + vk = h(nk) + vk, (23)

where h(·) is the inverse function of (19), vk is the
measurement noise that follows the binomial distribu-
tion with zero mean, and the variance can be computed
as follows [7]:

Var[vk] = h(nk) · [1 − h(nk)]
B

. (24)

Therefore, the system model of the problem is nonlin-
ear and non-Gaussian.

Table 2 describes the step-by-step algorithm for esti-
mating n by the CRPF approach.

We apply the CRPF approach and compare its per-
formance with that of the existing methods by simu-
lations. The packet transmission by each terminal fol-
lows basic access mode, and direct sequence spread
spectrum (DSSS) is adopted for physical layer (PHY).
In DSSS, 32 for Dmin, 1, 024 for Dmax are employed,
respectively. The packet format and simulation para-
meters are described in Table 3. This is the same as
that adopted in [6] except for the packet payload size.
We adopt 2,000 for observation slots B, the given initial
estimate of n̂0 is 5, and the given initial error variance
P0 is 10 for all filtering methods. The CUSUM algo-
rithm is employed for the EKF and Gaussian mixture
sigma point particle filter (GMSPPF) [26,35] for the
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Table 3 Packet format and parameters

Parameters Value

Packet payload 2,046 bits

MAC header 272 bits

ACK length 112 bits + PHY header

Channel bit rate 1 Mbit/s

Busy detect time 29 us

SIFS 28 us

DIFS 130 us

ACK timeout 300 us

Slot time 20 us

state variation detection. GMSPPF is a variant of par-
ticle filtering that demands high computational com-
plexity [25,49]. The number of employed particles,
N = 300 for GMSPPF and CRPF. We select the para-
meters for CRPF by training, which are λ = 0.95;
δ = 0.1; q = 2; and β = 2. The experiment is per-
formed by using MATLAB 7.11.0. We employ some
ReBEL Toolkit functions (e.g., GMM, expectation
maximization algrorithm) for GMSPPF as employed
in [35].

We assess the performance of the approaches in the
respect of MSE of estimates and the saturation through-
put of the system. Figure 7 shows how Dmin affects
the saturation throughput performance depending on
its size. In the middle of simulation, n changes from 10
to 25. At that time, Dmin is adjusted based on true n and
the estimated n̂ by the EKF, respectively, and we com-

pare the performance to that with non-adjusted Dmin.
Whereas the throughput degrades with non-adjusted
Dmin as n varies, the throughput degradation is not
observed with adjusted Dmin as shown in Fig. 7.

We perform the simulation in the scenario of non-
saturated network condition. In the non-saturated net-
work condition, all terminals randomly send pack-
ets whose lengths are also random. It is close to the
real internet network scenario where users’ random
requests make random data traffic. We assume that the
data traffic length and the transmission period follow
the exponential distribution with the rates of 0.11/s and
0.7/s, respectively, in simulations. To describe large
changes of the total number of terminals, e.g., as in
subways or hot spot area, we change the total number
of terminals every 20 s in the pattern of 15, 25, 15, 30,
and 20 terminals.

Figure 8 shows tracking n by the EKF which
employs the CUMSUM algorithm for the state varia-
tion detection, where n varies less drastically and more
dynamically compared to the varying pattern in the sat-
urated network condition.

We assess MSE and the saturation throughput per-
formance by running 200 simulations of the scenario
that generates a result of Fig. 8. The MSE result of
Fig. 9 shows that CRPF outperforms the EKF and
GMSPPF during the entire simulation period. This
result shows the critical disadvantage of the CUSUM
algorithm: the CUSUM algorithm is set to detect rel-
atively large variation of n; therefore, algorithms that
employ the CUSUM are not good at tracking small
changes of n promptly. Furthermore, CRPF shows far

Fig. 7 Saturation
throughput performance
depending on Dmin
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Fig. 8 Tracking n by the EKF in non-saturated network condi-
tion
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Fig. 9 Mean square error in the non-saturated network condition

better performance compared to the other approaches
especially during the periods of drastic variations of n.
Figure 10 shows the result of the saturation throughput
performance. In the non-saturated network condition,
CRPF performs better than in the saturated network
condition, and it outperforms the other approaches,
especially during the period of the state variation as
shown in Fig. 10. The non-saturated network condition
is close to real conditions; therefore, CRPF is more
effective and useful for real scenarios.

