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Abstract This article explores enrichment to the
method of Multiple Scales, in some cases extending
its applicability to periodic solutions of harmonically
forced, strongly nonlinear systems. The enrichment fol-
lows from an introduced homotopy parameter in the
system governing equation, which transitions it from
linear to nonlinear behavior as the value varies from
zero to one. This same parameter serves as a pertur-
bation quantity in both the asymptotic expansion and
the multiple time scales assumed solution form. Two
prototypical nonlinear systems are explored. The first
considered is a classical forced Duffing oscillator for
which periodic solutions near primary resonance are
analyzed, and their stability is assessed, as the strengths
of the cubic term, the forcing, and a system scaling fac-
tor are increased. The second is a classical forced van
der Pol oscillator for which quasiperiodic and subhar-
monic solutions are analyzed. For both systems, com-
parisons are made between solutions generated using
(a) the enriched Multiple Scales approach, (b) the con-
ventional Multiple Scales approach, and (c) numerical
simulations. For the Duffing system, important qual-
itative and quantitative differences are noted between
solutions predicted by the enriched and conventional
Multiple Scales. For the van der Pol system, increased
solution flexibility is noted with the enriched Multiple
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Scales approach, including the ability to seek subhar-
monic (and superharmonic) solutions not necessarily
close to the linear natural frequency. In both nonlinear
systems, comparisons to numerical simulations show
strong agreement with results from the enriched tech-
nique, and for the Duffing case in particular, even when
the system is strongly nonlinear.

Keywords Multiple scales · Strongly nonlinear ·
Homotopy · Duffing · van der Pol

1 Introduction

Determining exact and approximate solutions to non-
linear systems, even for simple systems governed by
a single equation, continues to be an important con-
temporary endeavor in engineering science and applied
mathematics [1–11]. This is in part due to the absence of
a single analytical method capable of reliably finding all
solutions (periodic, quasiperiodic, aperiodic, chaotic,
etc.) to any given nonlinear system. It is reasonable to
expect that such a panacea may never exist.

When seeking approximate solutions, the method
of Multiple Scales (MS) is arguably among the most
powerful and general perturbation techniques used in
the engineering and applied mathematics communities
[12]. It readily accommodates systems with dissipa-
tion, and its resulting evolution equations can be used
to study stability of periodic solutions. Multiple scales
have been used to solve nonlinear problems ranging
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1206 M. R. Cacan et al.

from classical Duffing and van der Pol oscillators, to
more recent explorations of quantum optical oscilla-
tors [13] and nonlinear wave propagation [14]. Exten-
sive background on the method and its application to
a wide range of nonlinear problems can be found in
the monographs of Nayfeh and co-workers [12,15,16],
and in texts by Jordan and Smith [17,18], to name only
a few. The major limitation of the method is its reliance
on the existence, or appropriate introduction, of a small
parameter. Thus, it belongs to a class of methods appro-
priate for studying weakly nonlinear systems.

In the search for more general analysis techniques
(i.e., applicable to systems not necessarily weakly non-
linear), two homotopy-based analysis approaches have
recently been presented for determining a wide vari-
ety of solutions to nonlinear problems encountered in
physics and engineering. These techniques are notable
for their ability to analyze weakly and strongly non-
linear systems since the presence of a small parame-
ter is not required. They will be referred to herein
as HAM and HPM. Both are outgrowths of homo-
topy techniques studied and developed in the field of
mathematical topology [19]. The Homotopy Analysis
Method (HAM) was first introduced by Liao [20–29]
and has since been further developed and applied by
many subsequent researchers to find solutions to a vari-
ety of nonlinear ordinary differential equations, both
single equations and systems of equations. Most HAM
papers analyze periodic and limit cycle solutions in a
set of ordinary differential equation as per the original
conception of the method, but others analyze wave-
like solutions (including solitons) [30–34], solutions to
boundary value problems [35–38], and even solutions
to systems of differential algebraic equations (DAEs)
[39]. The essential idea of the Homotopy Analysis
Method is to introduce a continuation, or homotopy,
of the original equation’s governing operator and field
variable using an embedding parameter, say p, such
that the new operator varies continuously from a sim-
ple one (when p = 0) to the original operator (when
p = 1). Further, the original field variable is obtained
from the new one via a Taylor series with respect to
p, evaluated at p = 1. If the new operator is properly
chosen, then the Taylor series is convergent. The goal is
to then choose a homotopy which allows for straight-
forward solution and subsequent convergence of the
Taylor series. Note that the approach typically yields
only one possible solution, which has been proven to
be one of the exact solutions [40].

The Homotopy Perturbation Method (HPM) is the
second homotopy-based approach used in solving non-
linear equations. It was first introduced by He [41–45]
and has also seen wide application and development by
a number of other researchers. The method has been
shown to accurately capture periodic, limit cycle, and
other solution behavior in a diverse number of nonlinear
systems, to include discontinuous nonlinear systems
[44], nonlinear wave equations [45], reaction–diffusion
equations [46], autonomous Duffing equations [47],
integro-differential equations [48], and systems with
boundary layers [49], to name just a few. Similar to
HAM, the Homotopy Perturbation Method introduces
a continuous homotopy whereby the original operator
is replaced by one with an embedded homotopy para-
meter, say p, such that the new operator varies contin-
uously from a simple one (when p = 0) to the original
operator (when p = 1). It differs from HAM, however,
in that the original field variable is expanded asymptot-
ically using polynomials of the homotopy parameter p.
Unlike typical perturbation approaches, a small para-
meter is not required since p serves the same purpose.
Much like other perturbation approaches, separation
of the equations by their dependence on the order of
p yields a cascading of equations which are solved
starting at order p0. Higher order equations see the
lower order solutions on the right-hand side, resulting
in secular and non-secular terms. Secular terms must be
removed by appropriate choices, and then these ordered
equations are solved to any desired degree; however, the
asymptotic approach typically yields accurate results
using only the first couple of orders.

