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Abstract The perturbation theory approach via the
Smoluchowski equation to the nonlinear dielectric
relaxation of noninteracting permanent electric dipoles
(Coffey and Paranjape, Proc R Ir Acad A 78:17, 1978)
and the analogous Brownian magnetic relaxation of
ferrofluids where Néel relaxation is ignored is revis-
ited for the particular case of a strong dc bias field
superimposed on a strong ac field. Unlike weak ac and
strong bias dc fields, a frequency-dependent dc term
now appears in the response as well as additional non-
linear terms at the fundamental and second harmonic
frequencies. These may be experimentally observable
particularly in the ferrofluid application. The corre-
sponding results for the dc term for anomalous relax-
ation based on the fractional Smoluchowski equation
are also given.

Keywords Nonlinear relaxation · Debye theory ·
Ferrofluids · Brownian motion · Anomalous relaxation

W. T. Coffey · N. Wei (B)
Department of Electronic and Electrical Engineering,
Trinity College, Dublin 2, Ireland
e-mail:wein@tcd.ie

Y. P. Kalmykov
Laboratoire de Mathématiques et de Physique (EA 4217),
Université de Perpignan Via Domitia, 66860 Perpignan, France

1 Introduction

The Debye [1] theory of dielectric relaxation of non-
interacting rigid electric dipoles under the combined
influence of their rotational Brownian motion and a
time-varying applied field predicting dispersion and
absorption of microwave (GHz) radiation by polar flu-
ids has been extended by Coffey and Paranjape [2] to
include terms cubic in the applied field using pertur-
bation theory. The small perturbation parameter is as
usual the ratio of the interaction energy of a dipole
with the applied field to the thermal energy kT (k is the
Boltzmann constant and T is the absolute temperature).
In particular, they considered the response to a strong
alternating (ac) field alone and a weak field superim-
posed on a strong dc one. In the second of these cases,
the ac field was supposed so weak that terms in its
square and higher are negligible. The response exhibits
typical nonlinear behavior in so far as it always depends
on the precise form of the driving fields unlike the linear
response.

Subsequently, the perturbation calculation was ver-
ified numerically for the strong ac field situation by
Déjardin and Kalmykov [3] who also considered the
strong ac and dc field case [4]. They achieved this by
solving the differential-recurrence relation generated
by the rotational Smoluchowski equation [5] governing
the relaxation process using matrix continued fraction
methods in the frequency domain. All the results are
summarized in section 7.6 of [5]. Following thework of
Coffey and Paranjape [2], Déjardin et al. [6,7] extended
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the perturbation calculation to include the nonlinear ac
terms in the constant plus ac field case showing that
the combined effect of the two strong fields is to give
rise to additional dispersion and absorption phenom-
ena which do not appear at all when only the linear
term in the ac field is considered. These comprise a
time-independent but frequency-dependent dc term in
the response as well as a second harmonic contribution
and one at the fundamental frequency which is cubic
in the ac field. This term also does not appear if the
nonlinear response due to a strong ac field alone is cal-
culated. Despite these novel features in the combined
field nonlinear response, experimental investigations
of the nonlinear dielectric response seem to have been
largely confined to that due to the strong ac field alone.
For example, the results of Coffey and Paranjape [2]
for the strong ac field have been favourably compared
with nonlinear response measurements by De Smet
et al. [8] and Jadżyn et al. [9,10].

