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Abstract Non-dimensional mathematical model of
brushless DC motor (BLDCM) system is presented
here. BLDCM is known to produce chaotic phe-
nomenon under certain conditions. This paper fuses
dynamic surface control, radial basis function neural
network, and adaptive technology to control the
BLDCM, which overcomes the repetitive differen-
tiation of the nonlinear terms of backstepping and
the boundedness hypothesis of control gain pre-
determined. The tangent barrier Lyapunov function is
also used for time-delay nonlinear system with para-
metric uncertainties. Simulation results under differ-
ent conditions indicate that the proposed method works
well to suppress chaos and effects of parameter varia-
tion.

Keywords TBLF · DSC · RBFNN · Chaos · BLDCM

1 Introduction

The dynamics on an attractor is said to be chaotic if
there exists exponential sensitivity to initial conditions.
For most cases involving differential equations, chaos
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usually occurs together with geometrical strangeness
[1,2]. In a BLDCM system, the chaotic behavior leads
to the intermittent oscillation of torque and speed, irreg-
ular current noise of the system, and unstable control
performance. Therefore, it intensively influences the
stability of the system and safety as well [3]. The advan-
tage of BLDCM is the elimination of the physical con-
tact between the brushes and the commutators. Then,
BLDCM is widely applied in direct-drive applications
such as robotics [4] and aerospace [5].

For ameliorating the performance of the BLDCM
system, a large amount of literatures and control meth-
ods have been attempted to apply in the motor drivers.
For example, to speed up the error convergence rate,
nonsingular fast terminal sliding-mode control (SMC)
[6], which can reach finite-time stability, is applied.
In Ref. [7], a high-order SMC method via backstep-
ping is presented to attain finite-time tracking con-
trol regardless of mismatched disturbance. The Ott,
Grebogi, and Yorke (OGY) method is a fundamental
technology for controlling chaos [8,9]; unfortunately,
choosing an adjustable parameter usually becomes very
difficult. The neural fuzzy control (NFC) approaches
can also achieve self-learning; however, it is difficult
for online learning real-time control [10,11]. Chaos
anti-control of three time scale brushless DC motors
and chaos synchronization of different order systems
are studied [12]. Anti-control of chaos of single time
scale brushless DC motors and chaos synchronization
of different order systems are proposed further [13].
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Fig. 1 The brushless DC
motor system and its
commutation

However, neither of them considers the time delay, out-
put constraint, and unknown parameters.

Recently, a barrier Lyapunov function (BLF) which
is proposed for constraint handling in Brunovaky-type
system and nonlinear systems in strict feedback form
are introduced for the special property of approaching
infinity whenever its arguments approach some limits
[14,15]. In addition, backstepping design method is an
effective tool, which is often applied in nonlinear sys-
tems control with non-matching conditions, as well as
systems with uncertain functions [16,17]. However, it
suffers from repetitive differentiations. To solve this
problem, the DSC is used to successfully overcome the
shortage of traditional backstepping, and its first-order
low-pass filter is used to gain the derivative information
of the virtual control at the design procedure [18,19].
Control of chaos using the time-delay feedback control
technology though is introduced to the real applications
[20]. But it suffers from some problems as the control
objective must be the equilibrium. Then, an adaptive
DSC method is introduced to solve it for a class of
uncertain time-delay nonlinear system with state con-
straint [21]. Using the high-gain observer, an adaptive
fuzzy backstepping output feedback control approach
is developed for a class of multiple-input and multiple-
output (MIMO) nonlinear systems with time delays and
immeasurable states [22]. For a class of MIMO sto-
chastic nonlinear systems with immeasurable states,

an adaptive fuzzy backstepping output feedback DSC
approach is presented [23].

To the best of our knowledge, the combination
among adaptive DSC, TBLF, and RBFNN has been
seldom applied in the control of chaos for the BLDCM
system yet. Further contribution includes the design of
adaptive RBFNN DSC controller to handle uncertain
time delays and parametric uncertainties. The proposed
controller owns the suppression of the chaotic behav-
ior, in addition to driving the system to the pre-defined
trajectory with high precision and short response time.
Meanwhile, the complexity of the designed controller
is reduced, and the design procedure is much simpler
than that of traditional backstepping. Simulation results
show that control scheme is able to reduce chaos and
effects of parameter variation. Similarly, the results are
presented to show the effectiveness and robustness to
control the BLDCM.

