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Abstract A modified two-dimensional triangular lat-
tice model is presented by accounting the effect of
optimal current difference on traffic dynamics and ana-
lyzed both theoretically and numerically. Based on the
sensitivity and configurations of vehicles, two distinct
types of jamming transitions occur: conventional jam-
ming transition to the kink jam and jamming transi-
tion to the chaotic jam through kink jam. The chaotic
region reduces with reaction coefficient and enhances
when more number of vehicles move diagonally. It is
shown that the incorporation of optimal current dif-
ference effect efficiently stabilizes the traffic flow and
suppresses traffic jam for all possible configurations on
triangular lattice.

Keywords Traffic flow · Optimal current difference ·
Triangular lattice · Chaotic flow

1 Introduction

With the rapid development of urbanization, the prob-
lem of traffic congestion has been attracted consider-
able attention of scientists and researchers nowadays. A
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variety of models have been applied to describe the col-
lective properties of traffic flow [1–9]. In the last few
years, the lattice hydrodynamic traffic model, firstly,
proposed by Nagatani [10] has been given much atten-
tion. Afterward, many extensions have been carried out
by considering different factors like backward effect
[11], lateral effect of the lane width [12], density dif-
ference effect [13], anticipation effect of potential lane
changing [14], optimal current difference effect [15],
etc. All of the above-mentioned models describe some
traffic phenomena only on a single-lane or two-lane
highway.

Most of the road networks, for example, either traf-
fic system of a whole a city or an expressway network,
comprise of two or more lanes. So, one-dimensional
traffic flow models are not appropriate to study the traf-
fic flow on networks. Therefore, higher dimensional
lattice hydrodynamic models, which are very abstract
models of traffic flow, can describe the traffic behavior
on networks. In this direction, firstly, Biham et al. [16]
proposed a two-dimensional traffic flow model by using
cellular automata approach. Later, Nagatani extended
his one-dimensional lattice hydrodynamic model to
two-dimensional [17] as well as to higher dimensional
[18] traffic flow models. Recently, Gupta and Redhu
[19] investigated the effect of optimal current differ-
ence in a two-dimensional traffic flow model on square
lattice.

In order to make two-dimensional square lattice
model more appropriate in explaining traffic dynam-
ics on networks, Nagatani [20], further, studied two-
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dimensional triangular lattice model by assuming three
types of vehicles and observed that jamming transition
in traffic flow depends on the lattice type. However, best
to our knowledge, the effect of optimal current differ-
ence on two-dimensional triangular lattice has not been
investigated yet.

In this letter, a new two-dimensional triangular lat-
tice model is proposed by considering the effect of opti-
mal current difference. Linear and nonlinear stability
analysis will be carried out to investigate the impact of
optimal current difference on triangular lattice. Here,
we would like to discuss three main points: (1) To check
whether or not the modified model exhibits the similar
jamming transition as observed by Nagatani [20]. (2)
The effect of optimal current difference on the stabil-
ity of two-dimensional triangular traffic flow has to be
analyzed. (3) To compare the results of triangular and
square lattice in two-dimensional traffic flow. Finally,
to validate the theoretical findings, numerical simula-
tion will be carried out.

2 Proposed model

The lattice hydrodynamic model proposed by Nagatani
[10] is the simplified version of continuum traffic flow
models incorporating both the ideas of car following
and macroscopic models to analyze the density waves.
Later, the lattice model was extended to analyze two-
dimensional traffic flow on square and triangular lat-
tices by Nagatani [17,20].

However, the above models are able to explain the
phase transition and critical phenomena on one- or
higher dimensional traffic flow, the important aspect
of optimal current difference effect, recently observed
by Gupta and Redhu [19], has not been explored
yet. To investigate the effect of optimal current dif-
ference, we propose a modified model by consider-
ing three types of vehicles, where first, second, and
third type of vehicles move in the positive x, y, and
along diagonal direction, respectively. The interface
among three types of vehicles occurs only on the cross-
ing, and vehicles are not allowed to turn. The num-
ber of vehicles of each type remains conserved, i.e.,
one type of vehicles never changes to another type
of vehicles. The density [speed] of vehicles moving
in the x, y, and along diagonal direction are denoted
by ρx (x, y, t)[u(x, y, t)], ρy(x, y, t)[v(x, y, t)], and
ρr (x, y, t)[w(x, y, t)], respectively. Hence, the conti-

nuity equations on two-dimensional triangular lattice
are given by

∂tρx (x, y, t) + ∂x (ρx (x, y, t)u(x, y, t)) = 0, (1)

∂tρy(x, y, t) + ∂y(ρy(x, y, t)v(x, y, t)) = 0, (2)

∂tρr (r, y, t) + ∂r (ρr (x, y, t)w(x, y, t)) = 0, (3)

where ∂t = ∂/∂t, ∂x = ∂/∂x, ∂y = ∂/∂y, and ∂r =
∂/∂r .