We summarized the performance results of the non-
saturated network condition in Table 4, where we high-
light the result of throughput during the period of dras-
tic variations of n. CRPF clearly shows outperforming
result over the entire simulation period. The degrada-
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Fig. 10 Saturation throughput in the non-saturated network con-
dition

tion ratio shows that the performance degradation is
reduced by 77 % for CRPF compared to that of the EKF
approach. According to the degradation ratio result, we
clearly observe that the performance of CRPF is highly
enhanced in the non-saturated network condition.

In summary, CRPF does not need the additional state
variation detector in the algorithms, whereas most of
the previously proposed approaches require the state
variation detector that incurs the latency in tracking
n. Furthermore, CRPF avoids the extra computational
cost which results from the adoption of the state varia-
tion detector. By using the CRPF approach, we showed
enhanced system throughput performance by select-
ing the optimal minimum contention window based on
the estimated n which is time varying. CRPF outper-
formed the existing methods that additionally employ
the state variation detection algorithm, especially in the
non-saturated network condition. The non-saturated
network condition is closer to the real internet sce-
nario, where n changes with the pattern less drastically,
rapidly, and more dynamically compared to the sat-
urated network condition. This tracking performance
results from the nonnecessity of the state variation
detector. The prompt tracking results in accurate esti-
mation of n, and the accurately estimated n is reflected
to the selection of optimal back-off window size.

3.3 Target tracking based on bearing and range

In this example, we track a single target’s location and
velocity in two-dimensional space, where a target is
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Table 4 Performance in
non-saturated network
condition

Mean square error Saturation throughput (40–45 s)

Mean Variance Mean Variance (10−5) Degradation ratio

EKF 4.3633 0.7923 0.6375 1.3808 1

GMSPPF 2.4324 0.2921 0.6388 1.0341 0.562

CRPF 1.3813 0.0915 0.6397 0.8574 0.234

Fig. 11 The range (R) and the bearing (β) measurements of a
target in motion

moving with random noise perturbation [36,45,48]. We
apply the EKF and H infinity filter based on observa-
tions, i.e., the range and the bearing of the target mea-
sured at the origin of the coordinate system. Figure 11
describes the range and the bearing of the target mea-
sured at the origin of the coordinate. When we apply the
EKF, the noise information of the problem is perfectly
known. The moving direction of the target is subject
to the noise perturbation, which is determined by the
process noise in the state equation. In this example,
we denote the state and the measurement by s and m,
respectively.

The state equation is expressed as follows if we
assume that the sampling period is short enough for
the velocity to be assumed a constant during the sam-
pling period, the profile of the velocity with discrete
time steps follows the shape of a staircase rather than
the ramp shape:

⎡
⎢⎢⎣

rx,k

ry,k

vx,k

vy,k

⎤
⎥⎥⎦

︸ ︷︷ ︸
sk

=

⎡
⎢⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣

rx,k−1

ry,k−1

vx,k−1

vy,k−1

⎤
⎥⎥⎦

︸ ︷︷ ︸
sk−1

+

⎡
⎢⎢⎣

0
0

ux,k

uy,k

⎤
⎥⎥⎦

︸ ︷︷ ︸
uk

, (25)

where r, v, u, and (x, y) denote the location, the veloc-
ity, the noise perturbation, and coordinates, respec-
tively. T is the sampling period, and k is the time
index. Therefore, the dynamically time-varying state
is composed of four elements, i.e., 2-D location and
2-D velocity coordinates. The state noise of the loca-
tion coordinate is zero, whereas that of the velocity is
subjected to a random process of uk . The range and the
bearing compose the measurement equation, which is
highly non-linear, and described as follows:

mk = h[sk] + wk = [Rk βk]� + wk, (26)

where the range

Rk =
√

r2
x,k + r2

y,k, (27)

the bearing

βk = arctan

(
ry,k

rx,k

)
, (28)

and the measurement noise wk = [wR,k wβ,k]�,
respectively. Therefore, the state sk is sequentially esti-
mated based on the observed information mk .