2 System descriptions and mathematical
preliminaries

2.1 System descriptions

The brushless DC motor system considered here is
illustrated in Fig. 1. It is an electromechanical system,
and its equations of electrical and mechanical dynamics
can be written in the following forms [12,24]:
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Table 1 The denotation of the BLDCM parameters

Parameter Denotation

id The direct-axis currents (A)

ω The rotor angular speed (rad/s)

vd The direct-axis voltage (V)

J The moment of inertia (kgm2)

Ld The direct-axis fictitious inductance (H)

kt = √
3/2ke The permanent magnet flux (Wb)

ke The permanent magnet flux constant

iq The quadrature-axis currents (A)

n Number of permanent pole pairs

vq The quadrature-axis voltage (V)

R The winding resistance (�)

Lq The quadrature-axis fictitious inductance (H)

b The viscous damping coefficient (N/rad/s)

T̄L The additional terms

⎧
⎪⎪⎨

⎪⎪⎩

dω
dt = n

J

[
ktiq + (

Ld − Lq
)

iqid
]− 1

J

(
bω + T̄L

)

diq
dt = 1

Lq

[−Riq − nω (Ldid + kt) + vq
]

did
dt = 1

Ld

[−Rid + nLqωiq + vd
]

(1)

The denotations of the BLDCM system parameters are
shown in Table 1. In order to reduce the number of
parameters, a transformation is carried out in the next
section. Suppose the multiple time scales τ1, τ2, τ3 are
defined as follows:
⎧
⎨

⎩

τ1 = J R/k2
t

τ2 = Lq/R
τ3 = Ld/R

, (2)

where τ1, τ2, and τ3 denote the mechanical time con-
stant, the first electrical time constant, and the second
electrical time constant, respectively.

Then, the new state space model for the BLDCM
becomes
⎧
⎨

⎩

τ1
dx1
dt = σ x2 + ρx2x3 − ηx1 − TL

τ2
dx2
dt = −x2 − x1 − x1x3 + uq

τ3
dx3
dt = x1x2 − x3 + ud

, (3)

where the non-dimensional variables are

x1 = nLq

R
√

δ
ω, x2 = Lq

kt
√

δ
iq, x3 = Lq

ktδ
id,

uq = Lq

kt R
√

δ
vq, ud = Lq

kt Rδ
vd, σ = n2,

ρ = (1−δ)n2, η= Rb

k2
t

, TL = nLq

k2
t

√
δ

T̄L, δ= Lq

Ld
.

It can be easily seen that the mathematical model of
BLDCM owns high nonlinearity because of the cou-
pling between the speed and the currents. In Eq. (3), TL

presents the normalized load torque; uq and ud denote
the normalized quadrature-axis and direct-axis stator
voltage, respectively; and σ, η, and ρ are unknown sys-
tem parameters.

In order to show the computational results such as
phase portrait, strange attractor, choose the parame-
ters as uq = 4.017, ud = −15.305, τ1 = 1, τ2 =
6.45, τ3 = 7.125, TL = 2.678, and select the true val-
ues of unknown parameters as σ = 16, ρ = 1.516
for chaos condition. The initial conditions of the drive
systems are x1(0) = x2(0) = x3(0) = 0. Figure 2 illus-
trates the phase portrait of various η. The motion is peri-
odic in the situations of η = 3.0, 2.36. However, in the
situations of η = 2.1, 1.6, the motion appears chaotic
behavior, and η = 2.34 is a critical value. Figure 3
shows the strange attractor in BLDCM with parameter
η = 1.6. Figure 4 shows the bifurcation diagram.

A time delay in the overall system can lead to volt-
age and current distortions due to the low-pass fil-
ter, hysteresis control inverter, microprocessor program
computation time, and so on. Then, the mathematical
model of BLDCM with uncertain nonlinear time delay
is rewritten as follows:
⎧
⎪⎨

⎪⎩

ẋ1 = 1
τ1

[σ x2 + ρx2x3 − ηx1 − TL + 	 f1(x1(t − τ1))]
ẋ2 = 1

τ2

[−x2 − x1 − x1x3 + uq + 	 f2(x̄2(t − τ2))
]

ẋ3 = 1
τ1

[x1x2 − x3 + ud + 	 f3(x3(t − τ3))]
, (4)

where x̄2(t) = [x1(t), x2(t)]T ,	 fi (xi (t − τi )), i =
1, 2, 3, denote the nonlinear time delay item, and
τi , i = 1, 2, 3, stand for the time delay constant.