To date, problems solved with either of the homo-
topy methods are almost exclusively autonomous. A
few exceptions include a direct application of HAM
[40] and HPM [50] to a forced Duffing equation. The
study using HAM finds very accurate periodic solu-
tions, even at larger values of the small parameter ε,
but requires a 10th-order approximation to get good
results. The study using HPM is carried out to a sig-
nificantly lower order, but does not consider large val-
ues of ε. In both homotopy approaches, stability is not
assessed within the method itself.

Considering both the advantages and weaknesses of
existing Multiple Scales and homotopy methods, this
paper presents a homotopy-enriched multiple scales
approach for analyzing weakly and strongly nonlin-
ear non-autonomous systems. An enrichment to Mul-
tiple Scales is pursued for several reasons. The first
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is that the method of Multiple Scales is highly flexi-
ble and can be tailored to capture a variety of forced
solution types including periodic solutions at the forc-
ing frequency, subharmonic and superharmonic solu-
tions, quasiperiodic solutions, and others. It will be
seen that the enriched method extends this flexibility
beyond the conventional MS approach due to its intro-
duction of a homotopy parameter. The second is that
Multiple Scales have a strong standing in the engineer-
ing and applied mathematics communities, and thus
an enrichment which leverages most of its existing
machinery may be easily adopted by others. Finally,
the method of Multiple Scales yields evolution equa-
tions which when combined with a local stability analy-
sis yields stability information lacking in most other
asymptotic approaches. The resulting technique shares
many more similarities with the Multiple Scales tech-
nique than either of the homotopy techniques, and thus
is most appropriately viewed as an enrichment to Mul-
tiple Scales rather than a homotopy variant.

The paper is organized as follows. Section 2
overviews the conventional Multiple Scales approach
and its local stability analysis as applied to a forced
Duffing system. Section 3 introduces the enriched tech-
nique as applied to the Duffing system, while Sect. 4
compares and contrasts results for the system generated
using conventional MS, enriched MS, and numerical
simulation. Section 5 applies the enriched technique to
a forced van der Pol oscillator and discusses the flex-
ibility of the enriched technique in terms of multiple
possible homotopies and the resulting solutions uncov-
ered. Section 6 concludes with remarks on the findings
of the study.

2 The method of multiple scales—a brief review

The method of Multiple Scales (MS) has been widely
used in finding periodic and other solutions to weakly
nonlinear equations. An overview of the method and its
application in a wide array of problems can be found
in the text by Nayfeh and Mook [12]. The method is
briefly reviewed next for a forced Duffing equation
before developing the enriched technique. Note that
this review follows precisely that presented by Nayfeh
and Mook [12] in their Chapter 4.

The harmonically forced cubic Duffing equation
considered herein is expressed as

ü + ε2μu̇ + ω2
0u + εαu3 = εk cos(Ωt), (1)

where ε typically denotes a small parameter (not nec-
essarily so herein), μ denotes the damping coefficient,
ω0 denotes the linear system’s natural frequency, α

denotes the cubic stiffness coefficient, k denotes the
forcing amplitude, Ω denotes the forcing frequency,
and an overdot denotes a time derivative. Equation (1)
can be obtained from a physical system using any num-
ber of order reduction approaches (e.g., modal reduc-
tion), expansions about an equilibrium state, and/or
assumptions on the size of the physical parameters.
What is important is that for an analysis of primary res-
onance using Multiple Scales (and many other asymp-
totic approaches), the damping, nonlinearity, and the
forcing must be ordered to appear with a leading term
proportional to ε in order to remove secular terms. Any
approximate solution technique then attempts to be as
faithful to an exact solution to Eq. (1) as possible. Note
that the exact solution should be expected to be a func-
tion of ε since this parameter does not appear in all
terms—this point will be assessed in the conventional
and enriched Multiple Scales approaches.

The conventional MS technique starts by introduc-
ing new time scales, Ti = εi t, i = 0, 1, 2, . . . related to
conventional time t . Partial time derivatives are intro-
duced such that Di denotes ∂/∂Ti , d/dt = D0+εD1+
ε2 D2+· · · , and d2/dt2 = D2

0 +ε2D0 D1+ε2 D2
1 +· · · .