In real traffic, drivers always adjust their velocity
according to the observed traffic situations and estimate
their driving behavior. We propose new evolution equa-
tions for two-dimensional triangular lattice with the
consideration of optimal current difference as follows:

ρx (x, y, t+τ)u(x, y, t + τ)

=cxρ0[V (ρ(x+h, y, t))]+λcxρ0[V (ρ(x+2h, y, t))

− V (ρ(x + h, y, t))], (4)

ρy(x, y, t+τ)v(x, y, t+τ)=cyρ0[V (ρ(x, y + h, t))]
+ λcyρ0[V (ρ(x, y + 2h, t))

− V (ρ(x, y + h, t))], (5)

ρr (x, y, t+τ)w(x, y, t+τ)=cr ρ0[V (ρ(x+h, y+h, t))]
+ λcrρ0[V (ρ(x + 2h, y + 2h, t))

− V (ρ(x + h, y + h, t))], (6)

whereρ(x, y, t)=ρx (x, y, t)+ρy(x, y, t)+ρr (x, y, t);
ρ0 is the total average density; h is the average head-
way; cx , cy , and cr are the fractions of vehicles moving
in x, y, and along diagonal direction, respectively; λ is
the reaction coefficient of optimal current difference;
V (.) is the optimal velocity function; and τ(a = 1/τ)

is the delay that requires to reach the traffic current at
optimal level. In the proposed model, the traffic current
in the x-direction at position (x, y) at time t is adjusted
not only by the optimal current at position (x + h, y)

at time t − τ , but also affected by the optimal current
difference at (x + 2h, y) and (x + h, y) at time t − τ .
Combining the difference form of Eqs.(1), (2), and (3)
with Eqs. (4), (5), and (6), the modified lattice hydro-
dynamic model is obtained as follows:

ρ j,m(t + 2τ) − ρ j,m(t + τ) + τρ2
0 cx [V (ρ j+1,m)

− V (ρ j,m)] + τρ2
0 cy[V (ρ j,m+1) − V (ρ j,m)]

+ τρ2
0 cr [V (ρ j+1,m+1) − V (ρ j,m)]

+ λτρ2
0 cx [V (ρ j+2,m)−2V (ρ j+1,m)+V (ρ j,m)]
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+ λτρ2
0 cy[V (ρ j,m+2)−2V (ρ j,m+1)+V (ρ j,m)]

+ λτρ2
0 cr [V (ρ j+2,m+2)

− 2V (ρ j+1,m+1) + V (ρ j,m)] = 0, (7)

where ρ j,m(t) = ρx, j,m(t) + ρy, j,m(t) + ρr, j,m(t);
ρx, j,m(t), ρy, j,m(t), and ρr, j,m(t) are the densities,
respectively, in x, y, and along diagonal directions at
the site ( j, m) on the triangular lattice. For cr = 0,
the above modified model reduces to two-dimensional
model on a square lattice, recently proposed by Gupta
and Redhu [19], in which the reaction coefficient of
optimal current difference effectively suppresses the
traffic jam for all the possible configurations of vehi-
cles. Furthermore, when λ = 0, the model reduces
to two-dimensional triangular lattice as presented by
Nagatani [20]. The optimal velocity function is adopted
as following [20]:

V (ρ j,m) = 1 − tanh

(
ρ j,m(t) − ρc

ρ2
0

)
, (8)

where ρc denotes the safety critical density. The opti-
mal velocity function, which is monotonically decreas-
ing, has an upper bound (maximal velocity) and a turn-
ing point at ρ j,m = ρc = ρ0.

3 Linear stability analysis

We perform the linear analysis to study the stability of
two-dimensional model on a triangular lattice. For this,
the state of uniform traffic flow is taken as ρ0 and opti-
mal velocity V (ρ0), where ρ0 is a constant. Hence, the
steady-state solution of the homogeneous traffic flow
is given by
ρ j,m(t) = ρ0, and Vj,m(t) = V (ρ0).