Now, for electric dipoles which typically have a
small dipole moment, it is often difficult to realize
experimentally the strong nonlinear response condi-
tions because of the consequent small value of the
interaction energy between a dipole and the electric
field. However, in a ferrofluid consisting of blocked
single-domain ferromagnetic particles in a colloidal
suspension, it is much easier to create the strong non-
linear regime because of the large magnetic moment,
104−105 μB̂ , of such particles. This feature of a typi-
cal ferrofluid particle was recognized by Fannin et al.
[11,12] who were able to detect nonlinear relaxation
effects due to strong ac fields in the magnetic suscepti-
bility of a ferrofluid. The terminology “blocked” refers
to the fact that the solid state-like or Néel [5,13–15]
magnetization relaxation mechanism over the internal
anisotropy-Zeeman energy barriers inside the single-
domain particle due to the shuttling action of the
Brownianmotion [13–15] is assumed to be inoperative.
Finally, we should recall that the Debye theory is based
on the extension of Einstein’s theory [5] of the trans-
lational Brownian motion to orientational relaxation.
Now that theory pertains to a relatively very large par-
ticle of size visible in amicroscope (e.g., a pollen grain)
immersed in a “sea” of very small particles. Therefore,
onewould expect that the ferrofluid situation,where the
relaxation effects begins to appear at lowMHz frequen-
cies because of the great size of the particles, provides
a much more suitable vehicle for the verification of the
Debye theory than minute electric dipoles.

It is the purpose of this paper to revisit the perturba-
tion calculation of the combined field situation with a
view toward encouraging the experimental detection of
the frequency-dependent dc term as well as the nonlin-
ear effects due to the interaction of the two fields at the
fundamental and second harmonic frequencies as well
as the term with the fundamental frequency which also
appears in the cubic response. Thus, we shall briefly
re-derive for purposes of clarity the combined field
response. In particular, we shall highlight the frequency
dependence of the dc term and we shall also show
how the calculation may be extended to anomalous
relaxation governed by a fractional Fokker-Planck
equation [5].

2 Differential-recurrence relation for the
statistical moments

The basis of theDebye theory [1] of orientational relax-
ation of polar fluids is the rotational diffusion Smolu-
chowski equation for the evolution of the probability
distribution functionW(θ, t) in the configuration space
of polar angles of an ensemble of rigid noninteracting
electric dipoles of moment µ, undergoing rotational
Brownian motion at absolute temperature T under the
influence of an external time-varying electric fieldE (t)
which reads

2τ
∂W

∂t
= 1

sinθ

∂

∂θ

[
sinθ

(
∂W

∂θ
− 1

kT
WM

)]
, (1)

In Eq. (1), W(θ, t) sin θdθ is the probability that at
time t a dipole has an orientation lying between colat-
itudes θ and θ + dθ relative to the direction of E (t),
M (θ, t) is the torque acting on the dipole due to E (t),
τ = ζ/(2kT ) is the Debye relaxation time where
ζ = 8πηa3 is the viscous drag coefficient of a dipole
which is treated as a rigid sphere of radius a rotating in
a fluid of viscosity η representing all the microscopic
degrees of freedom of the surroundings, and W(θ, t) is
the surface density of orientations of dipoles on the unit
sphere. Here we consider a strong unidirectional field
E0 superimposed on a strong alternating fieldEcosω0t ,
so that

M (θ, t) = −μE (t) sinθ = −μ (E0 + Ecosωt) sinθ

= −μE0 (1 + λcosωt) sinθ, (2)
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where λ = E/E0. Furthermore, the torque M is axi-
ally symmetric so that W (θ, t) is independent of the
azimuthal angle ϕ .

The general solution of Eq. (1) is of the form of the
Fourier series

W (θ, t) =
∞∑
n=0

(n + 1/2) fn (t) Pn (cosθ) , (3)

where fn (t) = 〈Pn (cosθ)〉 (t) are the expectation val-
ues of the Legendre polynomials of order n (statistical
moments), viz.,

fn (t) = 〈Pn (cosθ)〉 (t)

=
∫ 1
−1 W (θ, t) Pn (cosθ) dcosθ∫ 1

−1 W (θ, t) dcosθ
. (4)

On substituting Eq. (3) into Eq. (1) and making use
of the recurrence and orthogonality relations for the
Legendre polynomials Pn (z), we easily find that the
fn (t) satisfy the differential-recurrence relation [5]

d

dt
fn (t) = −n (n + 1)

2τ

{
fn (t) − μE (t)

kT (2n + 1)[
fn−1 (t) − fn+1 (t)