Next, the displacement is expanded asymptotically
with respect to ε,

u (t, ε) = u0 (T0, T1, . . .)+εu1 (T0, T1, . . .)+· · · . (2)

Substituting Eq. (2) into (1) and separating orders of ε

results in the first two ordered equations,

ε0 : D2
0u0 + ω2

0u0 = 0, (3a)

ε1 : D2
0u1 + ω2

0u1 = −2D0 D1u0 − 2μD0u0 − αu3
0

+kcos(ω0T0 + σ T1), (3b)

where detuning σ has been introduced through the
expression Ω = ω0 + εσ . Solving Eq. (3a) for u0,
substituting into Eq. (3b), and then removing secular
terms leads to an approximation valid to first order,

u = a(T1)cos (Ωt − γ (T1)) + O(ε), (4)
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1208 M. R. Cacan et al.

with amplitude a(T1) and phase γ (T1) governed by a
set of evolution equations,

a′(T1) = −μa + 1

2

k

ω0
sin(γ ), (5)

a (T1) γ ′ (T1) = σa − 3

8

α

ω0
a3 + 1

2

k

ω0
cos(γ ), (6)

where ()′ denotes a derivative of () with respect to T1.
Fixed-point solutions to Eqs. (5)–(6) determine peri-
odic solutions, which after some manipulation, yield
the frequency response[

μ2 +
(

3

8

α

ω0
a2 − σ

)2
]

a2 = 1

4ω2
0

k2. (7)

Equation (7) yields three positive solutions for a(σ ). It
is important to observe that the conventional MS solu-
tion for amplitude as a function of detuning does not
have an intrinsic dependence on ε. This characteristic
of the MS solution is not typically raised, but it does
have important ramifications as the strength of the non-
linearity increases (as discussed further in Sect. 4).

The Multiple Scales approach also provides a conve-
nient linear stability analysis for each of these solutions.
This is in contrast to many other approximate solu-
tion techniques (e.g., Lindstedt Poincaré and harmonic
balance) and thus makes the method very appealing.
The basic idea is to perturb the fixed-point solutions
for a and γ , linearize the evolution equations about
these perturbations, and assess stability from the result-
ing eigenvalue problem—full discussion can be found
in the text by Nayfeh and Mook [12]. Such a stabil-
ity approach will be detailed for the enriched Multiple
Scales approach.

3 Enriched multiple scales—Duffing equation

The homotopy enrichment aims to extend the method
of Multiple Scales such that it can analyze periodic
solutions to strongly nonlinear systems and determine
their stability. Thus, the governing equation considered
is

ü + 2μ̂u̇ + ω2
0u + α̂u3 = k̂ cos(Ωt), (8)

where μ̂, α̂, and k̂ denote damping, cubic stiffness, and
forcing coefficients, respectively. For the sake of com-
parison to the conventional MS approach, the parame-
ter ε is re-introduced such that μ̂ = εμ, α̂ = εα, and
k̂ = εk, where the parameter ε is not necessarily small.

Thus, Eq. (1) is again the starting point for the analysis
with the understanding that ε can be either a small or
large parameter.

The enriched Multiple Scales approach begins by
seeking a homotopy with respect to a parameter p
such that when p = 0 a linear equation results, and
when p = 1 the nonlinear Duffing equation, Eq. (1), is
recovered. We recognize that the forced solution should
respond at the forcing frequency Ω and, hence, pose
the following homotopy:

ü + Ω2u

= p
[
(Ω2 − ω2

0)u − 2εμu̇ − εαu3 + εk cos(Ωt)
]
,

(9)

where, importantly, the linear natural frequency has
been changed from ω0 appearing in Eq. (1) to Ω appear-
ing in Eq. (9). Note, however, that Eq. (9) recovers
Eq. (1) when p = 1, as required, and the desired lin-
ear equation when p = 0. Our starting point for the
analysis of the Duffing system differs fundamentally
from that presented in [50] in which the homotopy is
defined such that the linear system responds at the forc-
ing frequency, regardless of the strength of the nonlin-
earity. Thus, the solution at the lowest order is already
close to the nonlinear solution, and hence only the first
two terms will be required to effectively capture the
response of weakly and strongly nonlinear systems.

Next, the displacement is expanded asymptotically
with respect to p,

u (t, ε) = u0 (T0, T1, . . .) + pu1 (T0, T1, . . .) + · · · ,

(10)

where displacements ui , i = 0, 1, 2, . . . are assumed to
depend on multiple time scales given by Ti = pi t, i =
0, 1, 2, . . .. Note the use of the homotopy parameter
in definition of the new scales, which differs from the
conventional MS approach. Partial time derivatives are
also introduced such that Di denotes ∂/∂Ti , d/dt =
D0+pD1+p2 D2+· · · , and d2/dt2 = D2

0+p2D0 D1+
p2 D2

1 + · · · . Substitution of Eq. (10) into Eq. (9) and
separating orders of p results in the first two ordered
equations,

p0 : D2
0u0 + Ω2u0 = 0, (11a)

p1 : D2
0u1 + Ω2u1 = −2D0 D1u0 +

(
Ω2 − ω2

0

)
u0

−2εμD0u0 − εαu3
0 + εkcos (Ωt) . (11b)
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The solution to Eq. (11a) is expressed in complex form
as

u0 = A(T1)e
iΩT0 + cc, (12)

where cc denotes the complex conjugate of all pre-
ceding terms. Next, the u0 solution is substituted into
Eq. (11b), and secular terms are removed from the right-
hand side. Removal of these secular terms requires that

−2iΩ A′ +
(
Ω2 − ω2

0

)
A

−2iεμΩ A − εα3A2 A + 1

2
εk = 0, (13)

where an overbar denotes the complex conjugate and
()′ denotes a derivative of () with respect to T1 = pt .
Introducing the polar form A = 1

2 aeiβ where both the
amplitude a(T1) and phase β(T1) are real functions of
T1, then separating real from imaginary parts, Eq. (13)
yields the two evolution equations

aΩβ ′ + 1

2

(
Ω2 − ω2

0

)
a − εα

3

8
a3 + 1

2
εk cos β = 0,

(14a)

−Ωa′ − εμΩa − 1

2
εk sin β = 0. (14b)

Note that these evolution equations are already in
autonomous form, unlike those that result from the
conventional Multiple Scales technique, and thus may
avoid solution difficulties in more complex systems.