Let y j,m(t) be a small deviation from the steady-state
flow ρ j,m(t) = ρ0 + y j,m(t).

Substituting perturbed density profile into Eq. (7)
and linearizing it, we obtain

y j,m(t + 2τ) − y j,m(t + τ)

+ τρ2
0 V ′(ρ0)cx

[
y j+1,m(t) − y j,m(t)

]
+ τρ2

0 V ′(ρ0)cy
[
y j,m+1(t) − y j,m(t)

]
+ τρ2

0 V ′(ρ0)cr
[
y j+1,m+1(t) − y j,m(t)

]
+ λτρ2

0 V ′(ρ0)cx
[
y j+2,m(t)−2y j+1,m(t)+y j,m

]

+ λτρ2
0 V ′(ρ0)cy

[
y j,m+2(t)−2y j,m+1(t)+y j,m

]
+ λτρ2

0 V ′(ρ0)cr
[
y j+2,m+2(t)

−2y j+1,m+1(t) + y j,m
] = 0, (9)

where V ′(ρ0) = dV (ρ)
dρ

|ρ=ρ0 . Putting y j,m(t) =
eik( j+m)+zt in Eq. (9), we obtain

e2τ z − eτ z + τρ2
0 V ′(cx + cy)[eik − 1]

+ τρ2
0 V ′cr [e2ik − 1]+λτρ2

0 V ′(cx +cy)[eik − 1]2

+ λτρ2
0 V ′cr [e2ik − 1]2 = 0. (10)

Inserting z = z1(ik) + z2(ik)2 . . . into Eq. (10), we
obtained the first and second-order terms of the coeffi-
cient ik and (ik)2, respectively, as follows:

z1 = −ρ2
0 V ′(ρ0)(cx + cy + 2cr ), (11)

z2 = −3τ z2
1

2
− ρ2

0 V ′(ρ0)

2
(cx + cy + 4cr )

− λρ2
0 V ′(ρ0)(cx + cy + 4cr ). (12)

When z2 < 0, the uniform steady-state flow becomes
unstable for long-wavelength waves. For z2 > 0, the
uniform flow will remain stable.

Thus, the neutral stability curve is given by

τ = − (1 + 2λ)(cx + cy + 4cr )

3ρ2
0 V ′(ρ0)(cx + cy + 2cr )2

. (13)

The instability condition for the homogeneous traffic
flow can be described as follows:

τ > − (1 + 2λ)(cx + cy + 4cr )

3ρ2
0 V ′(ρ0)(cx + cy + 2cr )2

. (14)

It is clear from the Eq. (14) that the stability of traffic
flow on a triangular lattice depends on the reaction coef-
ficient as well as on configurations of vehicles on tri-
angular lattice. When λ = 0, i.e., if there is no optimal
current difference effect, the stability criteria are same
as that of Ref. [20]. Figure 1 represents the phase space
plot corresponding to three different configurations of
vehicles, where solid (dotted) curves are the neutral
(coexisting) stability curves through linear (nonlinear)
analysis in the phase space (ρ, a) for different values
of λ. The apex of each curve indicates the critical point
(ρc, ac). The phase plane is divided into three regions:
stable, metastable, and unstable. It can be easily
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Fig. 1 Phase diagram in parameter space (ρ, a) for a cx = cy = cr = 1
3 , b cx = 0.2, cy = cr = 0.4 and c cx = cy = 0.4, cr = 0.2,

respectively

observed from the Fig. 1 the amplitude of each curve,
i.e., the sensitivity of critical point decreases with an
increase in reaction coefficient which means that larger
value of λ leads to the enlargement of stable region for
all three different configurations on a triangular lattice.

Furthermore, on comparing Fig. 1a, b and c, it can be
concluded that the increase in the number of vehicles
along the diagonal leads to the enlargement of unsta-
ble region. Therefore, it is worth to mention that the
stability of traffic flow on a triangular lattice depends

significantly on the reaction coefficient as well as on
the configurations of vehicles moving direction.