CRPF can be easily adopted for the target tracking
problem based on (1) and (2). The function g(·) is lin-
ear, and is equal to A in this example. The steps of the
CRPF algorithm for tracking a target is described in
Table 5.

We apply CRPF and the EKF for tracking a target
in a two-dimensional space for performance assess-
ment. Sampling period, T = 1, and the initial true
state of the target is s0 = [10 − 5 − 0.2 0.2]�.
The given initial estimate of the state for all meth-
ods is ŝ0 = [5 5 0 0]�. Diverse variance scenar-
ios of uncorrelated noises for perturbations (in both
directions), the range, and the bearing are investigated
when a single Gaussian is applied. We also simulate for
the scenario that a mixture Gaussian noise is applied.
The first Gaussian noise is adopted (which is wrong
information) for the application of the EKF, while the
noise information is unknown for CRPF in the mixture
Gaussian noise scenario. When a mixture Gaussian is
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Table 5 Cost-reference
particle filter algorithm for
target tracking

Initialization for i p = 1, . . . , N , generate s
i p
0 ∼ p0(s0), and assign the cost Ci p

0 = 0, and initialize σ
2,i p
0 .

Recursive update for k = 1, . . . , K

(1) Compute, (for i p = 1, . . . , N )

Ri p
k = λCi p

k−1+ ‖ mk − A · g(s
i p
k−1) ‖q for q ≥ 1, and PMF, π̂

i p
k ∝ μ(Ri p

k ) = 1(
Ri p

k −min{Ri p
k }N

i p=1+δ
)β .

(2) Selection, or resampling Ξ̂k−1 = {ŝ
i p
k−1, Ĉi p

k−1}N
i p=1 according to π̂

i p
k , where “ ˆ” denotes resampled

version of the particle set.
(3) Particle propagation (for i p = 1, . . . , N )

s
i p
k ∼ pk (sk |ŝi p

k−1) = N
(

g(s
i p
k−1), σ

2,i p
k−1 I [s]

)
, where N (

a, b2
)

denotes a Gaussian distribution

with the mean of a and the variance of b2, σ
2,i p
k = k−1

k σ
2,i p
k−1 + ‖s

i p
k −g(ŝ

i p
k−1)‖2

k×dim[s] .
(4) Compute the cost (for i p = 1, . . . , N ), Ci p

k = λCi p
k−1+ ‖ mk − A · s

i p
k ‖q , and normalized

PMF, π
i p
k ∝ μ2

(
Ci p

k

)
= 1(

Ci p
k −min{Ci p

k }N
i p=1+δ

)β , where α, β > 0.

(5) Estimation sk = smean
k = ∑N

i p=1 π
i p
k s

i p
k .

applied, ux,y ∼ 0.1N (0, 1) + 4 × 10−4 · N (0, 1) +
10−6 · N (0, 1), wR ∼ √

0.1N (0, 1) + 0.04N (0, 1) +
2.5 × 10−5 · N (0, 1), and wβ ∼ 0.1N (0, 1) + 4 ×
10−4N (0, 1)+ 1.6 × 10−7 ·N (0, 1), where N (

a, b2
)

denotes the Gaussian distribution with the mean of a
and the variance of b2. The given initial covariance
for the EKF is diag(1 1 1 1), where “diag” denotes
the diagonal matrix with the diagonal elements in the
parenthesis, and the noise statistics are perfectly known
when we apply the EKF. We perform preliminary tun-
ing process for CRPF. The performance of CRPF highly
relies on the initial variance of propagation density

σ
2,i p
0 =

[
σ

2,i p

0,(1) σ
2,i p

0,(2) σ
2,i p

0,(3) σ
2,i p

0,(4)

