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Abstract In this paper, we consider the process of
pattern formation induced by nonlinear diffusion in
the gene network with cross-diffusion. We present a
theoretical analysis of the pattern formation and show
how cross-diffusion is able to destabilize the uniform
equilibrium, being therefore liable for the emergence
of spatial patterns. Through the linear stability analy-
sis, we analytically derive a set of sufficient condi-
tions which guarantee that the system generates turing
instability, indicating that the competition and cross-
diffusion between protein and mir-17–92 can lead to the
turing pattern formation. Furthermore, we also obtain
the Turing regions in which Turing patterns are gener-
ated.

Keywords Turing pattern · MicroRNA ·
Cross-diffusion · Instability

1 Introduction

Turing instability was proposed by Turing [24] in 1952;
it is the phenomenon that initially stable steady state of
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a dynamical system can become unstable if we addi-
tionally consider diffusion in the system. This is sur-
prising and unexpected phenomenon because diffusion
usually makes things more smooth and uniform. Loss
of stability due to diffusion is called Turing instabil-
ity. Since the seminal paper of Turing [21], more and
more attention is paid on the theoretical models to
explain self-organized pattern formation in many dif-
ferent areas of physics, chemistry, biology, geology,
and so on, especially biology. Recently, the entrain-
ment and modulation of time-evolutional patterns are
investigated numerically in one dimension [26]. Lee
and Cho [15] find that the shape and type of Turing
patterns depend on dynamical parameters and exter-
nal periodic forcing. Moreover, Pena and Perez [18]
show that slightly squeezed hexagons are locally sta-
ble in a full range of distortion angles. The domain
coarsening process is strongly affected by the spatial
separation among groups created by the Turing pattern
formation process [19]. And the robustness problem is
also investigated in [11,17]. The dynamics of sponta-
neous pattern formation was first introduced to biology
by Turing. Several groups have proposed possible can-
didates generating patterns [4,10].

In the reaction–diffusion system, diffusion can
induce the instability of a uniform equilibrium which
is stable with respect to a constant perturbation, as
shown by Turing in 1950s. The equilibrium of the non-
linear system is asymptotically stable in the absence
of diffusion but unstable in the presence of diffusion
[6]. Spatial patterns in reaction–diffusion systems have
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attracted the interest of experimentalists and theorists
during the last decades. Until now, however, there
has been no general analysis of the possible role of
cross-diffusion in dissipative pattern formation [33].
Shi [20] show that cross-diffusion can destabilize a
uniform equilibrium which is stable for the kinetic
and self-diffusion reaction systems. On the other hand,
cross-diffusion can also stabilize a uniform equilib-
rium which is stable for the kinetic system but unstable
for the self-diffusion reaction system [11,20]. Cross-
diffusion which can lead to Turing pattern formation in
biological systems has been reported [3,9]. The effects
of cross-diffusion on pattern formation in reaction–
diffusion systems have been discussed in many theoret-
ical papers in which the gradient in the concentration of
one species lead to the diffusion in other species [25].
Other two relevant examples are on chemotaxis in E.
coli bacteria [8,25], a phenomenon where cells direct
their motion toward or away from higher concentra-
tions of other chemical species.

The above results in the turing instability were
focused on the chemistry, ecology, and seldom on
gene network. However, synthetic gene network and
its dynamics were more and more concerned [27–
31,35–37], and we know that diffusion process is
ubiquitous when the gene information was trans-
ported from cytoplasm to cell nucleus. In the fol-
lowing, we will investigate the character of diffu-
sion process involving cancer network regulated by
microRNA (mir-17–92). MicroRNAs (miRNAs) are an
abundant class of small non-coding RNA that func-
tions to regulate the activity and stability of specific
mRNA targets through posttranscriptional regulatory
mechanism and play a role of repressing translation
of mRNA or degrading mRNAs [1,2,12,21]. Recent
studies show that miRNAs play a central role in many
biological (cellular) processes, including developmen-
tal timing, cell proliferation, apoptosis, metabolism,
cell differentiation, somitogenesis, and tumor gene-
sis [2]. The induction of specific E2F activities is an
essential component in the Myc pathways that con-
trol cell proliferation and cell fate decisions [7,16,32].
In normal cells, E2F-1 exhibits key negative feed-
back regulation on c-Myc-induced TERT expression,
which is critical to control the transmission of c-
Myc-mediated oncogenic signals [14,22,34]. The pro-
tooncogene Pim-1 is a part of the network that reg-
ulates transcription of the human miR-17–92 cluster
[5,23].