For any given continuous signal yr, the dynamics
surfaces are defined as
⎧
⎨

⎩

S1 (t) = x1 − yr

S2 (t) = x2 − a2f

S3 (t) = x3

, (5)

where a2f is the filtered virtual controller.

Assumption 1 The nonlinear time delay items satisfy
the following inequality:

⎧
⎪⎪⎨

⎪⎪⎩

|	 f1(x1(t − τ1))| ≤ |S1(t − τ1)| q11(S1(t − τ1))

|	 f2(x̄2(t − τ2))| ≤ |S1(t − τ2)| q21(S1(t − τ2))

+ |S2(t − τ2)| q22(S̄2(t − τ2))

|	 f3(x3(t − τ3))| ≤ |S3(t − τ3)| q31(S3(t − τ3))

, (6)

where the nonlinear functions q11, q21, q22, and q31

are known, S̄2(t) = [x1(t), x2(t)]T .
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Fig. 2 Phase portrait with different η

Fig. 3 Strange attractor with parameter η = 1.6

Assumption 2 The reference trajectory yr is bounded
by −d ≤ yr ≤ d, (a > d > 0), and the time deriva-
tives y(1)

r , y(2)
r are bounded.

The constraints are not violated in the whole
dynamic process. That is, x1(t) ∈ (−a, a), ∀t > 0,
where the constant a > 0.

2.2 Tangent barrier function

For the sake of ensuring that system state is bounded
in a desired region, a tangent barrier function y tan(y)

is employed in this paper, where tan(·) stands for the
tangent function. It is obvious that the tangent barrier
function satisfies the characteristics listed as below:

+ ∞ > y tan(y) ≥ 0 for y ∈ (−π/2, π/2). (7)

According to the above descriptions, we can formal-
ize the results for general forms of tangent barrier func-
tion in Lyapunov synthesis satisfying ytan(y) → ∞ as
y → −π/2 or y → π/2.
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Fig. 4 Bifurcation diagram

3 Design of chaos controller based on TBLF

3.1 RBFNN

For the continuous function f (θ, z)and bounded closed
set � → Rn , there is a RBFNN shown in Fig.5, which
satisfies

f (θ, z) = θT ξ (z) + ε, (8)

where z ∈ � ⊂ Rn is the input vector with n
being the neural network input dimension, � denotes
some compact set in Rn, θ = [θ1, θ2, · · · , θn]T ∈ Rl

is the weight vector, and l > 1 is the node num-
ber of neuron.ε is the estimation error, and ξ (z) =
[ξ1 (z) , ξ2 (z) , · · · , ξn (z)]T ∈ Rl is a basic function
vector.

The Gaussian basis function is selected as

ξi (z) = exp

[

−‖z − μi‖2

2σ 2
i

]

, i = 1, 2, · · · , l (9)

where μi = [μi1, μi2, · · · , μin]T is the center of basic
function ξi (z) , σi is the width of ξi (z), and ‖·‖ denotes
the 2-norm of a vector.

Define the best weight vector as

θ∗ = arg min
θ∈Rn

{

sup
z∈�

∥
∥
∥
∥ f (z) − �

θ
T
ξ (z)

∥
∥
∥
∥

}

. (10)

Assumption 3 There is a positive constant εM which
satisfies |εi | ≤ εM , i = 1, 2, 3

Fig. 5 The structure of the RBFNN

3.2 Controller design

Theorem 1 The special case of the Cauchy–Schwarz
inequality in a Euclidean space is called Cauchy’s
inequality. It is one of the most important inequalities
in all of mathematics [25]. It is usually written as
(∑

ri si

)2 ≤
∑

r2
i

∑
s2

i , (11)

where all of ri , si ∈ R.

