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Abstract In this paper, a new model with two state
impulses is proposed for pest management. According
to different thresholds, an integrated strategy of pest
management is considered, that is to say if the density
of the pest population reaches the lower threshold h1 at
which pests cause slight damage to the forest, biolog-
ical control (releasing natural enemy) will be taken to
control pests; while if the density of the pest population
reaches the higher threshold h2 at which pests cause
serious damage to the forest, both chemical control
(spraying pesticide) and biological control (releasing
natural enemy) will be taken at the same time. For the
model, firstly, we qualitatively analyse its singularity.
Then, we investigate the existence of periodic solution
by successor functions and Poincaré-Bendixson theo-
rem and the stability of periodic solution by the stability
theorem for periodic solutions of impulsive differen-
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tial equations. Lastly, we use numerical simulations to
illustrate our theoretical results.
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1 Introduction and model formulation

As complex ecosystems, forests play an important role
in the environment for human to survive. But disease-
causing organisms and insects have undesirable effects
on the health of a forest [12]. For example, the mountain
pine beetle, spruce budworm, gypsy moth and Dutch
elm disease have led to substantial losses in Canada
[10] and the Asian long-horned beetle and emerald ash
borer are doing colossal damage to trees and forests in
the United States [31]. On one hand, when the number
of pests is very little, does not reach a certain value,
as a natural part of the ecosystem, usually we do not
have to worry; on the other hand, when the population
and activity of pests become threatening so that they
can spoil the health of a forest even kill many trees,
we need to conduct interference artificially. Chemical
control and biological control are two principal meth-
ods in practice. Although chemical pest control is still
the main way of pest control in most of the place today,
the biological control relying on predation, parasitism,
herbivores or other biological mechanisms has received
the welcome of people [4].
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Usually, artificial interference may cause an abrupt
change in pests and natural enemies populations, which
very often results in difficulties in developing math-
ematical models to describe it. Fortunately, impul-
sive differential equation can accurately express this
change. Driven by the desire in applications, theoreti-
cal study on impulsive differential equations attracted
extra attention, please see [1–3,5–9,26,27] and the
references therein. Since then, numerous mathemati-
cal models governed by impulse differential equations
have been established in the area. Nevertheless, most
of these models are with one time impulse [15,16,18–
25,33–35,41,42] or two [32,39,40]. Recent research
findings suggest that in the practice, according to the
different density of the pest, a state feedback mea-
sure for controlling pest looks more businesslike and
biological models concentrated on state impulse seem
more reasonable. In this research direction, several
such models have been investigated [11,14,28,36,38],
where authors employed systems of impulsive differ-
ential equations with one state impulse. However, study
of biological system including two state impulses is not
many [28–30,43].

Motivated by the previous work, we propose a math-
ematical biological system including two state feed-
back control in this paper. For self-contained, we first
list some relevant work in the following. In references
[36] and [28] models

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = x(t)(a − by(t)),

ẏ(t) = y(t)(cx(t) − d),

}

x �= ET,

�x(t) = −px(t),

�y(t) = τ,

}

x = ET,

(1)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)(a − by(t)),

ẏ(t) = y(t)
(

λbx(t)
1+bhx(t) − d

)
,

}

x �= h1, h2,

�x(t) = 0,

�y(t) = τ,

}

x = h1,

�x(t) = −px(t),

�y(t) = −qy(t),

}

x = h2,

(2)

are investigated. The authors studied the integrated
pest management control strategies with the help of
the Lambert W function and Poincaré map. In [37],
Trzcinski and Reid investigated a mountain pine beetle

population dynamics governed by the Gompertz pop-
ulation model, where the Gompertz equation [13] is
given by

ẋ(t) = r x(t) ln
K

x(t)
, (3)

which describes the growth law of density dependence
where the rate of increase declines linearly with the
log e of population abundance.

Now we are in a position to give out our models as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = r x(t) ln K
x(t) − βx(t)y(t),

ẏ(t) = λβx(t)y(t) − dy(t),

}

x �= h1, h2, or x = h1, y > y∗,
�x(t) = 0,

�y(t) = α,

}

x = h1, y ≤ y∗,

�x(t) = −px(t),

�y(t) = −qy(t) + τ,

}

x = h2,

(4)

where �x(t) = x(t+)−x(t),�y(t) = y(t+)−y(t), r
is the Gompertz intrinsic growth rate of the prey in
the absence of the predator, K is usually referred to
the environment carrying capacity of saturation level,
β represents the predation rate of natural enemies, λ

represents the transformation rate at which ingested
prey in excess of what is needed for maintenance is
translated into predator population increase. d is the
death rate of natural enemy. h1 and h2 are the thresholds
with slight damage and serious damage to the forest,
respectively. y∗ is the intersection of the line x = h1

and r ln K
x(t) − βy(t) = 0; α, τ are release quantity

of natural enemy y(t). p represents the death rate of
pests and q is the death rate of natural enemies due to
pesticide. For biologically meaningful, we restrict our
study in the region of R2+ = {(x, y)|x ≥ 0, y ≥ 0}.