4 Nonlinear analysis

In this section, we investigate the evolution character-
istics by using the method of long-wavelength expan-
sion to describe the collective motion on coarse-grained
scales. Assuming, X = ε( j + m + bt) and T = ε3t as
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the slow variables for scaling parameter ε (0 < ε <<

1) near the critical point, where b is a constant to be
determined, let the density at ( j, m) site near the critical
point be

ρ j,m(t) = ρc + εR(X, T ) (15)

By expanding Eq. (7) to fifth order of ε with the help of
Eq. (15), we obtain the following nonlinear equation:

ε2 [
b + ρ2

c V ′(cx + cy + 2cr )
]
∂X R

+ ε3
[

3b2τ

2
+ ρ2

c V ′(cx + cy + 4cr )(1 + 2λ)

2

]
∂2

X R

+ ε4
[
∂T R +

(
7b3τ 2

6
+ ρ2

c V ′(cx + cy + 8cr )(1 + 6λ)

6

)
∂3

X R

+ρ2
c V ′′′(cx + cy + 2cr )

6
∂X R3

]

+ ε5
[

3bτ∂T ∂X R+
(

5b4τ 3

8
+ ρ2

c V ′(cx +cy +16cr )(1+14λ)

24

)
∂4

X R

+ρ2
c V ′′′(cx + cy + 4cr )(1 + 2λ)

12
∂2

X R3
]

= 0, (16)

where V ′ = dV (ρ)
dρ

|ρ=ρc and V ′′′ = d3V (ρ)

dρ3 |ρ=ρc . In the
neighborhood of critical point τc, we define

τ = τc(1 + ε2), (17)

and choose b = −ρ2
c V ′(cx + cy + 2cr ). Eliminating

second and third order terms of ε into Eq. (16), we get

ε4(∂T R − g1∂
3
X R + g2∂X R3)

+ ε5(g3∂
2
X R + g4∂

4
X R + g5∂

2
X R3) = 0, (18)

where the coefficients gi (i = 1, 2, · · · , 5) are shown
in Table 1. In order to derive the standard mKdV
equation, we make the following transformations in

Eq. (16):

T ′ = g1T, R =
√

g1

g2
R′, (19)

which gives

∂T R′ − ∂3
X R′ + ∂X R′3 + εM[R′] = 0, (20)

where M[R′] = 1
g1

(
g3∂

2
X R′+ g1g5

g2
∂2

X R′3+g4∂
4
X R′

)
.

After ignoring the O(ε) terms in Eq. (20), we get the
standard mKdV equation whose desired kink soliton
solution is given by

R′
0(X, T ′) = √

c tanh

√
c

2
(X − cT ′). (21)

In order to determine the value of propagation velocity
for the kink–antikink solution, it is necessary to satisfy
the solvability condition:

(R′
0, M[R′

0]) ≡
∞∫

−∞
d X R′

0 M[R′
0] = 0, (22)

with M[R′
0] = M[R′]. By solving Eq. (22), the selected

value of c is

c = 5g2g3

2g2g4 − 3g1g5
. (23)

Hence, the kink–antikink solution is given by

ρ j,m(t) = ρc + ε

√
g1c

g2
tanh

(√
c

2
(X − cg1T )

)
,

(24)

Table 1 The coefficients gi
of the model

g1 g2 g3(
− 7(1+2λ)2(cx +cy+4cr )2

54(cx +cy+2cr )

+ (1+6λ)(cx +cy+8cr )

6

)
(−ρ2

c V ′)
(cx +cy+2cr )ρ

2
c V ′′′

6
(1+2λ)(cx +cy+4cr )(−ρ2

c V ′)
2

g4 g5

(
5(1+2λ)3(cx +cy+4cr )3

216(cx +cy+2cr )2 + (cx +cy+16cr )(1+14λ)

24

)
ρ2

c V ′

+ (1+2λ)(cx +cy+4cr )g1
(cx +cy+2cr )

(
(cx +cy+4cr )(1+2λ)

12

− (1+2λ)(cx +cy+4cr )

6

)
ρ2

c V ′′′
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with ε2 = ac
a −1 and the amplitude A of the solution is

A =
√

g1

g2
ε2c. (25)

The kink–antikink solution represents the coexisting
phase including both freely moving phase and con-
gested phase which can be described by ρ j = ρc ± A,
respectively, in the phase space (ρ, a).