3.1 Periodic solutions

Periodic solutions to Eq. (1) correspond to fixed-point
solutions to Eqs. (14a)–(14b). Setting derivatives with
respect to T1 to zero and solving yields the frequency
response (amplitude a0 and phase β0 versus forcing
frequency Ω),

(εμΩa0)
2 +

(
εα

3

8
a3

0 − 1

2

(
Ω2 − ω2

0

)
a0

)2

= 1

4
ε2k2, (15)

tan β0 = 8εμΩa0

4
(
Ω2 − ω2

0

)
a0 − 3εαa3

0

. (16)

Of note in these solutions is the explicit dependence
on ε, which is not the case in the conventional Mul-
tiple Scales approach. Although strictly not necessary,

to facilitate comparison to conventional MS results, we
introduce a detuning parameter [12] σ such that

Ω = ω0 + εσ. (17)

As in all other presented equations, ε need not be small
for the enriched Multiple Scales method. Note that the
conventional MS approach exhibits dependence on ε

only after reconstituting the frequency response via
Eq. (17), whereas the enriched MS technique exhibits
ε dependence in Eqs. (15) and (17).

3.2 Stability

Similar to conventional Multiple Scales, the evolution
equations enable solution stability to be studied using a
linear stability analysis. Letting a (T1) = a0 + a1 (T1)

and β (T1) = β0 +β1 (T1) and linearizing with respect
to a1 and β1, the solution stability can be determined
from the eigenvalue problem,

{
a1
β1

}′

=

⎡
⎢⎢⎣

−εμ

(
− 3

8
αε
Ω

a3
0+ 1

2
Ω2−ω2

0
Ω

)
a0

1
a0

(
9
8

αε
Ω a2

0 − 1
2

Ω2−ω2
0

Ω

)
−εμ

⎤
⎥⎥⎦

{
a1
β1

}
, (18)

where the phase β0 has been eliminated using the
fixed-point solutions. This eigenvalue problem leads
to a characteristic equation similar, but with small dif-
ferences, to that obtained from the conventional MS
approach [12],

λ2 + 2εμλ +
(

−3

8

αε

Ω
a2

0 + 1

2

Ω2 − ω2
0

Ω

)
(

−9

8

αε

Ω
a2

0 + 1

2

Ω2 − ω2
0

Ω

)
+ ε2μ2 = 0. (19)

From Eq. (19), the fixed-point solutions are unstable
when(
−3

8

αε

Ω
a2

0+1

2

Ω2−ω2
0

Ω

) (
−9

8

αε

Ω
a2

0 + 1

2

Ω2 − ω2
0

Ω

)

+ε2μ2 < 0 . (20)

and are stable otherwise.
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4 Nonlinear frequency response results—Duffing
oscillator

Results are presented assessing the character and per-
formance of the enriched Multiple Scales technique.
The first results concern solution predictions using con-
ventional Multiple Scales, enriched Multiple Scales,
and numerical simulation as the parameter ε varies
from a relatively small value of 0.1 up to a very large
value of 100. This progression assesses the ability of
the enriched Multiple Scales approach to correctly ana-
lyze periodic solutions for both weakly and strongly
nonlinear systems. Next, the three solution approaches
are used to study solution behavior for a weakly non-
linear system (ε = 0.1) as either the forcing or the
nonlinearity is increased beyond the weak limit. For
these results, in particular, discussion centers on the
accuracy advantages that the enriched approach may
have over the conventional approach.

4.1 Solution behavior with increasing ε

Figure 1 presents frequency response results generated
using Eqs. (7) and (15) for an example parameter set
{ω0 = 5, μ = 0.05, α = 2.0, k = 2.0}. Each subfigure
corresponds to a point ε in the set {0.1, 1.0, 10.0,

100.0}. Varying this single parameter simultaneously
changes the strength of the nonlinearity, forcing,
and damping, which are typically ordered to appear
together as inhomogeneous terms at higher orders. In
addition to the frequency response solution from the
enriched (solid lines) and conventional MS (dashed
lines), results from numerical solutions appear in Fig. 1
as markers (red and blue). The incremental procedure
for generating these points involves simulating the sys-
tem starting at a detuning value of −1, allowing steady
state to be reached, and using the last steady-state solu-
tion to inform the starting condition for the next value of
detuning. The amplitude of the arrived at periodic solu-
tion is then used to locate the red markers at each detun-
ing. The procedure is also repeated in reverse starting
at a detuning value of 3.0 (blue markers). The effect
of doing this is that the numerical solution emulates
forward and backward frequency sweeps, and captures
well-known jump phenomena [12] in the solutions.