Notice the fact that when pests population x(t) is
low enough such that the natural enemies of the natural
world can control them, as a natural part of the ecosys-
tem, there is no necessary to take any action. Our model
reflects this fact and the pest control strategy mentioned
above, namely we may increase the quantity of natural
enemies by releasing natural enemies cultivated in the
lab to control the pest instead of spraying pesticide only
when the density of the pest population x(t) reaches
certain level, x = h1, say. The procedure goes like
this:
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Periodic solution of a pest management Gompertz model 923

• Release natural enemies again if the density of pests
remains at the same level after releasing the previous
batch of natural enemies. This step may be repeated
several times;

• Stop the release if the natural enemy population y(t)
increases and reaches level y∗.

Considering the cost of cultivating natural enemies
and the loss caused by pests, controlling the pest only
by natural enemies in natural law is not realistic. Thus,
our newly developed model should also reflect the strat-
egy that when the density of the pest population x(t)
reaches certain level x = h2 (usually a higher level).
Hence, we not only will release the natural enemies,
but also spray less pesticide to kill the pests.

The rest of the paper is organised as follows. In Sect.
2, we briefly introduce some concepts and fundamen-
tal results, which are necessary in the later discussion.
Section 3 focuses on the qualitative analysis of system
(4) without impulsive effect. In the Sect. 4, we investi-
gate the periodic solution of system (4) with impulsive
state feedback control. Then, we carry out numerical
simulations and discussions in Sect. 5, which show all
simulations agree with the theoretic results well. We
finally conclude our paper in Sect. 6.

2 Preliminaries

In this section, we briefly introduce some basic con-
cepts and fundamental theories from [3,6,17,43,44].
Consider a system of impulsive differential equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = P(x, y),

ẏ(t) = Q(x, y),

}

for (x, y) �∈ M{x, y},
�x = α(x, y),

�y = β(x, y),

}

for (x, y) ∈ M{x, y},
(5)

where M is known as impulsive set, which can be a
straight line or curve in R2. Let I : I (M) = N , be a
continuous mapping, I is called the impulse function
from set M to set N and N is called the image set. Then,
from [43,44], we have

Definition 2.1 For continuous function f (x, t), if
there exists a point P0 and a period T such that
f (P0, T )= Q0 ∈ M{x, y} and I (Q0)=I ( f (P0, T )) =
P0 ∈ N , then, we call f (P0, [0, T ]) a periodic solution
of system (5).

Definition 2.2 Function

s(x) = s(x+) − s(x)

is called a successor function of point x (Fig. 1).

Theorem 2.1 (Bendixson theorem for impulsive dif-
ferential equations [6]) Assume G is a Bendixson region
of system (5). Then, if G does not contain any critical
points of it, system (5) has a closed orbit in G.

Theorem 2.2 Assume that in continuous dynamic sys-
tem (X,�), there exist two points x1, x2 in the pulse
phase concentration such that the successor function
s(x1) > 0 and s(x2) < 0, then, there exists a point P
falling in between points x1 andx2 such that s(P) = 0,

then, the system has order one periodic solution.

Theorem 2.3 (Analogue of Poincaré Criterion [3,17])
The T -periodic solution x = φ(t), y = ϕ(t) of model

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = P(x, y),

ẏ(t) = Q(x, y),

}

,
(x, y) �= 0,

�x = α(x, y),

�y = β(x, y),

}

,
(x, y) = 0,

(6)

is orbitally asymptotically stable if |μ2| < 1, where μ2

is the multiplier and calculated by

μ2 =
q∏

k=1

�k exp

[∫ T

0

(
∂ P

∂x
(φ(t), ϕ(t))

+∂ Q

∂y
(φ(t), ϕ(t))

)

dt

]

O

+x

x

N M

Y

X

Fig. 1 Schematic diagram of the successor function of system
(5)
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with

�k

= P+(
∂β
∂y · ∂


∂x − ∂β
∂x · ∂


∂y + ∂

∂x ) + Q+( ∂α

∂x · ∂

∂y − ∂α

∂y · ∂

∂x + ∂


∂y )

P ∂

∂x + Q ∂


∂y

and P, Q, ∂α
∂x , ∂α

∂y ,
∂β
∂x ,

∂β
∂y , ∂


∂x , ∂

∂y are calculated at

the point (φ(tk), ϕ(tk)) and P+ = P(φ(t+k ), ϕ(t+k )),

Q+ = Q(φ(t+k ), ϕ(t+k )).