5 Numerical simulation

To check the applicability of the modified model and
validate the theoretical results in describing traffic
flow dynamics on a triangular lattice, numerical sim-
ulation is carried out under periodic boundary con-
ditions. Initially, the vehicle density is assumed to
be disturbed uniformly over the triangular lattice as
ρ j,m(0) = ρ j,m(1) = ρ0. Then, the local densities at
site (L/2, L/2) and ((L/2)−1, (L/2)−1) for first two
time steps are set as ρ0 − σ and ρ0 + σ , respectively.
Here, ρ0 = 0.2, L is the system size taken as 100×100
and σ = 0.1 is the initial disturbance. As observed in
the previous section, the behavior of traffic flow signif-
icantly depends on the two important parameters: con-
figuration of vehicles and reaction coefficient, and we
discuss our findings for three different configurations.
Case 1 cx = cy = cr

In this case, equal number of vehicles is allowed
to move in three possible directions. Figure 2 shows
the traffic pattern for different values of λ after a suf-
ficiently long time, namely, 6 × 104s for a = 1.5.
The initial disturbance added at the center of lattice
leads to the kink soliton density waves as shown in
Fig. 2a–d, and these density waves propagate in the
backward direction with a constant speed in evolution
of time. This small amplitude disturbance grows into
congested flow as the stability condition is not satisfied.
In the stable region, kink density waves disappear, and
traffic flow becomes uniform for larger value of reac-
tion coefficient in the corresponding pattern 2e. The
region of free flow turns wide, and the amplitude of
density waves is weakened with the increase in reaction
coefficient which means that optimal current difference
effect enhances the stability of the traffic flow.

Figure 3 represents the phase space plot of den-
sity difference ρ(t) − ρ(t − 1) against ρ(t) for t =
60000s −70000s, corresponding to the panel of Fig. 2.

The patterns in Fig. 3a–d exhibit the characteristic of
periodicity in the form of limit cycle, and the nodes on
the right as well as on left sides are corresponding to the
traffic states within and out of the kink traffic jam. For
λ = 0.4, the limit cycle leads to a single point which
represents the uniform flow in the stable region. When
a = 1.5, the jamming transition occurs among freely
moving phase, the coexisting phase with kink–antikink
density wave, and the uniformly congested phase with
an increase in the value of λ. These findings are in
agreement with the results found in Refs. [19,20].

Now, we study the traffic behavior for equal config-
uration of vehicles for smaller value of the sensitivity.
Figure 4 shows the traffic pattern at time t = 60000s
for different values of λ at a = 0.75. It is clear from the
Fig. 4a–c that the traffic pattern for smaller value of a is
quite different for those obtained for larger value of a.
Here, initial disturbance evolves into irregular density
waves and in time, these density waves propagate back-
ward, break up, coalesce with one another, disappear,
and created till λ = 0.2. On further increasing the value
of λ, these irregular density waves lead to kink–antikink
density waves as shown in Fig. 4d–e. The amplitude of
irregular density waves decreases with an increase in
λ, and for λ ≥ 0.3, the chaotic density wave evolves
into kink density wave with further decrease in ampli-
tude.

Figure 5 represents the phase space plot of den-
sity difference ρ(t) − ρ(t − 1) against ρ(t) for t =
60000s − 70000s, corresponding to the traffic flows in
Fig. 4. The traffic pattern exhibits the chaotic behav-
ior as shown in Fig. 5a–c for smaller value of λ. This
chaotic flow is represented by the set of dispersed points
in phase–space plot which is the characteristic of chaos.
The chaotic pattern becomes periodic in form of limit
cycle for larger value of λ as shown in Fig. 5d, e. Here,
jamming transitions occur among freely moving phase,
kink phase with kink–antikink density wave, chaotic
phase with irregular density wave, and uniformly con-
gested phase. It is worth to mention that the chaotic
phase was neither observed in the triangular [20] nor in
square [19] lattices for equal configuration of vehicles.

Now, we examine the boundaries of different phases
in space (ac, λ). Figure 6a represents the plot of criti-
cal sensitivity against reaction coefficient, where solid
(dotted) curves correspond to theoretical (numerical)
results for equal configuration of vehicles. It is clear
from the figure that free flow region enlarges with an
increase in λ. The chaotic region reduces till λ = 0.3,
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Fig. 2 Traffic pattern at t = 60000 when cx = cy = cr = 1
3 and a = 1.5 for a λ = 0, b λ = 0.1, c λ = 0.2, d λ = 0.3, and e λ = 0.4,

respectively

and for further increase in reaction coefficient, the
chaotic region remains constant. Therefore, reaction
coefficient plays an important role in stabilizing the
traffic flow for all values of sensitivity.
Case 2 cy = cr �= cx