In recent years, many scientists deemed that math-
ematical modeling could be used to investigate the
differences at the dynamical level between healthy
and pathologic configurations of biological pathways
[13]. Using the mathematical model, the researchers
can detect the key points regulating main properties
of biological system and find the methods to solve
the different diseases. In order to understand fur-
ther the miR-17–92 network involving in Myc and
E2F, we also make use the mathematical model to
investigate above biological network involving miR-
17–92 and look further into the turing instability
induced by cross-diffusion, and then understand how
the turing pattern inside cells provides the check-
point that combines mechanical and biochemical infor-
mation to trigger events during the cell division
process.

The paper is organized as follow. In Sect. 2, we give
the gene network represented by mathematical model.
In Sect. 3, we analyze the stability of pattern formation
and selection. In Sect. 4, we show the numerical analy-
sis of the network. Finally, we summarize our results.

2 The model

In this section, we consider a cancer network, where
the reaction kinetics describes the interaction between
microRNA and protein model. As we all know that
molecular diffusion is ubiquitous when molecules
interaction or pass though the cytomembrane, we
should consider the effect of diffusion on the network.
In this paper, we modified the system (1) and (2) given
by Aguda et al. [1] and add the diffusion term to the sys-
tem, obtain the reaction–diffusion system as follows:
∂u

∂t
− div(D∇u) = G(u),

where u is a vector ui (x, t), i = 1, 2 of species den-
sities, in which u1 represents transcription factor p in
Fig. 1c and u2 represents microRNA in Fig. 1c; D is
a 2 × 2 matrix of the diffusion coefficients, where the
diagonal element is called the self-diffusion coefficient
and the non-diagonals are called cross-diffusion coef-
ficients; and G is the reaction term indicating the inter-
action between the involved species. The nonlinear dif-
fusion coefficients matrix of our model as follows:

D =
(

d1 0
d2d3u2 d2 + d2d3u1

)
.
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Fig. 1 a A cancer network. This network is part of the mam-
malian G1-S regulatory network involving miR-17–92, arrow-
head represents the activation, hammerhead represents the inhi-
bition, b first stage in the reduction of the model, c the final

network model that abstracts the essential structure of the net-
work in a, p presents the transcription factor (Myc and E2F),
m represents microRNA (miR-17–92) cluster

And the interaction contribution is included in the reac-
tion term G. Specifically, the underlying model consists
as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t − d1�u1 =α+ k1u2

1
a+u2

1+bu2
− δu1, (x, t) ∈ �T

∂u2
∂t − d2�(u2 + d3u1u2) = β + k2u1 − γ u2,

(x, t) ∈ �T
∂u1
∂η

= ∂u2
∂η

= 0, (x, t) ∈ 	T

u1(x, 0) = ψ1(x), u2(x, 0) = ψ2(x), x ∈ �
(2.1)

where �T = � × (0, T ),	T = ∂	 × (0, T ) for a
fixed T > 0. In biological terms, the homogeneous
Neumann boundary condition indicates that there is no
population flux across the boundary. Here, the pres-
ence of u2 in the denominator accounting for the miR-
dependent down-regulation of protein expression is
determined by the term (a + bu2) in the denomina-
tor. The value of the parameter b is a measure of the
efficiency of miRNA inhibition of protein expression,
and lumps all factors that could affect the binding of
the members of the miR-17–92 cluster to their targets
and the inhibition of protein translation. The constant
term α stands for constitutive protein expression due
to signal transduction pathways stimulated by growth
factors present in the extracellular medium. The para-
meter α, therefore, corresponds to an experimentally
controllable conditions such as the concentration of
nutrients in the cell culture medium. δ is the rate of

the protein degradation. The constant term β represents
p-independent constitutive transcription of m. And the
last term is a degradation term with rate coefficient γ .
The presence of the nonlinear diffusion term means
basically that the disperse direction of u2 not only con-
tains the self-diffusion (in which way the species move
from a region of high density to a region of low den-
sity), but also contains cross-diffusion. More specifi-
cally, species u2 diffuses with a flux

J = −∇(d2u2 + d2d3u1u2)

= −d2d3u2∇u1 − (d2 + d2d3u1)∇u2.

Notice that, as −d2d3u2 < 0, the part −d2d3u2∇u2

of the corresponding flux is directed toward the
decreasing population density of the species u1.

3 Cross-diffusion-driven spatial patterns

In this section, we derive some sufficient conditions for
spatial patterns. In particular, we not only show that the
patterns formation without cross-diffusion, but also the
formation of spatial patterns with cross-diffusion.