]�
. We run 500 sim-

ulations with various values of σ
2,i p
0 and diverse noise

scenarios: σ
2,i p

0,(1,2) = 1, 5, 10; σ
2,i p

0,(3,4) = 0.1, 1, 5; vari-
ances of wβ = 0.01, 0.1; variances of wR = 0.1, 1;
and variances of ux,y = 0.001, 0.01. Moreover, q and
λ are tuned for diverse parameter scenarios based on

narrowed selection of σ
2,i p
0 . The tuning process for this

example problem is highly extensive due to the high
dimension of the state, i.e., four. Although we do not

specify the detailed tuned values of σ
2,i p
0 corresponding

to specific scenarios, we assess the MSE performance
based on extensive tuning process. For other parame-
ters, the number of particles is 500; δ = 0.1; β = 2,
respectively.

In Fig. 12, the root mean squared error (RMSE) of
the methods are depicted when we run 300 times for
an identical trajectory with a single Gaussian noise,
and there was no diverging tracking for any methods
during the simulations for this particular trajectory.
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Fig. 12 RMSE in X coordinate by 300 runs for the same trajec-
tory when a single Gaussian noise was applied

The applied noise variances are 0.01, 0.1, and 0.001
for wβ,wR , and ux,y , respectively. The result shows
that the EKF outperforms CRPF, slightly. EKF tracks
well when the true trajectory is not highly nonlinear
in this particular scenario. When we apply the mixture
Gaussian noise for the identical trajectory over 300 sim-
ulations, the result is very similar to Fig. 12 although
we do not show the result here. To obtain more vari-
ous simulation results with a single Gaussian noise, we
perform simulations with various noise variance sce-
narios: applied variances of wβ,wR , and ux,y are (0.01,
0.1), (0.1, 1), and (0.001, 0.01), respectively. In Figs. 13
and 14, the RMSEs are depicted when a single Gaussian
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Fig. 13 RMSE in X coordinate by 300 runs of randomly differ-
ent traces when a single Gaussian noise was applied. The noise
variance scenario is (0.01, 0.1, 0.001) in the order of wβ,wR ,
and ux,y
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Fig. 14 RMSE in X coordinate by 300 runs of randomly differ-
ent traces when a single Gaussian noise was applied. The noise
variance scenario is (0.1, 1, 0.01) in the order of wβ,wR , and
ux,y

was applied over 300 simulations, where the true target
trajectory is randomly generated at each run, and some
tracking of highly nonlinear trajectories are diverg-
ing. In these cases, CRPF outperforms the EKF which
takes advantage of the noise information of the system.
Although we do not show results here, all the other sce-
narios produce similar results with Figs. 13 and 14. Fig-
ure 15 shows a similar result to that of a single Gaussian
case when we apply a mixture Gaussian noise to the
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Fig. 15 RMSE in X coordinate by 300 runs of randomly differ-
ent traces when a mixture Gaussian noise was applied
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Fig. 16 A target tracking by the methods when a mixture
Gaussian noise is applied

problem. Figure 16 shows an example of target track-
ing by the methods when a mixture Gaussian noise
is applied. CRPF shows robust tracking performance,
while the EKF does not. The MATLAB code for this
simulation is available in Appendix, where “selection”
function that is included in the middle of m-file is also
provided.

Under the noise variance scenario of (wβ =
0.01, wR = 0.1, and ux,y = 0.001), the numbers
of diverging or deviating tracking from the true tar-
get tracks during the simulations are summarized in
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Table 6 The number of diverging or considerable deviating
tracking from the true target tracks out of 300 runs

Applied noise CRPF EKF

Single Gaussian 0 37

Mixture Gaussian 0 51

Table 6. We set the threshold of divergence or deviation
to ±5 m for both the EKF and CRPF, in any direction
and at any time step when we count the number of times
the trackers deviate from the true tracks. CRPF never
crosses over the threshold while the EKF does dozens
of times, which shows the robustness of CRPF in this
non-linear problem. Therefore, CRPF showed a good
outperforming result over traditional well-known EKF
in this example problem.