3 Qualitative analysis of system (4) without
impulsive effect

We firstly consider system (4) without impulsive effect
in this section. It implies that α, τ, p, q = 0. Then, we
have a system in the form of

{
x ′(t) = r x ln K

x − βxy,

y′(t) = λβxy − dy.
(7)

Solving equations

{
r x ln K

x − βxy = 0,

λβxy − dy = 0,
(8)

yields two equilibria: A(K , 0) and E(xı , yı ) of system
(7), where xı = d

λβ
, yı = r

β
ln λβK

d . Let (H1) : λβK >

d, then, we have the following theorem.

Theorem 3.1 System (7) has a positive equilibrium if
and only if (H1) holds.

Next, we consider the stability of the equilibria. It is
easy to see that system (7) has a Jacobian

J =
(

r ln K
x − r − βy −βx
λβy λβx − d

)

.

At A(K , 0), we have

J (A) =
(−r −βK

0 λβK − d

)

,

which implies that when (H1) holds, A(K , 0) is a sad-
dle point. And at E(xı , yı ), we have

J (E) =
( −r − d

λ

λr ln Kλβ
d 0

)

.

The characteristic equation of J (E) satisfies f (λ) =
λ2 + aλ + b = 0, where a = r, b = rd ln λβK

d . Obvi-

ously, � = a2 − 4b = r2 − 4rd ln λβK
d , then we have

the following conclusions:

(i) When d < λβK < de
r

4d , E(xı , yı ) is a stable
node;

(ii) When λβK = de
r

4d , E(xı , yı ) is a stable critical
node; and

(iii) when λβK > de
r

4d , E(xı , yı ) is a stable focus.

Make an assumption (H2) : λβK > de
r

4d . Then,
we have

Theorem 3.2 If condition (H2) holds true, the equi-
librium E of system (7) is a stable focus.

For system (7), we can prove the following.

Theorem 3.3 The solution of system (7) is bounded.

Proof Let initial conditions of system (7) be

{
x(t0) = x0 > 0,

y(t0) = y0 > 0,
(9)

and (x(t), y(t)) be a solution of system (7) satisfied
(9). Since point A(K , 0) is a saddle point, for line �1 :
x − K = 0 passing through A, we have

d�1

dt
|�1=0 = r x(t) ln

K

x(t)
− βx(t)y(t)|�1=0

= −βK y < 0.

Thus, the line �1 is a segment without contact and orbit
of system (7) goes across it from the right. On the other
hand, define in the first quadrant:

�2 : y + λx − M = 0, �3 : y − M + d

β
= 0.

Then, we have

d�2

dt
|�2=0 = y(λβx − d) + λx

(

r ln
K

x
− βy

)

|�2=0

= λx

(

r ln
K

x
+ d

)

− Md,

d�3

dt
|�3=0 = y(λβx − d).

Thus, we have d�2
dt < 0 for d

λβ
< x < K and d�3

dt < 0

for 0 < x < d
λβ

, here M is large enough. So there
exists an area 
 with a boundary being composed of
x = 0, y = 0, �1�2 and �3 such that (x(t), y(t)) ∈ 


for initial point (x(t0), y(t0)) and t > T, where T > 0
is large. This completes the proof. �	
Theorem 3.4 If the condition (H2) is true, the positive
equilibrium E of system (7) is globally asymptotically
stable.
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Periodic solution of a pest management Gompertz model 925

Fig. 2 Phase diagram of system (4) with r = 1.2, K = 2, β =
0.5, λ = 1.6, d = 0.4.

Proof Let Dulac function B = 1
xy , then, we have

D = ∂(P B)

∂x
+ ∂(Q B)

∂y
= − r

xy
< 0.

According to the Bendixson-Dulac theorem, we con-
firm that there is no closed orbit around E . Further-
more, by theorems 3.2 and 3.3, we have that the solu-
tion of system (7) is bounded and the positive equi-
librium point E of system (7) is locally stable. Thus,
the positive equilibrium E of system (7) is globally
asymptotically stable if the condition (H2) is true (Fig.
2). �	

Figure 7 shows that the positive equilibrium E of
system (7) is a stable focus.