Here, the fractions of vehicles in y and along diag-
onal direction are same, but differ from that in x-
direction. In this configuration, we find only one type
of jamming transition for all values of sensitivity. Here,

the jamming transitions occur from the uniform traffic
flow, through the chaotic flow to the uniformly con-
gested phase for all values of λ. Below the critical
sensitivity, the initial small perturbation evolves into
irregular density waves, and the chaotic region shrinks
with an increase in the value of λ. When we enter into
the stable region, the irregular density waves disap-
pear and traffic flow becomes uniform for any value
of reaction coefficient. Moreover, there does not exist
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Fig. 3 Phase space plot between time t = 60000 − 70000 when cx = cy = cr = 1
3 and a = 1.5 for a λ = 0, b λ = 0.1, c λ = 0.2, d

λ = 0.3, and e λ = 0.4, respectively

kink–antikink density wave in the unstable region. The
results obtained are in accordance with those found in
Ref. [20].

Case 3 cx = cy �= cr

Parallel to the case 1, here, we also observed two
distinct types of jamming transitions. For larger value
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Fig. 4 Traffic pattern at t = 60000 t = 60000 − 70000 when cx = cy = cr = 1/3 and a = 0.75 for a λ = 0, b λ = 0.1, c λ = 0.2, d
λ = 0.3, and e λ = 0.4, respectively

of sensitivity, the jamming transition occurs from uni-
form traffic flow to kink density wave flow. The jam-
ming transition arises from freely moving flow, through
kink density wave flow, to chaotic density waves, for
smaller value of sensitivity.

Now, we examined our results for two subcases: (a)
cx < cr and (b) cx > cr . The free flow region enlarges
with an increase in λ in both the subcases as shown in
Fig. 6b, where solid and dotted curve correspond to the-

oretical and numerical results for subcase (a) and (b).
The theoretical curve for subcase (a) is slightly different
from subcase (b) while there is a significant difference
between the chaotic boundaries. It is clear from the fig-
ure that chaotic region reduces up to a critical value of
reaction coefficient. Further, an increase in the reaction
coefficient does not affect the chaotic region. This criti-
cal value depends upon the fraction of vehicles moving
along diagonal direction. On comparing the results of
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Fig. 5 Phase space plot between time t = 60000 − 70000 when cx = cy = cr = 1/3 and a = 0.75 for a λ = 0, b λ = 0.1, c λ = 0.2,
d λ = 0.3, and e λ = 0.4, respectively

two subcases, it is found that chaotic region in sub-
case (a) is more than subcase (b), i.e., more number of
vehicles move along diagonal more will be the chaotic

region. The above type of jamming transition was not
observed by Nagatani [20]. It is reasonable to conclude
that chaotic region significantly depends on the num-
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Fig. 6 Plot of ac against reaction coefficient λ for a cx = cy = cr and b cx = cy �= cr , respectively

ber of vehicles moving along diagonal as well as on
reaction coefficient.

6 Conclusion

In this letter, the effect of optimal current difference is
investigated theoretically as well as numerically on a
two-dimensional triangular lattice hydrodynamic traf-
fic flow model. Different types of phase transitions are
discussed, and phase diagram is presented for three dif-
ferent configurations of vehicles. We summarize our
finding as follows:

1. The optimal current difference effect effectively
stabilizes the traffic flow for any possible config-
uration on a triangular lattice.

2. When cx = cy = cr , depending on the sensitivity
for any value of reaction coefficient, two distinct
types of jamming transitions occur: (a) For larger
value of sensitivity, conventional jamming transi-
tion occurs from uniform traffic flow to kink den-
sity waves; (b) For smaller value of sensitivity, the
jamming transitions occur from the uniform flow,
through the kink jam and to the chaotic jam.

3. When cy = cr �= cx , for any value of reaction coef-
ficient, only one type of jamming transition from
uniform flow to chaotic jam occurs below the crit-
ical sensitivity.

4. When cx = cy �= cr , two distinct jamming tran-
sitions occur depending on the sensitivity similar

to as found in the case of cx = cy = cr . It is
also observed that chaotic flow region also depends
on the fraction of vehicles moving along diagonal
direction.

Finally, we concluded that the jamming transition
depends on the configuration of vehicles, lattice type,
and sensitivity. Simulation results obtained are also in
good agreement with the theoretical findings which ver-
ify that our consideration is reasonable.
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