3.4 High-bandwidth tilt estimation

The tilt of a vehicle attitude is determined in the iner-
tial reference frame on the earth. The tilt can be either
“roll,” “pitch,” or “yaw,” and the combination of three
elements compose the attitude of a vehicle in three-
dimensional space as shown in Fig. 17. The estima-
tion of the “tilt” of vehicles has been of much inter-
est, especially in the areas such as aerospace or con-
trol systems [11,12,28,29,43]. For instance, control-
ling “unmanned aerial vehicle [3,9,10,13,33,39]” or
“walking robot [13–15]” are the practical issues related
with tilt estimation. Numerous approaches have been
proposed in order to estimate the attitude of vehicles:
attitude estimation is of interest in the integration of
global positioning system (GPS) and inertial naviga-
tion system (INS) as well [20,41,42].

Inclinometer sensor is mainly used for tilt estima-
tion; however, it may not be appropriate for measuring
high rate data (greater than 1 Hz). Gyroscope is comple-
mentarily employed to overcome the drawback of the
inclinometer; but gyroscope also has a disadvantage
that its error keeps increasing with time unless supple-
ment for the tilt estimation system is provided. There-
fore, we consider an accelerometer in addition to the
gyroscope for estimating the tilt of a vehicle attitude.
We employ both “accelerometer” and “gyroscope” for
the observations measurement which are relatively cost
effective compared to the inclinometer.

It is assumed that “piezoelectrical vibrating gyro-
scope (Murata ENV-05DB)” for measuring the angular

Fig. 17 Attitude (roll, pitch, and yaw) of a vehicle

velocity, and its measurement equation as a function of
time t are modeled as

m1(t) = τ1θ̇ (t) + w1(t), (29)

where θ̇ is the rate of the tilt; τ1 is the scaling coeffi-
cient; and w1 is the gyroscope measurement noise, and
it is assumed that w1 includes the scaling factor error
and gyrodrift [38]. Note that m1 is a linear function
of θ̇ . Micromechanical accelerometer (Analog Devices
ADXL 202) is employed for measuring the accelera-
tion of the vehicle: it measures the accelerations in two
perpendicular directions to each other; one is perpen-
dicular to the direction of the gravitational field, and
the other in the opposite direction of the gravitational
field; therefore, the position is computed by measur-
ing the accelerations in two directions. Therefore, the
observed output of the accelerometer can be modeled
as follows:

m2(t) = τ2 sin θ(t) + w2(t), (30)

m3(t) = −τ2 cos θ(t) + w3(t), (31)

where τ2 is a scaling coefficient; w2 and w3 are additive
noises which are mainly caused by the vibration of the
object. It is assumed that the variances of w1, w2, and
w3 are time varying. Contrary to m1 case, equations for
m2 and m3 are nonlinear functions of θ which are not
tractable measurements.

The discrete-time state-space model, where the para-
meter of interest is dynamically varying with time, is
described as follows if it is assumed that the sampling
period is short enough for the tilt rate to be a constant
during a sampling period; consequently, the profile of
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the tilt rate with discrete-time steps follows the shape
of a staircase rather than the ramp shape:[

θk

θ̇k

]

︸ ︷︷ ︸
θk

=
[

1 T
0 1

]

︸ ︷︷ ︸
A

·
[

θk−1

θ̇k−1

]

︸ ︷︷ ︸
θk−1

+
[

0
uk

]

︸ ︷︷ ︸
uk

, (32)

where k is the time index; θ is the tilt; θ̇ is the rate of the
tilt; T is the sampling time period; A is a known 2 × 2
state transition matrix; and uk is the state process noise,
respectively. The state noise is the perturbing random
noise in the dynamic system.