According to the above-mentioned dynamics sys-
tem, the whole design process consists of three phases.
Then, the process of the design is given in detail.
Step 1: Calculate the derivative of S1

Ṡ1 = 1

τ1
[σ x2 + f1 + 	 f1 (x1 (t − τ1))] − ẏr, (12)

where f1 = ρx2x3 − ηx1 − TL.
Based on the above description, σ, η and ρ are

unknown parameters of system. Then, it is not easy
to construct the controller for traditional methods. To
cope with this problem, adaptive technique is employed
to deal with the unknown gain, and RBFNN is used
to approximate the uncertain nonlinear function f1.
Therefore, for any given ε1, there exists a RBFNN θT

1 ξ1

such that

f1 = θT
1 ξ1 + ε1, (13)

where ε1 is the approximation error and satisfies

|ε1| ≤ εM .

Substituting Eq. (13) into Eq. (12), it is obtained

Ṡ1 = 1

τ1

[
σ x2 + θT

1 ξ1+	 f1 (x1 (t−τ1))
]

− ẏr. (14)
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Choose a TBLF candidate as

V1 = τ1S1 (t) tan

(
π

2β
S1 (t)

)

+
2∑

i=1

t∫

t−τi

S2
1 (t) q2

i1 (S1 (t))dτ+ 1

2γ 1
θ̃T

1 θ̃1+ 1

2�1
σ̃ 2,

(15)

where the design parameter β = a − d > 0(a > d)

denotes the constraint on S1(t). That is, S1(t) ∈
(−β, β).

Then, the time derivative of V1 is calculated by

V̇1 = τ1 Ṡ1 (t)

[
tan
(

π
2β

S1 (t)
)

+ π
2β

S1 (t)

sec2( π
2β

S1 (t))

]

+
2∑

i=1

S2
1 (t) q2

i1 (S1 (t)) + 1

γ 1
θ̃T

1

�̇

θ 1 + 1

�1
σ̃

�̇
σ

−
2∑

i=1

S2
1 (t − τi ) q2

i1 (S1 (t − τi ))

=
[
σ (S2 + y2 + α2) + θT

1 ξ1 − τ1 ẏr

]
M

+	 f1 (x1 (t − τ1)) M +
2∑

i=1

S2
1 (t) q2

i1 (S1 (t))

−
2∑

i=1

S2
1 (t−τi ) q2

i1 (S1t−τi ) + 1

γ 1
θ̃T

1

�̇

θ 1 + 1

�1
σ̃

�̇
σ ,

(16)

where tan(·) and sec(·) stand for tangent function and
secant function, respectively. M = tan( π

2β
S1(t)) +

π
2β

S1(t) sec2( π
2β

S1(t)) .
According to the Assumption1 and Young’s inequal-

ity, there exist
⎧
⎨

⎩

	 f1 (x1 (t − τ1)) M ≤ 1
4 M2 + S2

1 (t − τ1)

q2
11 (S1 (t − τ1))

My2 ≤ 1
2 M2 + 1

2 y2
2

. (17)

Therefore,

V̇1 ≤ [
σ S2 + σα2 + 1

2σ M + 1
4 M + θT

1 ξ1 − τ1 ẏr
]

M + 1
2σ y2

2 + D1 +
2∑

i=1
S2

1 (t)q2
i1(S1(t))

+ 1
γ 1

θ̃T
1

�̇

θ 1 + 1
�1

σ̃
�̇
σ ,

(18)

where D1 = S2
1 (t − τ1) q2

11 (S1 (t − τ1)) − ∑2
i=1

S2
1 (t − τi ) q2

i1 (S1 (t − τi )).

The virtual control and adaptive laws are designed
as below:

α2 =
�
σ

�
σ

2 + η1

⎛

⎜
⎜
⎝

(
−k1 − 1

4 − 1
2

�
σ
)

M − �

θ
T

1 ξ1+
τ1 ẏr − 2β

π

2∑

i=1
S1 (t) q2

i1 (S1(t))

⎞

⎟
⎟
⎠

(19)
�̇

θ 1 = γ 1

(
ξ1 M − m1

�

θ 1

)
(20)

�̇
σ = �1

(
Mα2 − c1

�
σ
)

, (21)

where k1, m1, γ1, c1, and a1 are the design constants,
and η1 is a small positive constant.

Remark 1 The estimation errors are given as θ̃1 =�

θ 1

−θ1 and σ̃ =�
σ −σ , and θ̂1,

�
σ are the estimation of

vector θ1,
�
σ , respectively.