3.1 Linear stability analysis

We assume that the system (3.1) is true.

A − δ < γ

4d1d2k2 B > (d2(A − δ)+ d1γ )
2,

(3.1)
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where

A = 2ak1u∗
1 + 2bk1u∗

1u∗
2

(a + u∗2
1 + bu∗

2)
2
, B = bk1u∗2

1

(2au∗
1 + 2bu∗

2)
2 .

And we can know from [1] that there is a unique positive
equilibrium point to system (2.1), denoted by u∗ =
(u∗

1, u∗
2).

In order to study the locally asymptotic stability of
the system (2.1), we give the notation as follows.

Notation 3.1 Let 0 = μ1 < μ2 < · · · → ∞ be the
eigenvalues of −� on � under no-flux boundary con-
ditions,and E(μi ) be the space of eigenfunctions cor-
responding to μi . We define the space decomposition
as follows:

(i) Xi j := {c · φi j : c ∈ R2}, where φi j is an ortho-
normal basis of E(μi ) for j = 1, . . . , dimE(μi ).

(ii) X := {u ∈ [C1(�)]2 : ∂u1
∂η

= ∂u2
∂η

= 0 on ∂�},
and thus X = ⊕∞

i=1Xi , where Xi = ⊕dimE(μi )
j=1 Xi j .

Theorem 3.1 The positive equilibrium point u∗ of
(2.1) without cross-diffusion is locally asymptotically
stable when (3.1) is true.

Proof First, for the sake of simplicity, we will denote
in this paper

G(u) =
(

G1(u)
G1(u)

)
=

(
α + k1u2

1
a+u2

1+bu2
− δu1

β + k2u1 − γ u2.

)

The linearization of (2.1) around the state u∗ can be
expressed by

ut = (D�+ Gu(u
∗))u,

where D = diag(d1, d2), u = (u1, u2) and

Gu(u
∗) =

(
Gu11 Gu12

Gu21 Gu22

)

=
(

2ak1u∗
1+2bk1u∗

1u∗
2

(a+u∗2
1 +bu∗2

2 )
2 − δ

−bk1u∗2
1

(a+u∗2
1 +b∗u∗

2)
2

k2 −γ

)
.

According to Notation 3.1, the space Xi is invariant
under the operator D� + Gu(u∗), and λ is an eigen-
value of this operator on Xi , if and only if it is an eigen-
value of the matrix −μi D+Gu(u∗). The characteristic
polynomial of −μi D + Gu(u∗) is given by

ψi (λ) = λ2 − Biλ+ Ci ,

where

Bi = A − γ − k2(d1 + d2),

Ci = −γ A + k2 B − (Ad2 − d1γ )
2

4d1d2

+ d1d2(μi − Ad2 − d1γ

2d1d2
)2.

Recalling condition (3.1), it is easy to verify that Bi

and −Ci are negative. Thus, for each i ≥ 1, the two
roots λi,1 and λi,2 of ψi (λ) = 0 have negative real
parts, and this completes the proof.

Theorem 3.2 Assume that the system (3.1) holds. If
μ2 < μ̃, then there exists a positive constant d∗

3 such
that the equilibrium point u∗ of (2.1) is unstable pro-
vided that d2 > d∗

3 , where μ2 is given in Notation 3.1
and μ̃ will be given in (3.2).

Proof For simplicity, we denote �(u) = (d1u1, d2

(u2 + d3u1u2))
T . Linearizing (2.1) around the state

u∗ yields

ut = (�u�+ Gu(u
∗))u,

where

�u(u
∗)=

(
�u11 �u12

�u21 �u22

)
=

(
d1 0

d2d3u∗
2 d2 + d2d3u∗

1

)
.

We can obtain that the characteristic polynomial of
−μi�u + Gu(u∗) is

ψi (λ) = λ2 − Diλ+ Ei ,

where

Di = A − δ − γ − (d1 + d2 + d2d3u∗
1)μi

Ei = −γ (A − δ)+ Bk2 − Bd2d3u∗
2μi

−[(A − δ)(d2 + d2d3u∗
1)− d1γ ]μi

+ d1(d2 + d2d3u∗
1)μ

2
i .

We denoteλ1(μi ) andλ2(μi )be the roots ofψi (λ) = 0,
and then have

λ1(μi )+ λ2(μi ) = Di and λ1(μi )λ2(μi ) = Ei .

In order to get that Reλ1(μi ) < 0 and Reλ2(μi ) > 0,
a sufficient condition is Ei < 0 (based on the fact that
Di < 0).