4 The order one periodic solutions of system (4)
with impulsive state feedback control

4.1 The existence of order one periodic solutions of
the system (4)

In this subsection, using the successor function, we
study the existence of periodic solution of system
(4). First setting ẋ = 0, ẏ = 0 yields: (1) the x-
isolines, curve L ′ : y = r

β
ln K

x and y-axis and (2)

the y-isolines, curve L : x = d
λβ

and x-axis. Then,

K

L'

Q

R

P

d
h2(1-p)h2h1

y*

EM1

N1 N2 M2 LY

X
O

Fig. 3 The structure diagram of system (4)

by Theorem 3.4, we know that E(xı , yı ) is a sta-
ble focus if (H2) holds. For notation simplicity, we
denote the first impulsive set by M1 = {(x, y)|x =
h1, 0 ≤ y ≤ y∗}, the second by M2 = {(x, y)|x =
h2, y ≥ 0} and the image sets corresponding to them
by N1 = {(x, y)|x = h1, α ≤ y ≤ y∗ + α} and
N2 = {(x, y)|x = (1 − p)h2, y ≥ τ }, respectively.
In order to have physical meaningful, we restrict our
study to the region lying in the left side of E, that is
h1 < (1 − p)h2 < h2 < d

λβ
. Next, we investigate the

trajectory of system (4), which passes the initial point
C0(xc0 , yc0) (Fig. 3).

4.1.1 The path curve beginning from C0, a point
above P on N1

Without loss of generality, we assume that C0 satisfies
y∗ < yC0 ≤ y∗ + α. In fact, if the path curve start-
ing from C0 intersects with M1 at point C1(xc1 , yc1),

and then produces pulse to point C+
1 on M1 such that

yC+
1

< y∗, then from (4), we have yC+
1

= yC1 + α.

Then after finite number of times impulse, point C+
1

satisfies y∗ < yC+
1

≤ y∗ + α. Thus, in what fol-
lows, we only consider the case of C0 such that y∗ <

yC0 ≤ y∗ + α. Then, we have three sub cases to be
discussed.

Case I: the impulsive point C+
1 overlaps with the

initial point C0. Then, the curve C0C1C+
1 constitutes
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926 T. Zhang et al.

d K

+C1

L'
C1

C0

Q

R

P

h2(1-p)h2h1

y*

E

M1

N1 N2 M2 LY

X
O

Fig. 4 The path curve beginning from C0, a point above P on
N1 (Case I in Sect. 4.1.1)

a periodic path curve of system (4), please see Fig.
4.

Case II: the impulsive point C+
1 is below C0 on

N1. Then, we obtain s(C0) < 0. Now, we choose
a point D0 next to P on N1 (that is |D0 P| < ε).
The path curve of system (4) beginning from point
D0 intersects with M1 at point D1, and then an
impulse happens, D1 jumps to point D+

1 on the line
N1. Because D0 is near to P, D1 is near to P, and
yD+

1
= yD1 + α, we have s(D0) > 0. By Theorem

2.2, there exists an order one period solution (see Fig.
5).

Case III: the impulsive point C+
1 is above C0 on

N1. In this case, we have s(C0) > 0. Because the path
curve does not produce pulse at A(h1, y∗ + α), we
know s(A) < 0. Then, the Poincaré-Bendixson theo-
rem implies the existence of a periodic path curve of
system (4) (see Fig. 6).

4.1.2 The path curve beginning from the point Q

Now consider a path curve starting from a point Q on
N2.Then, it intersects with M2 at point C1 and produces
pulse to point C+

1 on N2. According to system (4), the
following is obtained

{
xC+

1
= (1 − p)h2,

yC+
1

= (1 − q)yC1 + τ.

d K

D1
+

D1

D0

+
C1

L'
C1

C0

Q

R

P

h2(1-p)h2h1

y*

E

M1

N1 N2 M2 LY

X
O

Fig. 5 The path curve beginning from the point C0 (Case II in
Sect. 4.1.1)

d K

A1

A1

A

+

+C1

L'

C1

C0

Q

R

P

h2(1-p)h2h1

y*

E

M1

N1 N2 M2 LY

X
O

Fig. 6 The path curve beginning from the point C0 (Case III in
Sect. 4.1.1)

For different τ, three cases should be discussed.
Case I: the impulsive point C+

1 is exactly Q. Here
the curve QC1C+

1 constitutes a periodic path curve of
system (4) (see Fig. 7).

Case II: the impulsive point C+
1 is above Q on N2.