From the Eq. (19–21), it obtains that

V̇1 ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ S2−σ̃ α2 − η1
�
σ

2+η1

⎡

⎢
⎢
⎣

(
−k1− 1

4 − 1
2

�
σ
)

M − �

θ
T

1 ξ1

+τ1 ẏr − 2β
π

2∑

i=1

S1(t)q
2
i1(S1(t))

⎤

⎥
⎥
⎦

−
(

k1 M + 2β
π

2∑

i=1

S1(t)q
2
i1(S1(t)) + 1

2
σ̃ M + θ̃T

1 ξ1

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

M + 1

2
σ y2

2 + D1 +
2∑

i=1

S2
1 (t)q2

i1(S1(t)) + θ̃T
1 ξ1 M + σ̃ Mα2

−m1θ̃
T
1

�

θ 1 − c1σ̃
�
σ

≤ σ M S2 − k1 M2 − 1

2
σ̃ M2 + 1

2
σ y2

2 + D1 − c1σ̃
�
σ

+
2∑

i=1

[

S2
1 (t) − 2β

π
S1(t)M

]

q2
i1(S1(t)) − m1θ̃

T
1

�

θ 1

≤ σ M S2 − k1 M2 − 1

2
σ̃ M2 + 1

2
σ y2

2

+D1 − 1

2
m1θ̃

2
1 − 1

2
c1σ̃

2 + 1

2
m1θ

2
1 + 1

2
c1σ

2.

(22)

Remark 2 −m1θ̃1
�

θ 1≤ − 1
2 m1θ̃

2
1 + 1

2 m1θ
2
1 , −c1σ̃

�
σ≤

− 1
2 c1σ̃

2 + 1
2 c1σ

2, S2
1 (t) − 2β

π
S1(t)M ≤ S2

1 (t)
(

1 − sec2
(

π
2β

S1(t)
))

≤ 0.

Step 2: Filter α2 through the following first-order filter
with a time constant τ2:

τ2α̇2f + α2f = α2, α2f(0) = α2(0). (23)

Then, one has

α̇2f = − y2

τ2
. (24)
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Define the filter error of the first-order subsystem: y2 =
α2f − α2. Take the time derivative of y2, and obtain

∣
∣
∣
∣ẏ2 + y2

τ2

∣
∣
∣
∣ ≤ B2

(
M, S1, S2, y2,

�

θ ,
�
σ , q11, q21, yr, ẏr, ÿr

)
.

(25)

Consequently, a calculation produces the following
inequality:

y2 ẏ2 ≤ − y2
2

τ2
+ y2

2 + 1

4
B2

2 , (26)

where B2 is the continuous function.
Then, the derivative of S2 is presented as below:

Ṡ2 = 1

τ2

[
f2 + uq + 	 f2 (x̄2 (t − τ2))

]− α̇2f , (27)

where f2 = −x2 − x1 − x1x3.
To facilitate its application in engineering, the

RBFNN is used to approximate the nonlinear function
f2 again. So there exists a RBFNN system such that

f2 = θT
2 ξ2 + ε2, (28)

where ε2 is the approximation error and satisfies |ε2| ≤
εM.

Substituting Eq. (28) into Eq. (27), it yields

Ṡ2 = 1

τ2

[
θT

2 ξ2 + uq + 	 f2(x̄2(t − τ2))
]

− α̇2f . (29)

Choose the Lyapunov function candidate as below:

V2 = V1 + 1
2τ2S2

2 + 1
2 y2

2 + 1
2γ2

θ̃T
2 θ̃2

+
t∫

t−τ2

S2
2 (τ )q2

22(S̄2(τ ))dτ.
(30)

The time derivative of V2 is given as below:

V̇2 ≤ V̇1 + S2

(
θT

2 ξ2 + uq − τ2α̇2f

)

+S2	 f2 (x̄2 (t − τ2)) +
(

1 − 1

τ2

)

y2
2 + 1

4
B2

2

+ 1

γ2
θ̃T

2

�̇

θ 2 + S2
2 (t) q2

22

(
S̄2 (t)

)

−S2
2 (t − τ2) q2

22

(
S̄2 (t − τ2)

)
. (31)

Note the following inequality:

S2	 f2(x̄2(t−τ2)) ≤ 1

4
S2

2 +S2
1 (t−τ2)q

2
21(S1(t − τ2))

+ S2
2 (t − τ2)q

2
22(S̄2(t − τ2)). (32)