In the following, we look for conditions that make
Ei < 0 hold. First, since Ei = det(μi�u − Gu(u∗)),
it is easy to deduce that

Fi = Q2μ
2
i + Q1μi + det(Gu),
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Fig. 2 Turing parameter spaces for model (2.1). In the A domain, the solutions remain stable, while in the B, C, D domain, instabilities
are expected to appear

where

Q1 = −Bd2d3u∗
2−(Aδ)(d2+d2d3u∗

1)
+ d1γ

Q2 = d1d2 + d1d2d3u∗
1

det(Gu) = −γ (A − δ)+ Bk2

We denote Q(μ) = Q2μ
2
i + Q1μi + det(Gu), and

μ̃1 and μ̃2 be the roots of Q(μ) = 0 with Re(μ̃1) <

Re(μ̃2). Condition (3.1) implies that

μ̃1 + μ̃2 = − Q1

Q2
and μ̃1μ̃2 = det(Gu)

Q2
> 0.

Furthermore,we have

lim
d3→∞

Q2

d3
= d1d2u∗

1

lim
d3→∞

Q1

d3
= −Bd2u∗

2 − (A − δ)d2u∗
1

lim
d3→∞

Q

d3
= −Bd2u∗

1μi − Ad2u∗
1μi + d1d2u∗

1μ
2
i .

We see that limd3→∞ Q
d3

= 0 has two real roots, one
being zero and the other being positive. A continuity
argument allows us to show that μ̃1 and μ̃2 are real and
positive when d3 is large enough, and in addition

lim
d3→∞ μ̃1 = 0,

lim
d3→∞ μ̃2 = u∗

1 + (A − δ)u∗
1 + Bd2u∗

2

d1u∗
1

= μ̃ (3.2)

Hence, there exists a positive number d∗
3 such that

the inequalities μ̃ < μ2 when d3 > d∗
3 , and Q(μ) < 0

when μ ∈ (0, μ̃), are valid. Since 0 < μ2 < μ̃, then
u2 ∈ (ũ1, ũ2). It follows that Q(μ) < 0, which finally
implies that Ei < 0, which completes the proof.

The above theorems reveal that the cross-diffusion
effect is able to destabilize the positive equilibrium
point, and thereby the solution results in spatial
patterns.

3.2 Turing parameter space

In view of Theorem 3.2, the fulfillment of the follow-
ing conditions is sufficient for the positive equilibrium
point u∗ being linearly unstable with respect to the par-
ticular case of system (2.1):

(i) A − δ < γ and 4d1d2k2 B > (d2(A − δ)+ d1γ )
2.

(ii) μ2 <
u∗

1+(A−δ)()u∗
1+Bd2u∗

2
d1u∗

1
.

In this paper, the values satisfying the parameter
spaces are taken as (3.3)

α = 1
2 , β = 1, a = 1, b = 1, γ = 1,

k1 = 1, k2 = 1, d1 = 1, d2 = 1.
(3.3)

For this particular choice, the positive stationary uni-
form solution is given by

(u∗
1, u∗

2) = (0.6316, 1.6316). (3.4)

In Fig. 2, we depict the parameter spaces where insta-
bilities are expected to appear according to conditions
(i) and (ii) above. These graphics are obtained by fix-
ing all parameters in (3.3) except for a and b (Fig. 2a),
γ and k1 (Fig. 2b).
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Fig. 3 a Phase plane for model (2.1). Four trajectories are rep-
resented, starting from the initial states A, B,C, D and reaching
the intersection of the nullclines, b plot of the largest of the eigen-

values Re(λ), there is a range of wave numbers which are linearly
unstable

If no diffusion is considered, then the system (2.1)
boils down to the dynamical system
du

dt
= G(u),

whose phase diagram is presented in Fig. 3a. We show
trajectories for different initial values of u1,0 and u2,0

in which the trajectories converge to the equilibrium
state (3.4), shown by the intersection of the (nontrivial)
nullclines

α + k1u2
1

a + u2
1 + bu2

− δu1 = 0

β + k2u1 − γ u2 = 0.

We are able to calculate the wavenumber explicitly and
determine the pattern selection by linearizing cross-
diffusion around the stationary uniform solution and
taking d3 as the Turing bifurcation parameter. From the
mathematical viewpoint, the Turing bifurcation occurs
when I m(λk) = 0, Re(λk) = 0 at k 
≡ 0, where kc

is the critical wavenumber and |k|2 is equivalent to the
eigenvalue μi in Notation 3.1.

Now, replacing μi with |k|2, the problem can obtain
from the linearization of (2.1) around u∗ as follows:

ut = (Gu(U
∗)− |k|2�u)u.