It implies that s(Q) = yC+
1

− yQ > 0. Now we choose

D0, a point above C+
1 on N2. The path curve start-

ing from D0 is vertical only when it intersects with N1
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d K

L'

P

R

E

O
X

Y

C1

C1
+

Q

h2(1-p)h2h1

N1 N2 LM2

M1

Fig. 7 The path curve beginning from the point Q (Case I in
Sect. 4.1.2)

d K

L'

R

E

h1 (1-p)h2 h2

M1

M2

Q

P

LN2N1

E2

D2

D1

E2

D2

E1

+

E0

+

+C1

D0

C1

Y

X
O

Fig. 8 The path curve beginning from the point Q (Case II in
Sect. 4.1.2)

at P. Then it crosses N2 from left to right, and then
intersects with M2 at point D2 and pulses to point D+

2
of the line N2. By the existence and uniqueness theo-
rem for impulsive differential equations, D2 is below
C1 of M2, and D+

2 must below C+
1 on N2. Therefore,

we have s(D0) = yD+
2

− yD0 < 0. By Theorem 2.2,
there exists order one periodic solution of system (4)
in region D0 P D1 D2C1C+

1 D0 (see Fig. 8).

d K

L'

D1
+

B

+

C1

D1

C1

D0

P

Q

R

E

N1 N2 L

M1

M2

O
X

h2(1-p)h2h1

Fig. 9 The path curve beginning from the point Q (Case III in
Sect. 4.1.2)

Case III: In this case, the impulsive point C+
1 is

below Q on N2. Then we have s(Q) = yC+
1

− yQ <

0. Pick a point D0 next to B((1 − p)h2, 0) on N2

(|D0 B| << ε.). Starting from D0, the path curve inter-
sects with M2 at point D1, and then produces pulse to
point D+

1 on N2. From system (4), we have

{
xD+

1
= (1 − p)h2,

yD+
1

= (1 − q)yD1 + τ.

Thus, D+
1 has to be above D0, and the successor func-

tion of D0 satisfies s(D0) = yD+
1

− yD0 > 0. As a
result, the region κ surrounded by the closed curve
D0 D1C1C+

1 involves a periodic solution of system (4)
(see Fig. 9).

4.1.3 Initial point C0 of path curve on N1 falling in
between the second impulsive set M2 and its
image set N2.

In this section, we assume the path curve intersects
with line M2 at C1, and then jumps onto point C+

1 on
N2. According to values of τ , we have the following
cases.

Case I: Point C+
1 is point Q, and the path curve from

point C+
1 moves to point C2 on M2. For point C2, we

have three cases.
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928 T. Zhang et al.

d K

L'

C0

C2
C1

+
C1

Q

R

P

h2(1-p)h2h1

y*

E

M1

N1 N2 M2 LY

X
O

Fig. 10 The path curve beginning from the point C0 (Case I(a)
in Sect. 4.1.3)

d K

L'

h1 (1-p)h2 h2

P

Q

R

E

M1

M2 LN2N1

+
D1

C0

D0 D1

D2

C2

+
C1

C1

Y

X
O

Fig. 11 The path curve beginning from the point C0 (Case I(b)
in Sect. 4.1.3)

Case I(a): Point C2 is exactly point C1. In this case,
obviously the curve C1C+

1 C2 forms a periodic path
curve of system (4) (see Fig.10).

Case I(b): Point C2 is below point C1. Then, it is
easy to see the successor function of C1 that is negative,
namely s(C1) = yC2 − yC1 < 0. Next, in the region
between N2 and M2, we pick a point D0 next to x-
axis. Then, the path curve passing D0 hits a point D1

d K

M2

L'

h2(1-p)h2h1

P

Q

R
E

M1

N1 N2 L

C2

C0

+
C1

C1

Y

X
O

Fig. 12 The path curve beginning from the point C0 (Case II in
Sect. 4.1.3)

on M2, and then jumps onto N2 at a point D+
1 , from

which jumps to a point D2 on M2. It is easy to verify that
D2 is above D1, which implies the successor function,
s(D1) = yD2 − yD1 > 0. Then, there is a point C
between C1 and D1 such that s(C) = 0, which implies
the existence of a periodic path curve in the region
enclosed by curve C1C+

1 D+
1 D2 (see Fig. 11).

Case I(c): Point C2 is above C1. In this case, the peri-
odic path curve does not exist. Otherwise the curves
C+

1 C2 and C0C1 intersect each other, which con-
flict with the existence and uniqueness of solutions of
impulsive differential equations.

Case II: The point C+
1 is below Q. In this case, using

the similar argument as above yields the same conclu-
sion (see Figs. 12 and 13).

Case III: Point C+
1 on N2 is above Q. Then, we have

two cases to be investigated.
Case III(a): the path curve starting from C+

1 crosses
N1. Then, it becomes vertical only for going through
the line L ′. Using C2 to denote the intersection of the
path curve and N1, then same conclusion can be made
as what we did in Sect. 4.1.1 (see Fig. 14).