Substituting Eq. (32) into Eq. (31), the equation can be
rewritten as

V̇2 ≤ −k1 M2 − 1

2
σ̃ M2 + 1

2
σ y2

2 + D1 − 1

2
m1θ̃

2
1

−1

2
c1σ̃

2 + 1

2
m1θ

2
1 + 1

2
c1σ

2 + S2

[
θT

2 ξ2+

σ M +uq − τ2α̇2f + 1

4
S2 + S2(t)q

2
22(S̄2(t))

]

+D2 +
(

1 − 1

τ2

)

y2
2 + 1

4
B2

2 + 1

γ2
θ̃T

2

�̇

θ 2, (33)

where D2 = S2
1 (t − τ2)q2

21(S1(t − τ2)).
In the same way, the control law and adaptive law

are given as the following forms:

uq = − k2S2 − σ M − �

θ
T

2 ξ2 + τ2α̇2f − 1

4
S2

−S2(t)q
2
22(S̄2(t)) (34)

�̇

θ 2 = γ 2

(
ξ2S2 − m2

�

θ 2

)
, (35)

where k2, m2 and γ2 are the design constant.
With Eq. (34) and Eq. (35), Eq. (33) is written as

follows:

V̇2 ≤ −
(

k1 + 1

2
σ̃

)

M2 +
(

1 + 1

2
σ − 1

τ2

)

−S2
�
σ My2

2 − k2S2
2 +

2∑

i=1

Di + 1

4
B2

2 − 1

2
c1σ̃

2

−1

2

2∑

i=1

mi θ̃
2
i + 1

2
c1σ

2 + 1

2

2∑

i=1

miθ
2
i . (36)

Remark 3 The estimation error is written as θ̃2 =�

θ 2

−θ2, and θ̂2 is the estimation of vector θ2, −m2θ̃2
�

θ 2≤
− 1

2 m2θ̃
2
2 + 1

2 m2θ
2
2 .

Step 3: The time derivative of S3 is obtained as

Ṡ3 = 1

τ1
[x1x2 − x3 + ud + 	 f3(x3(t − τ3))]

= 1

τ1
[ f3 + ud + 	 f3(x3(t − τ3))] , (37)

where f3 = x1x2 − x3.
Similarly, for simplicity, there exists a RBFNN sys-

tem such that

f3 = θT
3 ξ3 + ε3, (38)

where ε3 is the approximation error and satisfies

|ε3| ≤ εM .
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Choose the Lyapunov function candidate as

V3 =V2+ 1

2
τ3S2

3 + 1

2γ3
θ̃T

3 θ̃3+
∫ t

t−τ3

S2
3 (τ )q2

31(S3(τ ))dτ.

(39)

Then, the derivative of V3 is calculated as below:

V̇3 = V̇2 + S3

(
θT

3 ξ3 + ud

)
+ S3	 f3 (x3(t − τ3)) + 1

γ3
θ̃T

3

�̇

θ 3 + S2
3 (t)q2

31 (S3(t)) + S2
3 (t − τ3)q

2
31 (S3(t − τ3)) .

(40)

According to Eq. (6), the following inequality
yields:

S3	 f3(x3(t−τ3))≤ 1

4
S2

3 +S2
3 (t−τ3)q

2
31(S3(t−τ3)).

(41)

Substituting Eq. (41) into Eq. (40), the equation can be
rewritten as

V̇3 = −
(

k1 + 1

2
σ̃

)

M2 +
(

1 + 1

2
σ − 1

τ2

)

y2
2

− k2S2
2 +

2∑

i=1

Di + 1

4
B2

2 − 1

2

2∑

i=1

mi θ̃
2
i

+ S3

(

θT
3 ξ3 + ud + S3(t)q

2
31(S3(t)) + 1

4
S3

)

−1

2
c1σ̃

2 + 1

2
c1σ

2 + 1

2

2∑

i=1

miθ
2
i + 1

γ3
θ̃T

3

�̇

θ 3. (42)

At the current stage, the control input is chosen as

ud = −k3S3 − �

θ
T

3 ξ3 − 1

4
S3 − S3(t)q

2
31(S3(t)), (43)

where k3 is the positive constant.