The measurement equation, as already described in
(29) and (30), is expressed as follows:[

m1,k

m2,k

]

︸ ︷︷ ︸
mk

=
[

τ1θ̇k

τ2 sin θk

]

︸ ︷︷ ︸
h[θk ]

+
[

w1,k

w2,k

]

︸ ︷︷ ︸
wk

, (33)

where h(·) is the measurement function, and we use
only m1 and m2 as the measurements.

CRPF can be easily adopted to the tilt estimation
problem based on the system model (1) and (2), where
the function g(θk−1) is linear and is equal to A ·θk−1 in
the problem. The detailed steps for tilt estimation are
given by

1. Initialization for i p = 1, . . . , N generate θ
i p
0 =

[θ i p
0 θ̇

i p
0 ]� ∼ p0(θ0), which is a known prior den-

sity, and assign the cost Ci p
0 = 0, and initialize the

variance of the propagation density σ
2,i p
0 . In sim-

ulations, the same initial values are given to the
respective approaches.

2. Recursive update for k = 1, . . . , K ,

(a) Compute (for i p = 1, . . . , N )

Ri p
k = λCi p

k−1+ ‖ mk − h[A · θ
i p
k−1] ‖q for

q > 0, and probability mass function (PMF),

π̃
i p
k ∝ μ1(Ri p

k ) = 1(
Ri p

k −min{Ri p
k }N

i p=1+δ
)β ,

where δ, β > 0: small value of δ is to ensure
the denominator is not zero.

(b) Do the selection, or resampling Ξ̌k−1 = {θ̌ i p

k−1,

Či p
k−1}N

i p=1 according to π̃
i p
k ,

where “ˇ” denotes the resampled version.
(c) Particle propagation (for i p = 1, . . . , N )

θ
i p
k ∼ pk(θk |θ̌ i p

k−1) = N
(

A · θ̌
i p

k−1, σ
2,i p
k−1 I

)
,

which is a Gaussian density, where σ
2,i p
k =

k−1
k σ

2,i p
k−1 + ‖θ i p

k −A·θ̌ i p
k−1‖2

k×dim[θ] , and I is the identity

matrix with the dimension of θ . In the studied
problem, taking advantage of knowing that the
state noise is zero for the tilt θ , only the particles
of tilt rate are generated with their propagation
variances, i.e.,

θ̇
i p
k ∼ pk(θ̇k | ˇ̇θ i p

k−1) = N
( ˇ̇θ i p

k−1, σ
2,i p
k−1

)
, where

σ
2,i p
k = k−1

k σ
2,i p
k−1 + ‖θ̇ i p

k − ˇ̇θ i p
k−1‖2

k , which is not
a vector value anymore but is a scalar value.

Then, θ
i p
k is computed based on ˇ̇θ i p

k−1 according
to (16).

(d) Compute the cost (for i p = 1, . . . , N ), Ci p
k =

λČi p
k−1+ ‖ mk − h(θ

i p
k ) ‖q , and normalized

PMF,
π

i p
k ∼ μ2

(
Ci p

k

)
= 1(

Ci p
k −min{Ci p

k }N
i p=1+δ

)β .

(e) Estimate θ̂k = θmean
k = ∑N

i p=1 π
i p
k θ

i p
k .

We compare the performance of the EKF and CRPF
via MATLAB simulations for the problem of estimat-
ing the tilt of a vehicle attitude. The performance in
estimating the tilt rate is also investigated. The total
number of time steps with which the tilt and the tilt
rate vary is 100. 5,000 simulations are run for each
method, and MSE of the estimates is evaluated. Accord-
ing to the discrete-time system model (32), the sam-
pling frequency T = 0.5 (s) is considered. The ini-
tial true state θ0 = [10 rad − 0.2 rad/s]�. The scal-
ing coefficients τ1 and τ2 are equal to 10, respec-
tively. The given initial estimate of the state for both
methods is θ̂0 = [7 rad 0 rad/s]�. Three different
values of “state process noise power spectral density
(equivalently the variance for a zero mean white noise
process)” v are considered: the applied variances (v)
of additive Gaussian noise (uk) are 0.001, 0.1, and 1,
respectively; they are assumed to be time invariant as
opposed to the case of measurement noise variance.
The variance of the measurement noise is assumed to
be time variant: at every discrete-time step, the vari-
ance is randomly selected from a uniform distribution;
then, zero-mean and additive Gaussian noise with the
selected variance is applied; two uniform distributions
are considered for the selection of measurement noise
variance; one variance is uniformly distributed from 0
to 0.1 , and the other is distributed from 0 to 10. These
parameters (0.1 and 10) are denoted by rv .