Case III(b): the path curve starting from C+
1 does

not touch N1. Then, the path curve becomes vertical
only when it crosses P Q. And then it goes back to M2,

and if we denote the intersection by C2, then C2 is one
of the three points: point C1, a point below C1, or a
point above C1.
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d K

L'

h1 (1-p)h2 h2

P

Q

R

E

M1

M2 LN2N1

+
D1

C0

D0 D1

D2

C2

+
C1

C1

Y

X
O

Fig. 13 The path curve beginning from the point C0 (Case II in
Sect. 4.1.3)

d K

L'

y*

N1 N2 L

M1

M2

P

Q

R

E

h1 (1-p)h2 h2

Cn
+

C2
+

C2 C1
+

C1

C0

Y

X
O

Fig. 14 The path curve beginning from the point Q (Case III(a)
in Sect. 4.1.3)

If point C2 is C1, then the curve C1C+
1 C2 forms a

periodic path curve (see Fig. 15).
If C2 is below C1, the successor function s(C1) =

yC2 − yC1 < 0. Then, we can select a point D0 between
N2 and M2 near to x-axis such that the path curve
beginning from D0 hits the point D1 on M2, and then
jumps onto the point D+

1 on N2, and then returns to the
point D2 on M2, and the successor function of D1 is

d K

L'

N1 N2 L

M1

M2

P

Q

R

E

h1 (1-p)h2 h2

C2

C0

+C1

C1

Y

X
O

Fig. 15 The path curve beginning from the point C0 (Case III(b)
in Sect. 4.1.3)

d K

D1
+

C2

C1
D2

D1

D0 L'

N1 N2 L

M1

M2

P

Q

R
E

h1 (1-p)h2 h2

C0

+C1

Y

X
O

Fig. 16 The path curve beginning from the point C0 (Case III(b)
in Sect. 4.1.3)

s(D1) = yD2 − yD1 > 0. It implies that there exists
a periodic path curve in the region enclosed by curves
D1C1C+

1 C2 and C+
1 D+

1 D2C2 (see Fig. 16).
If C2 is above C1, the periodic path curve does not

exist as the Case I(c) in Sect. 4.1.3.
Now, we have proved the existence of the periodic

solution, next we study the stability of it.
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4.2 The stability of order one periodic solutions of the
system (4)

4.2.1 The stability of order one periodic solutions on
impulsive set M1

Theorem 4.1 Let (φ(t), ϕ(t)) be a periodic solution
of system (4) with φ0 = φ(0) = h1, ϕ0 = ϕ(0), φ1 =
φ(T ), ϕ1 = ϕ(T ), φ+

1 = φ(T +), ϕ+
1 = ϕ(T +). Then,

the periodic solution is stable when ϕ0 < r
β

ln K
h1

.

Proof Let (φ(t), ϕ(t)) be a periodic solution of sys-
tem (4) with φ0 = φ(0) = h1, ϕ0 = ϕ(0), φ1 =
φ(T ), ϕ1 = ϕ(T ), φ+

1 = φ(T +), ϕ+
1 = ϕ(T +). By

system (4), we have φ1 = φ(T ) = h1, ϕ1 = ϕ(T ) =
ϕ0 − α, φ+

1 = φ(T +) = h1, ϕ
+
1 = ϕ(T +) = ϕ0.

According to Theorem 2.3, let

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P(x, y) = x(r ln K
x − βy),

Q(x, y) = y(λβx − d),

α(x, y) = 0,

β(x, y) = α,


(x, y) = x − h1,

(10)

and notice that

∂α

∂x
= ∂α

∂y
= 0,

∂β

∂x
= ∂β

∂y
= 0,

∂


∂x
= 1,

∂


∂y
= 0,

(11)

we have

T∫

0

∂ P

∂x
dt =

T∫

0

(

r ln
K

x
− βy − r

)

dt,

=
T∫

0

(

r ln
K

x
− βy

)

dt − rT,

= ln

(
φ1

φ0

)

− rT,

= ln
ϕ0 − α

ϕ0
− rT,

T∫

0

∂ Q

∂y
dt =

T∫

0

(λβx − d) dt,

= ln

(
ϕ1

ϕ0

)

.