Several qualitative and quantitative differences
between the enriched and conventional Multiple Scales
are evident in Fig. 1, even when the Duffing system can

be considered weakly nonlinear (i.e., ε < 1.0). Quali-
tatively, the enriched solution depends intrinsically on
ε as evident by Eq. (15) and the progression of fre-
quency responses provided in Fig. 1. The conventional
solutions, on the other hand, are independent of ε. This
results further in several quantitative points of differ-
ence, which become more apparent as ε increases. At
the lowest value of ε considered (see close-up in Fig. 2),
the enriched approach predicts a maximum response
amplitude amax = 3.83, while the conventional pre-
dicts amax = 3.99, resulting in a discrepancy of over
4 %. Similarly, the enriched approach predicts an upper
branch bifurcation point at a detuning value σ = 2.15,
while the conventional approach predicts this bifurca-
tion point to be at σ = 2.39, amounting to a discrep-
ancy of over 10 %. Note that numerical simulations
more closely support the conclusions of the enriched
approach. Although not shown, as ε is decreased below
0.1, the enriched and conventional solutions converge
and the disagreement diminishes, as expected.

As the value ε increases still further to ranges where
the conventional MS method is known to suffer break-
down, the enriched MS method continues to show
very strong agreement with numerical simulations (see
Fig. 1b–d). At ε = 1, a value sometimes employed
in “bookkeeping” asymptotic approaches [15], where
a small parameter does not arise physically, and it
becomes evident that increasing ε results in a sys-
tem with less hardening (less bending of the frequency
response to the right) and lower maximum amplitude.
At ε = 10, the total detuning εσ is such that at
small negative values of σ , the forcing frequency Ω

approaches the frequency −ω0, and thus a second res-
onance curve begins to appear (to the left) in Fig. 1c.
Finally, at ε = 100, these two resonances coalesce and
result in the two-peaked frequency response curve in
Fig. 1d. Due to this coalescence, no jump behavior is
observed, and the unstable solution branches disappear.
Note that during this entire progression of ε, numeri-
cal simulations track closely the changing frequency
response curves predicted by the enriched MS.

Evaluation of the stability condition, Eq. (20), for
the parameter sets and solutions plotted in Figs. 1 and
2 reveals that all periodic solutions along the top and
bottom branches (blue and red curves) are stable, while
all solutions along the middle branch (green curve) are
unstable. For weakly nonlinear systems, this is well
known and can be found using a conventional MS
approach. Conventional MS would err if used to find
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An enriched multiple scales method 1211

Fig. 1 Frequency response predicted using enriched MS (solid lines), conventional MS (dashed), and numerical simulation (markers)
for an example parameter set {ω0 = 5, μ = 0.05, α = 2.0, k = 2.0} with a ε = 0.1, b ε = 1, c ε = 10, d ε = 100

Fig. 2 Closer inspection of the frequency response predicted
using enriched MS (solid lines), conventional MS (dashed), and
numerical simulation (markers) for ε = 0.1 and an example para-
meter set {ω0 = 5, μ = 0.05, α = 2.0, k = 2.0} near the upper
branch bifurcation point

the stability of the strongly nonlinear system. How-
ever, for ε = 100, the enriched MS stability analysis
indicates that all solutions predicted are stable. These
stability predictions are confirmed by stable numerical
simulations and solution jumps in Fig. 1a–c (e.g., see
red markers from the forward sweep).

4.2 Solution behavior with increasing nonlinearity at
ε = 0.1

Next, a weakly nonlinear system (ε = 0.1) is stud-
ied as the nonlinearity is increased. All other para-
meters carry over from the previous parameter set
{ω0 = 5, μ = 0.05, k = 2.0}. Figure 3 presents fre-
quency response results for α ∈ {2, 20, 200}. Similar to
the study in which ε increases, the enriched Multiple
Scales technique demonstrates clear advantages over
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1212 M. R. Cacan et al.

Fig. 3 Frequency response predicted using enriched MS
(solid lines), conventional MS (dashed), and numeri-
cal simulation (markers) for an example parameter set
{ε = 0.1, ω0 = 5, μ = 0.05, k = 2.0} with α = 2 (top),
α = 20 (middle), α = 200 (bottom)

the conventional technique as the strength of the non-
linearity increases, even though the problem is weakly
nonlinear. For α = 2, the two techniques exhibit close

agreement. For a value α = 20, the enriched method
exhibits less bending of the frequency response (i.e., is
less hardening), and the bifurcation point occurs at a
much lower detuning than predicted by the conven-
tional technique. Note that the numerical frequency
sweeps and jump location clearly support the predic-
tions of the enriched technique. This becomes further
apparent when α = 200.

4.3 Solution behavior with increasing forcing at
ε = 0.1

Next, the same weakly nonlinear system (ε = 0.1)

is studied as the forcing amplitude is increased. All
other parameters carry over from the original parame-
ter set {ω0 = 5, μ = 0.05,∝ = 2.0}. Figure 4 presents
frequency response results for k ∈ {2, 20, 200}. Much
like the study on increasing nonlinearity, the increas-
ing of forcing leads to less hardening behavior in the
enriched results as opposed to the conventional results.
This difference becomes exaggerated with larger values
of k, and the enriched results are more closely supported
by the numerical simulations.