And the characteristic equation is as follows:

det(Gu(U
∗)− |k|2�u − λE) = 0.

In order to find out the critical wavenumber, we only
need to confirm that

mink2 det(Gu(U
∗)− |k|2�u) = 0,

which is a quadratic polynomial of |k|2. In this way,
the Turing bifurcation threshold is given by dc

3 which
satisfies the following equation:

4 det(Gu(u
∗))det(�u) = (Gu11�u22 + Gu22�u11

−Gu12�u21 − Gu21�u12)
2,

and the critical wavenumber kc is given by

kc =
√

Gu11�u22 +Gu22�u11 −Gu12�u21 −Gu21�u12

2 det(�u)
.

4 Numerical analysis

In this section, we will demonstrate Turing pattern
according to the previous theoretical results. First, we
introduce our numerical scheme using finite difference
method. In this paper, we consider zero-flux bound-
ary conditions with region defined as square region
[0, L] × [0, L] ∈ �2, then discretize the space and
time, in which the square space is divided as M × N
lattice sites domain with the h length of lattices, and
time step is set as constant τ . The system (2.1) is
performed using the standard five-point approxima-
tion for the spatial derivative and an explicit Euler
method for the time integration. In this paper, we set
h = 1, τ = 0.02, and select coefficients of self-
diffusion (d1, d2) = (1, 1), each frame is 100 × 100
space units, we choose parameters (a, b) = (1, 1),
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Fig. 4 The patterns of species u1, u2 at d3 = 0

Fig. 5 The patterns of species u1, u2 at d3 = 17

(k1, k2, α, β) = (0.5, 1, 1, 1). For our first test, we sim-
ulate the section of different patterns depending on the
value of the cross-diffusion coefficient d3, and the ini-
tial data are taken as a uniformly distributed random
perturbation. More precisely, we choose

u1(x, 0) = u∗
1 + η1, u2(x, 0) = u∗

2 + η2,

where η1 ∈ [0, 1], η2 ∈ [0, 1].
First, we simulate the section of different patterns

based on the the value of cross-diffusion coefficient d3,
and depict the real part of the eigenvalues Re(λ) in cor-
respondence with the norm of the wave vector in Fig.
3b. In Fig. 4, we choose the parameter d3 as d3 = 0, and
changed it to d3 = 17, d3 = 18, d3 = 19, d3 = 19.5
for Figs. 5, 6, 7, and 8, respectively. In addition, we
can know that the initial value paly an important role
in the selection of patterns and that the modes of the
pattern convert from the stripes to the spots as the cross-
diffusion coefficient d3 increases. Finally, we also find

that the appearance of spots’ pattern will be delayed
(d3 will be larger when the spots pattern appear)when
the coefficient d1 increases in the simulation, and the
delay value is in proportion to d1. From above Figs.
4, 5, 6, 7 and 8, the patterns of protein concentration
evolve from stripe to spot pattern, and the spots pat-
tern shows the Stationary localized pulse (dissipative
soliton) which corresponds periodical traveling wave.
These patterns are starting from a spatially uniform
state which turing proved that stable inhomogeneities
in “morphogen” concentration could emerge through a
diffusion-driven symmetry-breaking instability.

5 Conclusion

In this paper, we have developed a cancer network
regulated by microRNA with cross-diffusion and ana-
lyze the spatiotemporal dynamics of the cancer network
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Fig. 6 The patterns of species u1, u2 at d3 = 18

Fig. 7 The patterns of species u1, u2 at d3 = 19

Fig. 8 The patterns of species u1, u2 at d3 = 19.5

with diffusion under the zero-flux boundary conditions.
It is found that the steady state of the system can be
globally asymptotically stable under some condition,

and Turing patterns can be formed under other condi-
tions. Importantly, we have shown that cross-diffusion
can lead to the Turing pattern formation and influence
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on the distribution of protein and miRNA; obviously,
the cross-diffusion is one of drivers which drive the tur-
ing pattern in biological system. We also find that the
appearance of spots pattern will be delayed (d3 will be
larger when the spots pattern appear) when the coeffi-
cient d1 increases in the simulation, and the delay value
is in proportion to d1. As we know that the formation of
Turing patterns in biochemical pathway could then be
related to organizing centers in eukaryotic cells playing
a role during cell division, and the Turing pattern inside
cells could provide a checkpoint that combine mechan-
ical and biochemical information to trigger events dur-
ing the cell division process, in addition, the cancer is
uncheck cell growth, and the unregulated checkpoint
can induce to cancer.
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