Using Theorem 2.3 again and some algebraic manipu-
lations, we reach the following

�1 =
P+·

(
∂β
∂y · ∂


∂x − ∂β
∂x · ∂


∂y + ∂

∂x

)
+Q+·

(
∂α
∂x · ∂


∂y − ∂α
∂y · ∂


∂x + ∂

∂y

)

P ∂

∂x +Q ∂


∂y

= P(φ(T +), ϕ(T +))

P(φ(T ), ϕ(T ))

= P(h1, ϕ0)

P(h1, ϕ0 − α)

= r ln K
h1

− βϕ0

r ln K
h1

− β(ϕ0 − α)

and

μ2 = �1 exp

⎧
⎨

⎩

T∫

0

∂ P

∂x
+ ∂ Q

∂y
dt

⎫
⎬

⎭

= r ln K
h1

− βϕ0

r ln K
h1

− β(ϕ0 − α)
exp

{

ln

(
φ1

φ0

)

+ ln

(
ϕ1

ϕ0

)

− rT

}

= r ln K
h1

− βϕ0

r ln K
h1

− β(ϕ0 − α)

ϕ0 − α

ϕ0
e−rT .

Obviously, if ϕ0 < r
β

ln K
h1

, we have r ln K
h1

−βϕ0 > 0,

we have |μ2| < 1, which implies that the periodic
solution is stable. �	

4.2.2 The stability of order one periodic solutions
with initial point C0 on N2

Again, let �(C0, t) be the closed path curve begin-
ning from C0((1 − p)h2, ϕ0). Then, by property of
system (4), the path curve intersects with M2 with
the intersection to be denoted by C1(φ(T ), ϕ(T )),

which jumps to C+
1 (φ(T +), ϕ(T +). That is to say

that �(C0, T ) = C1, C+
1 = I (C1) = C0, where

φ(T +) = (1 − p)φ(T ), ϕ(T +) = (1 − q)ϕ(T ) + τ

and φ(T ) = h2, ϕ(T ) = ϕ0−τ
1−q . Let

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P(x, y) = x(r ln K
x − βy),

Q(x, y) = y(λβx − d),

α(x, y) = −px,

β(x, y) = −qx + τ,


(x, y) = x − h2.
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Calculating partial derivatives, one gets

⎧
⎪⎪⎨

⎪⎪⎩

∂α
∂x = −p, ∂α

∂y = 0,
∂β
∂x = 0,

∂β
∂y = −q,

∂

∂x = 1, ∂


∂y = 0.

It implies

�1 =
P+

(
∂β
∂y

∂

∂x − ∂β

∂x
∂

∂y + ∂


∂x

)
+ Q+

(
∂α
∂x

∂

∂y − ∂α

∂y
∂

∂x + ∂


∂y

)

P
(

∂

∂x

) + Q
(

∂

∂y

)

= P(φ(T +), ϕ(T +))(1 − q)

P(φ(T ), ϕ(T ))

= P(φ0, ϕ0)(1 − q)

P(φ(T ), ϕ(T ))

=
(1 − p)h2

(
r ln K

(1−p)h2
− βϕ0

)
(1 − q)

h2(r ln K
h2

− β
ϕ0−τ
1−q )

=
(1 − p)(1 − q)

(
r ln K

(1−p)h2
− βϕ0

)

r ln K
h2

− β
ϕ0−τ
1−q

.

Thus,

μ2 = �1 exp

⎧
⎨

⎩

T∫

0

∂ P

∂x
+ ∂ Q

∂y
dt

⎫
⎬

⎭

=
(1 − p)(1 − q)

(
r ln K

(1−p)h2
− βϕ0

)

r ln K
h2

− β
ϕ0−τ
1−q

× exp

{

ln(
φ1

φ0
) + ln(

ϕ1

ϕ0
) − rT

}

=
(1 − p)(1 − q)

(
r ln K

(1−p)h2
− βϕ0

)

r ln K
h2

− β
ϕ0−τ
1−q

×
φ0

1−p

φ0

ϕ0−τ
1−q

ϕ0
e−rT

= r ln K
(1−p)h2

− βϕ0

r ln K
h2

− β
ϕ0−τ
1−q

ϕ0 − τ

ϕ0
e−rT .

Therefore, if | r ln K
(1−p)h2

−βϕ0

r ln K
h2

−β
ϕ0−τ

1−q

ϕ0−τ
ϕ0

| < 1, we have

|μ2| < 1. Then, we can summarise our analysis in
the following.

Theorem 4.2 If | r ln K
(1−p)h2

−βϕ0

r ln K
h2

−β
ϕ0−τ

1−q

ϕ0−τ
ϕ0

| < 1, the peri-

odic solution of system (4) is stable.