5 Enriched multiple scales—van der Pol Oscillator

The harmonically forced van der Pol oscillator consid-
ered next takes the form

ü + ε(u2 − 1)u̇ + ω2
0u = K cos(Ωt), (21)

where ε denotes a small parameter, ω0 denotes the lin-
ear system’s natural frequency, K denotes the forcing
amplitude, Ω denotes the forcing frequency, and an
overdot denotes a time derivative. At large values of
ε or forcing amplitude, the response of the van der
Pol oscillator is dominated by a relaxation-type limit
cycle [18,51] rich in frequency content; thus, asymp-
totic techniques predicated on solutions responding at
linear combinations of Ω and ω0 are not appropriate.
For this reason, only the weakly nonlinear response is
studied using the enriched Multiple Scales technique.
Nonresonant response is considered first in which the
homotopy is selected such that when p = 0, the system
appears to be a simple linear oscillator with natural fre-
quency ω0 and forcing frequency Ω . This is followed
by an entirely different homotopy designed to capture
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An enriched multiple scales method 1213

Fig. 4 Frequency response
predicted using enriched
MS (solid lines),
conventional MS (dashed),
and numerical simulation
(markers) for an example
parameter set
{ε=0.1, ω0 =5, μ=0.05,

∝=2.0} with k = 2 (top),
k = 20 (middle), k = 200
(bottom)
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1214 M. R. Cacan et al.

system subharmonic response at twice and three times
the forcing frequency. The multiple choices of homo-
topy demonstrate flexibility the enriched technique has
that is not shared by the conventional approach.

5.1 Response away from ω0

Consider first the forced response of the van der Pol
equation when Ω is not near the system natural fre-
quency ω0 (i.e., strong forcing). In this case, the homo-
topy parameter p is introduced such that a forced, linear
system results when p = 0 and the full nonlinear sys-
tem is recovered when p = 1,

ü + p(ε(u2 − 1)u̇) + ω2
0u = K cos(Ωt). (22)

This is one choice for introducing the homotopy.
Another would be to introduce p such that a linear
equation is recovered with natural frequency Ω , as per
Sect. 3. However, the van der Pol equation does not
have linear damping, and thus response at ω0 cannot
be assumed to decay out for large time. Thus, the for-
mer homotopy is more appropriate. As in the Duffing
system, u is expanded asymptotically with respect to
p,

u (t, ε)=u0 (T0, T1, . . .) + pu1 (T0, T1, . . .)+ · · · ,

(23)

and partial time derivatives are also introduced such
that d/dt = D0 + pD1 + p2 D2 + . . ., and d2/dt2 =
D2

0 + p2D0 D1 + p2 D2
1 + . . .. Substitution of Eq. (22)

into Eq. (23) and separating orders of p result in the
first two ordered equations,

p0 : D2
0u0 + ω2

0u0 = K

2
eiΩT0 + cc, (24a)

p1 : D2
0u1 + ω2

0u1 = −2D0 D1u0

+ε
(

1 − u2
0

)
D0u0. (24b)

The solution to Eq. (24a) takes the form

u0 = A (T1) eiω0T0 + �eiΩT0 + cc, (25)

where � = K
2

1
ω2

0−Ω2 . Next, the solution for u0 is

substituted into Eq. (24b), and secular terms are iden-
tified and then removed from the right-hand side. The
terms are numerous and not presented here in detail.
Instead, it is remarked that they contain terms propor-
tional to ei3ω0T0, ei2ω0T0, eiω0T0, ei(2Ω+ω0)T0, ei(2Ω−ω0)T0,

ei(Ω+2ω0)T0 , ei(Ω−2ω0)T0 , ei3ΩT0 , eiΩT0 , and their com-
plex conjugates. Based on these terms and the linear
kernel, four sub-cases must be considered: (a) nonres-
onant response where Ω is not near 0, 3ω0, and 1/3ω0;
(b) nonresonant response where Ω near 0; (c) subhar-
monic resonance where Ω is near 3ω0; and (d) super-
harmonic resonance where 3Ω is near ω0. When Ω

is not near 0, 3ω0, and 1/3ω0, the secular terms are
given strictly by eiω0T0 dependence. Setting the coef-
ficient multiplying eiω0T0 to zero yields the evolution
equation

A′ = ε

[
1

2

(
1 − AĀ

)
A − �2 A

]
, (26)

where ()′ denotes a derivative of () with respect to
T1 = pt . Fixed-point solutions to Eq. (26) yield qua-
siperiodic response (due to ω0 and Ω appearing in
Eq. (25)) and frequency response diagrams can be gen-
erated. Stability of the natural response can also be
studied with a local approach, similar to that presented
in Sect. 3. Frequency response results, however, are not
presented since Eq. (26) will be shown to match results
found by the conventional Multiple Scales approach.

When Ω is near 0, a detuning is introduced such
that Ω = εpσ , where the introduction of p ensures that
the frequency detuning appears at time scale T1. The
problem then has to be restated starting at Eq. (22) and
working forward. The forcing term on the right-hand
side of Eq. (22) takes the form K

2 eiεσT1 + cc, and thus
the solution for u0(T0, T1) takes the form

u0(T0, T1) = A (T1) eiω0T0 + �eiεσ T1 + cc. (27)

Substituting Eq. (27) into Eq. (24b) and removing sec-
ular terms with time dependence eiω0T0 yields the evo-
lution equation

A′ = ε

[
1

2

(
1 − AĀ

)
A − �2 A − �2 Acos(2εσ T1)

]
.