In addition, the update law is chosen as follows:

�̇

θ 3 = γ 3

(
ξ3S3 − m3

�

θ

)
, (44)

where m3 and γ3 are the design constant.
Substituting Eq. (43–44) into Eq. (42), the time

derivative of V3 is rewritten as follows:

V̇3 = −
(

k1 + 1

2
σ̃

)

M2 +
(

1 + 1

2
σ − 1

τ2

)

y2
2

− k2S2
2 − k3S2

3 +
2∑

i=1

Di − 1

2

3∑

i=1

mi θ̃
2
i

+ 1

4
B2

2 − 1

2
c1σ̃

2+ 1

2
c1σ

2 + 1

2

3∑

i=1

miθ
2
i . (45)

Remark 4 The estimation error is expressed as θ̃3 =
�

θ 3−θ3, and θ̂3 is the estimation of vector θ3, −m3θ̃3
�

θ 3

≤ − 1
2 m3θ̃

2
3 + 1

2 m3θ
2
3 .

Up to now, the whole design process of the con-
troller of BLDCM is completed. The schematic plan of
proposed control method is depicted in Fig. 6.

4 Stability analysis

For any given p >0, the closed sets can be defined as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 =

⎧
⎪⎨

⎪⎩

(M, S1,
�

θ 1,
�
σ , q11, q12) : M2 + 1

γ 1
θ̃2

1 + 1
�1

σ̃ 2

+2
2∑

i=1

t∫

t−τi

S2
1 (τ )q2

i1(S1(τ ))dτ ≤ 2p

⎫
⎪⎬

⎪⎭

�2 =

⎧
⎪⎨

⎪⎩

(M, S1, S2,
�

θ 1,
�

θ 2,
�
σ , y2, q11, q12, q22) : M2 + S2

2 + y2
2

+
2∑

i=1

1
γ i

θ̃2
i + 1

�1
σ̃ 2 + 2

t∫

t−τ2

S2
2 (τ )q2

22(S̄2(τ ))dτ ≤ 2p

⎫
⎪⎬

⎪⎭

�3 =

⎧
⎪⎨

⎪⎩

(M, S1, S2, S3,
�

θ 1, · · · ,
�

θ 3,
�
σ , y2, q11, q12, q22, q31) : M2

+
3∑

i=2
S2

i + y2
2 +

3∑

i=1

1
γ i

θ̃2
i + 1

�1
σ̃ 2 + 2

t∫

t−τ3

S2
3 (τ )q2

31(S3(τ ))dτ ≤ 2p

⎫
⎪⎬

⎪⎭

. (46)

Theorem 2 Suppose that the dynamic surface con-
trollers Eq. (34) and (43) with adaptive laws Eq.
(20),(21) (35), and (44) are applied to the BLDCM sys-
tem with the uncertain time delays described by Eq. (4),
by selecting the proper parameters like ki , γi , mi , �1,

η1, τ2, and c1, then the S1(t) is asymptotically track-
ing stability in the sense of uniformly ultimate bound-
edness when the initial conditions satisfy the �i and
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Fig. 6 Control schematic of BLDCM

x1(0) ∈ (−a + d + yr(0), a − d + yr(0)). Further-
more, the state x1(t) can keep in the set � := {x1 (t) ∈
R : |x1 (t)| < a} and error state S1(t) ∈ (−β, β) for
∀t > 0.

Proof First, calculate the derivative of the Lyapunov
function candidate as

V̇ = V̇3 = − (k1 + 1
2 σ̃
)

M2 − k2S2
2 − k3S2

3

+
(

1 + 1
2σ − 1

τ2

)
y2

2 − 1
2

∑3
i=1 mi θ̃

2
i − 1

2 c1

σ̃ 2 +∑2
i=1 Di + 1

4 B2
2 + 1

2 c1σ
2 + 1

2

∑3
i=1 miθ

2
i .

(47)

If V = p, taking those pre-mentioned into account,
then there exists

V̇ ≤ −2a0V + μ, (48)

where μ = ∑2
i=1 Di + 1

4 B2
2 + 1

2 c1σ
2 + 1

2

∑3
i=1 miθ

2
i .

If V = p and a0 > μ/p, then V̇ ≤ 0. As the initial
condition V (0) ≤ p, one has V (t) ≤ p, ∀t ≥ 0.