5 An example and numerical simulations

In this section, we will give an example to verify
the previous theoretical results. Let r = 1.2, K =
2, β = 0.5, λ = 1.6, d = 0.4, p = 0.5, q =
0.2, α = 0.5, τ = 0.2, h1 = 0.2, h2 = 0.45. By
calculation, we obtain y∗ = 5.5262, then we get
P(0.2, 5.5262), Q(0.225, 5.2435) and E(xı , yı ) =
(0.5, 3.3271). Then system (4) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′(t) = 1.2x(t) ln 2
x(t) − 0.5x(t)y(t),

y′(t) = 0.8x(t)y(t) − 0.4y(t),

}

x �= 0.2, 0.45, or x = 0.2, y > 5.5262,

�x(t) = 0,

�y(t) = 0.5,

}

x = 0.2, y ≤ 5.5262,

�x(t) = −0.5x(t),

�y(t) = −0.2y(t) + 0.2,

}

x = 0.45.

(12)

Numerical analysis of system (12) is being done using
Maple 14.0. We have the following cases.

5.1 The path curve beginning from C0, a point above
P on N1 (corresponding to Sect. 4.1.1)

In this section, we set C0 = (0.2, 6) to guarantee that
it is above P(0.2, 5.5262).

Case I: The impulsive point C+
1 corresponding to C1

is exactly C0, thus the curve C0C1C+
1 shall constitute

a periodic path curve (Fig. 17).
Case II: The impulsive point C+

1 corresponding to
C1 is below C0 (Fig. 18).

Case III: The impulsive point C+
1 corresponding to

C1 is above C0 (Fig. 19).

5.2 The path curve beginning from point Q
(corresponding to Sect. 4.1.2)

In this case, we let C0 be Q(0.225, 5.2435).

Case I: The impulsive point C+
1 corresponding to C1

is exactly Q (Fig. 20).
Case II: The impulsive point C+

1 corresponding to
C1 is above Q on N2 (Fig. 21).

Case III: The impulsive point C+
1 corresponding to

C1 is below Q on N2 (Fig. 22).
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(a) (b) (c)

Fig. 17 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

(a) (b) (c)

Fig. 18 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

(a) (b) (c)

Fig. 19 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)
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(a) (b) (c)

Fig. 20 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

(a) (b) (c)

Fig. 21 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

(a) (b) (c)

Fig. 22 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)
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(a) (b) (c)

Fig. 23 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

(a) (b) (c)

Fig. 24 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

(a) (b) (c)

Fig. 25 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)
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(a) (b) (c)

Fig. 26 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

(a) (b) (c)

Fig. 27 The results of numerical simulation of system (12). (a) Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

(a) (b) (c)

Fig. 28 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)
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(a) (b) (c)

Fig. 29 The results of numerical simulation of system (12). a Phase diagram of system (12). b Time series of system (12). c Time
series of system (12)

5.3 The path curve with initial point C0, which is
between the second impulsive set M2 and its
image set N2 (corresponding to Sect. 4.1.3)

In this section, we choose C0 = Q(0.225, 0.9796).
Case I: If C+

1 on N2 is exactly Q, the path curve
from point C+

1 moves to the point C2 on M2.

Case I(a): C2 is exactly C1 (Fig. 23).
Case I(b): The impulsive point C+

1 corresponding to
C1 is below Q on N2 (Fig. 24).

Case I(c): The impulsive point C+
1 corresponding to

C1 is above Q on N2.

Case II: If C+
1 on N2 is below Q (Figs. 25 and 26).

Case III: If C+
1 on N2 is above Q.

Case III(a): The path curve beginning from C+
1

crosses N1 from the right to the left (Fig. 27).
Case III(b): The path curve beginning from C+

1
moves on automatically to C2 on M2, which is exactly
C1 (28) or below C1 (see Fig. 29).

All the numerical simulation above show agreement
with our theoretical results.

6 Conclusion

In this paper, we formulated a mathematical model
for pest management purpose, which is with impul-
sive state feedback control. By feedback information
of pests’ density from the monitor, we can control the
pests with artificial disturbance. Firstly, we qualita-
tively investigated the dynamic behaviour of the system
without impulsive effect, and obtained the sufficient

condition for globally asymptotically stable of the pos-
itive equilibrium. And then the system with impulsive
state feedback control was studied by geometric theory
of impulsive differential equations. The existence and
stability of order one periodic solution were proved. All
the results suggested that the pest management model
finally showed periodicity or steady state under impul-
sive state feedback control. We found that the density of
the pest plays an important role in the periodic or stable
state of system. When the density of the pest reaches
an appropriate critical value, the state feedback mea-
sure including spraying pesticide and releasing natural
enemy to control density of the pest would be taken.
Theoretical derivation and numerical simulations show
that the artificial intervention measures are effective.
The reasonable selective feedback value can not only
make the pest density in a controlled range but reduce
the usage amount of pesticides for the ecological bal-
ance.
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