(28)

When Ω is near 3ω0, a detuning is introduced such
that Ω = 3ω0 + εpσ . Similarly, when 3Ω is near
ω0, a detuning is introduced such that ω0 = 3Ω +
εpσ . The forcing for these two cases takes the form
K
2 ei3ω0T0 eiεσ T1 + cc and K

2 ei 1
3 ω0T0 e− 1

3 iεσ T1 + cc,
respectively. As before, secular terms with time depen-
dence eiω0T0 are removed from Eq. (24) leading to the
evolution equations,
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A′ = ε

[
1

2

(
1 − AĀ

)
A − �2 A − 1

2
Ā2�eiεσ T1

]
,

(29)

A′ = ε

[
1

2

(
1 − AĀ

)
A − �2 A − 1

6
�3e−iεσ T1

]
,

(30)

respectively.
For comparison purposes, the conventional Multiple

Scales have been employed to solve the forced van der
Pol equation when Ω is not near ω0 [12]. The reported
evolution equations analogous to Eqs. (26), (28)–(30)
are

A′ = 1

2

(
1 − AĀ

)
A − �2 A, (31a)

A′ = 1

2

(
1 − AĀ

)
A − �2 A

−�2 Acos(2σ T1), Ω = εσ, (31b)

A′ = 1

2

(
1 − AĀ

)
A − �2 A

+1

2

(
2 − Ω

ω0

)
Ā2�eiσT1 , Ω = 3ω0 + εσ,

(31c)

A′ = 1

2

(
1 − AĀ

)
A − �2 A − 1

2

Ω

ω0
�3e−iσT1 ,

ω0 = 3Ω + εσ, (31d)

where ()′ in this context denotes a derivative of () with
respect to time T1 = εt . Comparing Eqs. (31a)–(31b)
to Eqs. (26) and (28)–(30) with p set to 1, it can be seen
that the same evolution equations are recovered due to
the presence of a leading ε multiplier in the enriched
evolution equations. Comparing Eqs. (31c)–(31d) to
Eqs. (29)–(30), a small discrepancy exists, as follows.
In Eq. (31c), using the detuning relationship provided
in the equation, the final term on the right-hand side can

be evaluated as − 1
2

(
1 + εσ

ω0

)
Ā2�eiσT1 , which differs

from the final term in the right-hand side of Eq. (29) by
a term of order ε1, which is negligible. Similarly, the
appropriate detuning relationship substituted into the
last term on the right-hand side of Eq. (31d) yields the
same final term of Eq. (30) to order ε1.

5.2 Period-2 subharmonic response

Next, we seek solutions and conditions for the exis-
tence of period-two subharmonic response to the forced
van der Pol equation. Note that the conventional Mul-

tiple Scales treatment does not offer such an analy-
sis method. With the enriched method, an alternative
homotopy can be introduced in which the linear equa-
tion (p = 0) responds at Ω/2, in effect imposing a sub-
harmonic response. The special case of ω0 = 1 with
a period-two subharmonic solution is analyzed by Jor-
dan and Smith [17] and will be used for the comparison
purposes.

The analysis begins by proposing the alternative
homotopy

ü + p(ε(u2 − 1)u̇ + ω2
0u)

+(1 − p)

(
Ω

2

)2

u = K cos(Ωt). (32)

Following a similar procedure where an expansion for u
is introduced with dependence on multiple time scales,
the ordered equations for this case yield

p0 : D2
0u0 +

(
Ω

2

)2

u0 = K

2
eiΩT0 + cc, (33a)

p1 : D2
0u1 +

(
Ω

2

)2

u1 = −2D0 D1u0

+ε
(

1 − u2
0

)
D0u0 +

((
Ω

2

)2

− ω2
0

)
u0. (33b)

The solution to Eq. (33a) takes the form

u0 = A (T1) ei Ω
2 T0 + �eiΩT0 + cc, (34)

where � = − 2K
3Ω2 . Next, the solution for u0 is substi-

tuted into Eq. (33b), and secular terms are identified
and then removed from the right-hand side. The terms
are again too numerous to be presented here in detail.
Instead, it is remarked that they contain terms propor-

tional to ei3ΩT0 , ei 5
2 ΩT0 , ei2ΩT0, ei 3

2 ΩT0 , eiΩT0, ei 1
2 ΩT0 ,

and their complex conjugates. Based on the linear
kernel of Eq. (33b), secular terms are those terms

with dependence on ei 1
2 ΩT0 and its complex conjugate.

Removal of these terms yields

−iΩ A′ − i
εΩ

2

[
A2 Ā +

(
8K 2

9Ω4 − 1

)
A

]

+
(

Ω2

4
− 1

)
A = 0, (35)

where ()′ denotes a derivative of () with respect to T1.
Introducing the polar form A = 1

2 aeiβ where both the
amplitude a(T1) and phase β(T1) are real functions of
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T1, then separating real from imaginary parts, Eq. (35)
yields the two evolution equations:[

Ω

2
β ′ + 1

2

(
Ω2

4
− 1

)]
a = 0

yields→ Ω

2
β ′

+1

2

(
Ω2

4
− 1

)
= 0, (36a)

−Ω

2
a′ − εΩ

2

[
a3

8
− a

2

]
− 2

9

εK2

Ω3 a = 0. (36b)

The evolution equations effectively decouple for a(T1)

and phase β(T1). As previously, fixed-point solutions
a0 andβ0 are sought. Note that a fixed-point solution for
β(T1) ensures capture of the period-2 solution sought,
while any time-varying solution for β(T1) effectively
destroys the period-2 subharmonic. Note further that
Eq. (36b) appears in the normal form of a supercritical
pitchfork bifurcation [16]. From Eq. (36), the fixed-
point solutions require

Ω = ±2, a0 = 0,±
√

4 − 32K 2

9Ω4 . (37)

Inspection of the solution for both Ω and a0 reveals
that a bifurcation point exists at K ∗ = √

18 such that

the period-2 subharmonic solution a0 = ±
√

4 − 32K 2

9Ω4

exists for K < K ∗ and otherwise does not. Knowledge
of the supercritical pitchfork bifurcation normal form
[16] makes it clear that the trivial solution a0 = 0
is unstable for K < K ∗ and stable when K > K ∗.
Similarly, the solutions a0 = ±

√
4 − 32K 2

9Ω4 are stable
for K < K ∗ and unstable when K > K ∗.