] }
(5)

which has stationary solution (i.e., pertaining to the
forced response) for arbitrary E (t)

fn (t) = n (n + 1) ξ0

2τ (2n + 1)

t∫
−∞

e− n(n+1)
2τ (t−u)e (u)

× [
fn−1 (u) − fn+1 (u)

]
du, (6)

where for M (θ, t) given by Eq. (2) we have e (t) =
1 + λcosωt and ξ0 = μE0/(kT ). Equation (6) indi-
cates that if we can calculate the Fourier coefficients
fn (t) for given E (t) we have the time evolution of
the observables. In particular, we shall be interested
in averages of the Legendre polynomial of order 1
f1 (t) = 〈P1 (cosθ)〉 (t) pertaining to the dielectric
response.

3 Successive approximation solution for f1 (t)

The rotational diffusion equation (1) and its alterna-
tive representation as a differential-recurrence relation
equation (5) (which may also be derived from the
appropriate Langevin equation [5]), although in itself
a linear equation implicitly contains all the nonlinear

behavior. The perturbation procedure to determine cor-
rections to the linear response may be implemented
as follows. We write out the integral equation (6) for
the first few fn (t) and solve the resulting hierarchy of
integral equations by the method of successive approx-
imations assuming that ξ0 < 1 in order to maintain
convergence. The formal solutions for 〈P1 (cosθ)〉 (t)
will be then rendered by the perturbation method.

We have in general for the dielectric response

〈P1 (cosθ)〉 (t) = ξ0

3τ

{ t∫
−∞

e− t−u
τ e (u) du

− ξ20

5τ 2

∫
−∞<u2≤u1≤u≤t

e− t−u
τ e− 3(u−u1)

τ

× e− u1−u2
τ e (u2) e (u1) e (u) du2du1du + · · ·

}
. (7)

Notice that the leading term in Eq. (7) is simply the lin-
ear dielectric response. So far the procedure is entirely
general. Next for the particular time variation given
in Eq. (2), the solutions are best obtained using two-
sided Fourier transforms. Consequently, we find after
elementary but tedious manipulations that for the non-
linear dielectric response

〈P1 (cosθ)〉 (t)

= ξ0

3

{
1 − ξ20

15
− λ2ξ20

5
(
1 + ω2τ 2

)
(
1

6
+ 3 + ω2τ 2

9 + ω2τ 2

)

+ λ

1 + ω2τ 2

[
1 − ξ20

15

27 + ω2τ 2 − 2ω4τ 4(
1 + ω2τ 2

) (
9 + ω2τ 2

)
]
cosωt

+ λωτ

1 + ω2τ 2

[
1 − ξ20

15

42 + 19ω2τ 2 + ω4τ 4(
1 + ω2τ 2

) (
9 + ω2τ 2

)
]
sinωt

− λ2ξ20

90
(
1 + ω2τ 2

)

×
[(

81 − 153ω2τ 2 − 62ω4τ 4 − 8ω6τ 6
)
cos2ωt(

1 + 4ω2τ 2
) (
9 + ω2τ 2

) (
1 + (4/9)ω2τ 2

)

+ ωτ
(
252 + 88ω2τ 2 + 16ω4τ 4

)
sin2ωt(

1 + 4ω2τ 2
) (
9 + ω2τ 2

) (
1 + (4/9)ω2τ 2

)
]

− λ3ξ20

30
(
1 + ω2τ 2

)
[ (

27 − 13ω2τ 2
)
cosωt

18
(
1 + ω2τ 2

) (
1 + (4/9)ω2τ 2

)

+ ωτ
(
21 + ω2τ 2

)
sinωt

9
(
1 + ω2τ 2

) (
1 + (4/9)ω2τ 2

)

+
(
3 − 17ω2τ 2

)
cos3ωt

6
(
1 + 9ω2τ 2

) (
1 + (4/9)ω2τ 2

)
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+ ωτ
(
7 − 3ω2τ 2

)
sin3ωt

3
(
1 + 9ω2τ 2

) (
1 + (4/9)ω2τ 2

)
]}

+O
(
ξ50

)
. (8)