The initial variance of the propagation density σ 2
0

for the tilt rate of CRPF is tuned by extensive prelimi-
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(a) v = 0.001, rv = 0.1.
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(b) v = 0.001, rv = 10.
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(c) v = 0.1, rv = 0.1.
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(d) v = 0.1, rv = 10.

Fig. 18 MSE performance of estimated tilt θ for various v and rv . 300 and 10 denote the number of employed particles for CRPF

nary simulations. The parameters for CRPF are q = 1;
λ = 0.95; δ = 0.1; β = 2; and the initial variance

for the Gaussian propagation density σ
2,i p
0 is selected

depending on v and rv . The identical N initial particles
of estimates are generated for CRPF.

Simulation results are shown in Figs. 18 and 19 for
estimating θ and θ̇ with various scenarios of v and rv .
As can be seen in (29), (30), and (32), the state func-
tion and one measurement function are linear, and only
(30) is a nonlinear function of tilt. Therefore, this exam-
ple problem is not a highly nonlinear problem. CRPF
and the EKF show similar performance for the tilt esti-
mation, while the EKF outperforms CRPF for tilt rate

estimation as shown in Figs. 18 and 19. CRPF performs
more effectively in nonlinear problem (tilt) rather than
in linear problem (tilt rate) compared to the EKF per-
forms.

4 Summary and conclusion

In this paper, we provided a tutorial for the applica-
tions of CRPF, in multiple fields of signal processing.
CRPF works in particle filtering framework that has
the generic character of the advantage for highly non-
linear problems. This particle filtering has an advanta-
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(a) v = 0.001, rv = 0.1.
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(b) v = 0.001, rv = 10.
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(c) v = 1, rv = 0.1.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time step

M
SE

Tilt rate, v = 1, rv = 10

EKF
CRPF 300
CRPF 10

(d) v = 1, rv = 10.

Fig. 19 MSE performance of estimated tilt rate θ̇ for various v and rv . 300 and 10 denote the number of employed particles for CRPF

geous feature that the noise information is not needed
in its applications although we need preliminary tun-
ing process mainly based on the size of the vari-
ances of the system noise. CRPF is particularly useful
when the statistical noise information of the problem
is not available. We explained the detailed steps of its
employment with example problems of various fields
in signal processing. Particularly, the CRPF approach
showed the optimal performance in the problem of esti-
mating the number of competing terminals in IEEE
802.11 WLAN systems. As shown in the example prob-
lems, CRPF can be applied to diverse fields in signal
processing besides the examples, e.g., speech recog-

nition, bio-medical image processing, estimating the
attitude and trajectory of launch vehicles, channel esti-
mation/equalization, etc. Based on the contribution of
this tutorial, we expect disseminative applications of
CRPF to problems where, particularly, the EKF could
have been successfully applied if noise statistics were
known.
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Fig. 20 A MATLAB m-file for tracking a target by CRPF with Gaussian mixture noise

Fig. 21 A MATLAB m-file
function, “resampling 2” in
Fig. 20, a selection
(resampling) algorithm
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Appendix

MATLAB m-files for tracking a target by CRPF with
Gaussian mixture noise

In this appendix section, we provide m-files for MAT-
LAB simulations as shown in Figs. 20–21. The m-
file generates the result that CRPF tracks a target in
2-D space, and the measurement noise is a mixture
Gaussian. Three MATLAB figures are generated: the
first one shows the track of a target and the estimated
tracking by CRPF, and next two figures show the error
with respect to each coordinate (Fig. 21).
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