Collecting results from the analysis, the final solu-
tions for the period-2 response to order p0 are given
as

u0 =
{√

4− 2K 2

9 cos (t+β0) − K
3 cos 2t, K<

√
18

− K
3 cos 2t, K >

√
18

}
,

(38)

where β0 is an arbitrary constant. Verification of this
result is presented in Fig. 5 for choices of K = 4 (just
below

√
18) and K = 4.5 (just above

√
18). Steady-

state phase planes (left sub-figures) reveal a period-2
orbit when K = 4 and a period-1 orbit when K =
4.5, in agreement with the enriched Multiple Scales
solution. Similarly, analysis of the frequency content of
each solution (right sub-figures) demonstrates that the

case K = 4 exhibits the forcing frequency (2 rad/sec)
and the period-2 subharmonic (1 rad/sec), while the
case K = 4.5 again exhibits only the forced solution.

The text by Jordan and Smith [17] offers a treat-
ment of a system similar to Eq. (22) with the exception
that ω0 is replaced by the constant 1. They showed that
a period-2 subharmonic exists for this specific linear
kernel by an assumed solution form similar to single-
frequency harmonic balance, but with a perturbed fre-
quency. Their solution technique also determines the
existence of solutions for K <

√
18. They do not,

however, determine the condition Ω = ±2 since ω0

is considered to be 1 at the onset, and they do not arrive
at the pitchfork bifurcation normal form. A treatment
of period-2 subharmonics of the van der Pol oscil-
lator using a conventional Multiple Scales approach
is not available, although it could be approached as
excitation Ω near 2ω0. This, however, is different
from the spirit of the solution taken herein, which
is to find a period-2 subharmonic regardless of the
closeness of this subharmonic to ω0—the fact that
this subharmonic only exists when Ω = ±2 (and
thus ω0 = 1) is borne out in the enriched Multiple
Scales solution development as opposed to specified
up front by specific selection of the system parame-
ters.

5.3 Period-3 subharmonic response

We briefly discuss treatment of a period-3 subharmonic
response using the enriched Multiple Scales analy-
sis. Analysis of period-3 solutions does not appear in
the monographs cited earlier and other monographs
[12,15–18,52–54]. Much like the period-2 subhar-
monic analysis, a homotopy is proposed in which the
van der Pol system responds at Ω/3, in effect imposing
a period-3 subharmonic response,

ü + p(ε(u2 − 1)u̇ + ω2
0u) + (1 − p)

(
Ω

3

)2

u = K cos(Ωt). (39)

Following a similar procedure where an expansion for
u is introduced, ordered equations are identified, solu-
tions are sought at order p0, and secular terms are
removed at order p1, it is again found that a special
case exists for period-3 subharmonics when ω0 = 1.
The bifurcation point associated with the analogous
supercritical pitchfork bifurcation is in this case K ∗ =
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Fig. 5 Phase planes (left sub-figures) and frequency content
(right sub-figures) for the van der Pol system with forcing fre-
quency Ω = 2, system natural frequency ω0 = 1, and small para-

meter ε = 0.1. Results generated for forcing amplitude K = 4,
sub-figures (a) and (b), and K = 4.5, sub-figures (c) and (d)

√
1024/7 such that the period-3 subharmonic solution

exists for K < K ∗, and otherwise does not. Verifica-
tion of this result is presented in Fig. 6 for choices
of K = √

1024/7 − 1 and K = √
1024/7 + 1.

Steady-state phase planes (left sub-figures) and fre-
quency content (right sub-figures) verify a period-
3 orbit when K < K ∗ and a period-1 orbit when
>K ∗.

6 Concluding remarks

This article presented an enriched Multiple Scales
method for analyzing weakly and strongly nonlinear
systems. The technique follows closely the conven-

tional Multiple Scales approach, but relies on the intro-
duction of time scales and ordering dependent on a
homotopy parameter as opposed to a small parameter.
As in the conventional approach, a local stability analy-
sis can be performed from the resulting evolution equa-
tions. In a Duffing system, results demonstrate that the
enriched technique allows stronger system nonlineari-
ties and forcing to be accurately analyzed. For a van der
Pol system, the added flexibility of the enriched method
has been demonstrated through the choice of multiple
possible homotopies, and hence multiple analysis types
(e.g., response at the forcing frequency or subharmonic
response). Since the enriched method amounts to only a
small procedural change to the popular Multiple Scales
method, and since it demonstrates some accuracy and
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1218 M. R. Cacan et al.

Fig. 6 Phase planes (left sub-figures) and frequency content
(right sub-figures) for the van der Pol system with forcing fre-
quency Ω = 3, system natural frequency ω0 = 1, and small

parameter ε = 0.1. Results generated for forcing amplitude K =√
1024/7 − 1, sub-figures (a) and (b), and K = √

1024/7 + 1,
sub-figures (c) and (d)

flexibility advantages, it may find applicability beyond
the two prototypical nonlinear systems studied herein
(e.g., other sources of nonlinearity and multi-degree of
freedom nonlinear systems).
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