This pertains to normal nonlinear dielectric relaxation
of noninteracting rigid dipoles under the combined
influence of strong constant and ac fields and with
appropriate changes of notation also pertains to mag-
netic relaxation of a blocked ferrofluid. Its striking fea-
tures over and above the single ac field case are the
appearance of a frequency-dependent dc term O(λ2)

accompanied by terms in the second harmonic of the
applied field O(λ2) and a correction O(λ3) at the fun-
damental ac frequency, to the third harmonic term. In
the weak ac and strong dc field case, all that appears is
the correction λξ20 at the fundamental frequency, to the
linear response as well as the frequency-independent
ξ20 /15 term due to the action of the strong dc field
alone. The frequency-dependent but time-independent
term [the first line of Eq. (8)] is also the result pre-
viously obtained by Déjardin et al. [7] confirming the
present perturbation calculation. The appearance of the
frequency-dependent dc and the other harmonic terms
in Eq. (8), alluded to above suggests that experiments
like those described in [11,12,16] should be made
on ferrofluid systems with the objective of detecting
these terms. The methods we have described may be
extended to a mean-field potential whereupon the inte-
gral equation (6) above becomes vector-valued, details
are available in [17–19].

Notice that in applying Eq. (8) to the magnetization
of an assembly of noninteracting magnetic dipoles in
superimposed ac and dc fields as in a ferrofluid it is cus-
tomary [19] to write the applied field asH0 +H cosωt
and the resulting magnetization as

MH (t) = χ0(ξ, ξ0, ω) +
∞∑
k=1

ξ k Re
[
χk(ξ, ξ0, ω)eikωt

]

(9)

where ξ0 = μH0/(kT ), ξ = μH/(kT ), the dc term is
given by

χ0(ξ, ξ0, ω) = χSH0

[
1 − 1

15
ξ20 − 1

60

(
5

1 + ω2τ 2D

+ 1

1 + ω2τ 2D/9

)
ξ2 + · · ·

]
, (10)

χS = N0μ
2/(3kT ) is the static susceptibility, µ is the

magnetic dipole moment of a ferrofluid particle, and
N0 is the number of particles per unit volume. Here, the
Debye relaxation time is now denoted by τD in order to
distinguish it from the exponentially long over barrier
or Néel relaxation time. Equation (10) by inspection of
Eq. (8)with suitable replacements is entirely equivalent
to the dc term in that equation.

4 Generalization to anomalous relaxation

Now one of the most noteworthy features of the dielec-
tric relaxation of disordered materials such as glass
forming liquids and amorphous polymers is the fail-
ure of the Debye theory [1] of normal dielectric relax-
ation to adequately describe the low frequency spec-
trum of the linear susceptibility. The relaxation process
in such disordered systems is characterized by the tem-
porally nonlocal behavior arising from the energetic
disorder which produces obstacles or traps simultane-
ously delaying themotion of the particle and producing
memory effects. It appears that a significant amount
of experimental data on anomalous relaxation of dis-
ordered systems and complex liquids supports the fol-
lowing empirical expressions for the complex dielectric
susceptibility spectra, namely, the Cole–Cole equation
[20]

χCC (ω) = χS

1 + (iωτ)σ
, (11)

the Cole–Davidson equation [21]

χCD(ω) = χS

(1 + iωτ)ν
, (12)

and the Havriliak–Negami equation [22]

χHN (ω) = χS

[1 + (iωτ)σ ]ν , (13)

which is a combination of the Cole–Cole and Cole–
Davidson equations. Here τ is a characteristic relax-
ation time usually known as the Debye relaxation time,
χ0 is the static susceptibility, and σ(0 < σ ≤ 1) and
ν(0 < ν ≤ 1) are parameters with values usually
obtained by fitting experimental data. In the context
of the linear susceptibility, Eqs. (11)–(13), the Cole–
Cole parameter σ is a broadening parameter because
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the dielectric loss spectrum broadens as σ is reduced,
while the Cole–Davidson parameter ν in Eqs. (12) and
(13) is a skewing parameter. Detailed discussions of
anomalous relaxation behavior in complex disordered
systems and various underlying microscopic models a
reader can find, e.g., in [5,23–33]. Equations (11)–(13)
are phenomenological generalizations of the Debye
equation for the complex susceptibility, viz.,