Let Eq.(48) be compute the integral on [0 t], then

0 ≤ V (t) ≤ μ

a0
+ (V (0) − μ

a0
)e−2a0t . (49)

Second, note the fact that S1(t) tan((π/2β)× S1(t)) →
∞ as S1(t) → β or -β. Since S1(t) and S1(t) tan((π/2β)

× S1(t)) is uniformly ultimately bounded, there exists
S1(t) �= −β and S1(t) �= β. Let give initial condition
S1(t) ∈ (−β, β), it can be concluded that S1(t) remains
in the region (−β, β) for ∀t > 0. Furthermore, owing
to the fact β = a − d, the following relations hold:

−a + d < S1(t) < a − d ⇔ −a + d

+ yr < x1(t) < a − d + yr. (50)

Then, with the fact d + yr ≥ 0 and −d + yr ≤ 0, it
is obtained that −a < x1(t) < a. Up to now, the proof
is completed.

5 Performance evaluation

In this section, the numerical simulations are conducted
in order to validate the feasibility and effectiveness of
the proposed method. Meanwhile, it is mainly utilized
to verify the performance of the BLDCM with chaotic
behavior and parameter variation.

Taking into account uncertain time delay, the relative
equations can be described by

	 f1(x1(t − τ1)) = sin(x1(t − τ1)),

	 f2(x̄2(t − τ2)) = x1(t − τ2)x2(t − τ2),

	 f3(x(t − τ3)) = sin(x3(t − τ3)). (51)

The part of system parameters are given as q11 =
1, q21 = 1 −

√

2 − S2
1 , q22 = |S2|, q31 = 0, τ1 =

0.4, τ2 = 0.5, τ3 = 0.6, and the rest are the same as
ones mentioned before.

Suppose that the state is required to constraint
|x1(t)| < 1.2, and the reference signal is −1.0 ≤
yr = 0.7∗sin(4t) + 0.2∗cos(2t + 0.3) ≤ 1.0; mean-
while, the corresponding design parameter is chosen as
β = |x1| − |yr| = 0.2. The simulations are done with
initial conditions x1(0) = 0 ∈ (−0.2, 0.2), x2(0) =
0.45, x3(0) = 0.4. The design parameters of controller
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Fig. 7 The trajectory tracking with parameter η = 1.6. a The rotor velocity tracking, b the rotor velocity tracking error

Fig. 8 The robustness analysis with parameter variation. a The rotor velocity tracking error, b d axis voltage

are chosen as k1 = k2 = 1, k3 = 3, γ1 = γ2 = γ3 =
12, m1 = m2 = m3 = 0.5, c1 = 0.8, r1 = 0.2, σ (0) =
35, η1 = 0.001, τ2 = 0.01. In addition, the center of
neural network μi is uniformly distributed in the field
of [−5,5], and its width σi is equal to 2.

5.1 Trajectory tracking analysis

Figure 7 shows that the steady-state error of velocity is
equal to ±0.01 Rad/s with little time. On the other hand,
it can be seen clearly that the system tracks the desired

trajectory perfectly within 0.1s. The state |x1(t)| <

1.2 is ensured by the fact that tracking error S1(t) ∈
(−0.2, 0.2) when the TBLF is used.

5.2 Robustness analysis

Figure 8 shows the results of the BLDCM control per-
formance when disturbance of the system parameters σ

and ρ occurs, i.e., σ = 16, ρ = 1.516, σ = 17, ρ =
1.416, σ = 18, ρ = 1.316. When the system para-
meters add or reduce the value a bit, the three kinds
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Fig. 9 Phase portrait with different η

of indicator curves of BLDCM can basically coincide.
That is, the proposed controller owns good robustness
for disturbance in whole process.

5.3 Chaos suppression analysis

Comparing with the result mentioned above, it can be
seen clearly that BLDCM system successfully escapes
from the chaotic behavior which can cause some
irreparable losses on the local power system in the
Fig. 9.

6 Conclusion

An adaptive RBFNN-based DSC strategy is presented
for the chaotic BLDCM with uncertain time delays

in detail. The controller based on the adaptive DSC,
TBLF, and RBFNN is applied to prevent the motor
drive system from chaos when systemic parameters are
falling into a special area. Both the unknown BLDCM
parameters and uncertain time delays are considered.
At the same time, the state constraint is satisfied using
TBLF. In addition, the stability analysis is derived
to verify the system reliability by the Lyapunov the-
ory. Finally, the simulation results are demonstrated to
show the effectiveness and robustness of the proposed
approach by choosing appropriate design parameters.
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