χD(ω) = χS

1 + iωτ
(14)

which may be derived using a variety of microscopic
models of the relaxation process. For example, Debye
[1] extended Einstein’s treatment of the translational
Brownian motion to the rotational Brownian motion
of noninteracting permanent dipoles subjected to an
external time-varying field. It might also happen that
themotionwhich prevails is different for different kinds
of dipoles. Moreover, both large and small jump tran-
sitions may exist simultaneously. The above observa-
tions lead us to the second microscopic (relaxator)
model considered byDebye [1] (andmuch extended by
Fröhlich [34]), which is a Poisson-like process, where
relaxation occurs due to the crossing by large jumps of
raremembers of an assembly of dipoles over a potential
barrier due to the shuttling action of thermal agitation.
This model also produces a relaxation spectrum of the
form of Eq. (14); however, the over barrier relaxation
time has Arrhenius-like behavior as it depends expo-
nentially on the height of the potential barrier.

The fractional kinetic equations incorporating the
Cole–Cole, Cole–Davidson, and Havriliak–Negami
relaxation processes can be written by extending a
hypothesis of Nigmatullin and Ryabov [23]. They
noted that for a system characterized by the single
exponential relaxation function f (t) = e−t/τ and,
hence, the Debye equation for the complex susceptibil-
ity, Eq. (14), the conventional kinetic equation describ-
ing the ac stationary response to a forcing function
F(t) = Feiωt ∼ Eeiωt , namely,

(
τ
d

dt
+ 1

)
f (t) = F(t) (15)

may be generalized to a fractional kinetic equation of
fractional order ν so describing a system with Cole–

Davidson anomalous relaxation behavior as

(
τ −∞D1

t + 1
)ν

f (t) = F(t). (16)

From now on operator equations of the type
(τ −∞D1

t + 1)ν are to be understood as series of frac-
tional operators via the binomial expansion

(a + b)ν =
∞∑
n=0

(−1)n(−ν)n

n! aν−nbn, (17)

where (a)n = �(n + a)/�(a) is a Pochhammer sym-
bol, the fractional derivative −∞Dα

t is given by the
Riemann-Liouville definition [35–37]

−∞Dα
t [ f (t)] = 1

�(1 − α)

d

dt

∫ t

−∞
f (t ′)dt ′

(t − t ′)α
, (18)

and �(z) is the gamma function and 0<α<1. Assum-
ing adiabatic switching on of the ac field F(t) = Feiωt ,
the solution of Eq. (16) yields the Cole–Davidson Eq.
(12) [23]. According to Nigmatullin and Ryabov [23],
the fractional exponent ν reflects the discontinuous
character of the anomalous relaxation process and rep-
resents the fractal dimension of the set over which the
relaxation times are statistically distributed. The Fröh-
lich relaxator model [34] as modified to the fractional
diffusion by Nigmatullin and Ryabov may serve as an
example of such a process. For the Cole–Cole relax-
ation, the underlying kinetic equation is given by [25]

(
τσ −∞Dσ

t + 1
)
f (t) = F(t). (19)

The physical meaning of the parameter σ is the fractal
dimension of the set of waiting times which is the scal-
ing of the waiting time segments in the random walk
with magnification. The fractional exponent σ mea-
sures the statistical self-similarity (or how the whole
looks similar to its parts) of the waiting time segments
[25]. In like manner, combining the fractional diffu-
sion Eq. (19) describing Cole–Cole relaxation and Eq.
(16) describing Cole–Davidson relaxation, one may
also introduce the fractional kinetic equation [25]

(
τσ −∞Dσ

t + 1
)ν

f (t) = F(t). (20)

Equation (20) represents a fractional generalization
of the normal kinetic Eq. (15) to incorporate the
Havriliak–Negami anomalous relaxation. For the two
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particular cases ν = 1, 0 < σ < 1 andσ =1, 0<ν <1,
Eq. (20) reduces to Eqs. (19) and (16), respectively.
The fractional derivatives in Eqs. (16), (19), and (20)
are memory functions with a slowly decaying power
law kernel in the time. Such behavior arises from ran-
dom torques with an anomalous waiting time distribu-
tion.

The nonlinear dielectric relaxation treated in Sect. 3
via the rotational diffusion model may be extended
to anomalous relaxation by using the above fractional
kinetic equation approach. Here we consider as a defi-
nite example only theCole–Cole relaxationmechanism
characterizing by the anomalous exponent σ (other
relaxation mechanisms can be treated in like manner;
see, e.g., [31]). The generalization of the theory based
on a fractional version of the Smoluchowski Eq. (1),
namely, [5,27,29]

2τσ −∞Dσ
t W = 1

sinθ

∂

∂θ

[
sinθ

(
∂W

∂θ
− 1

kT
WM

)]
,

(21)

has been fully explained in [5,27,29]. Here the general
solution of Eq. (21) is also of the form of the Fourier
series, Eq. (3). Now, just as for the normal diffusion,
we can obtain from Eq. (21) the fractional analogue
of the recurrence Eq. (5) for the response functions
fn(t) = 〈Pn(cosϑ)〉 (t) [31](

τσ
n −∞Dσ

t + 1
)
fn(t)

= ξ0 + ξ cosωt

2n + 1

[
fn−1(t) − fn+1(t)

]
, (22)

where τσ
n = 2τσ /n(n+1). Under linear response con-

ditions, ξ << 1, and ξ0 = 0, Eq. (22) yields the
linear susceptibility from Eq. (11). Moreover, just as
for the normal diffusion, Eq. (22) also allows one to
evaluate the nonlinear ac stationary responses (see for
details [31]). In particular, we have the generalization
of Eq. (10), viz.,

χ0 (ξ, ξ0, ω)

= χSH0

[
1 − 1

15
ξ20 − 1

60
Re

(
5

1 + (iωτD)σ

+ 1

1 + (iωτD)σ /3

)
ξ2 + · · ·

]
. (23)

Such a generalization is likely to be important as the
Cole–Cole relaxation behavior has proved useful in the
analysis of magnetic and dielectric relaxation data.

5 Conclusion

In this paper, we have emphasized the rectifying effect
of a strong bias field superimposed on a strong ac field
on the electric polarization (or magnetization) of an
assembly of noninteracting dipolar particles. Further-
more, we have suggested that experiments should be
designed so as to detect the frequency-dependent dc
nonlinear response introduced by the bias field. In this
context, the appearance of individual nonlinear funda-
mental and third harmonic frequency components in
Eq. (8) is also important because the latter frequency
components may on occasion be easier to detect than
the frequency-dependent dc one. Moreover, because
they constitute part of the relaxation process they will
also serve as experimental evidence of a frequency-
dependent dc response. We have demonstrated how
the anomalous nonlinear dielectric and magnetic relax-
ation can be treated by using fractional kinetic equa-
tions. The results obtained can explain the anomalous
nonlinear relaxation of complex dipolar systems,where
the relaxation process is characterized by a broad dis-
tribution of relaxation times. The advantage of having
kinetic equations incorporating the anomalous relax-
ation then becomes apparent as it is now possible to
study the effect of the nonlinear anomalous behavior
on fundamental parameters associated with the frac-
tional diffusion.We finally remark that the perturbation
method of the calculation of nonlinear ac responses is
quite general. For example, the method can also be
applied to the calculation of the dynamic Kerr effect
ac response of polar and anisotropically polarizable
molecules as well as to nonlinear dielectric and Kerr
effect relaxation of molecules under the influence of a
mean-field potential.
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