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Abstract In this paper, a distributed protocol based
on only relative position information is proposed for
consensus of second-order multi-agent systems with
inherent nonlinear dynamics and communication time
delay. Compared with previous works, the distin-
guished feature of the paper lies in the directed inter-
action topology that is switching according to average
dwell time (ADT) switching signals. Under the pro-
posed protocol, we not only present sufficient condi-
tions for ensuring consensus, but also explicitly give
the lower bound of ADT for admissible switching sig-
nals. Numerical examples are provided to illustrate the
performance of the proposed consensus algorithm.
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1 Introduction

Enormous attention from the research community has
been paid to the consensus problem of multi-agent
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systems, partly due to its applications in the forma-
tion control of unmanned air vehicles, the coopera-
tive control of mobile robots, the design of distrib-
uted sensor networks, and so on (see [1–3] and ref-
erences therein). Although first-order consensus pro-
tocols have been intensively studied [4–8], they are
unapplicable to consensus of second-order multi-agent
systems (i.e., agents are governed by both position and
velocity states) which can characterize a broad class
of real vehicles. It has been demonstrated that second-
order consensus may not be reached even if the commu-
nication topology contains a spanning tree [9], which is
somewhat different from first-order consensus. There-
fore, the consensus problem for second-order multi-
agent systems is more challenging than the first-order
case [10–15].

It should be pointed out that most previous results
focus on multi-agent systems with fixed communi-
cation topologies. However, for practical engineer-
ing and social multi-agent systems, their interac-
tion topologies are often unreliable due to the lim-
ited sensing region of sensors or effect of obstacles.
Upto now, much progress has been achieved in solv-
ing consensus problems under switching topologies
[16–21]. For example, the pioneering work of Jad-
babaie et al. [16] proved that “jointly connectivity”
over a time interval is sufficient for consensus of first-
order multi-agent systems with undirected topology.
Then, Ren and Beard [17] generalized the results in
[16] to the directed information topology. Generally
speaking, these initial attempts were obtained without
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noticing that the communication topologies of multi-
agent systems cannot shift arbitrarily fast in reality.
Naturally, researchers began to impose some con-
straints on the time interval between consecutive
switchings (i.e., the so-called dwell time (DT)). Along
this line, Zareh et al. [22] solved the second-order
multi-agent systems with slow switching topology by
proposing a PD-like protocol. Minimum bounds of the
DT were calculated to ensure stability of hybrid sys-
tems in [23].

Another challenge in multi-agent consensus is the
inherent nonlinear dynamics of agents and ubiquitous
communication time delay between interacting agents
[24]. Until now, many techniques have been employed
to analyze nonlinear multi-agent systems, including
dissipativity theory [25], non-smooth analysis [26], and
Lyapunov functions [27,28]. In [29], Wang and Slo-
tine derived delay-independent sufficient conditions for
group agreement with time-delayed communications.
On the other hand, delay-dependent conditions for con-
sensus of a class of second-order multi-agent systems
were derived in [30]. Despite the overall progress, some
issues in this area still await further research, such as
multi-agent consensus with more constraints includ-
ing inherent nonlinear dynamics, restricted interaction
topology (e.g., average dwell time (ADT) switching
topology [31]) and communication time delay simul-
taneously.

With the above motivation, this paper deals with the
consensus problem of second-order multi-agent sys-
tems with nonlinear dynamics, communication time
delay, and restricted switching topology. By introduc-
ing a state transformation, the consensus problem is
converted to a stability problem of the corresponding
disagreement systems. Then, by constructing piece-
wise Lyapunov–Krasovskii functionals, it is proved
that second-order consensus can be achieved if each
switching topology contains a directed spanning tree
and the system parameters satisfy the derived linear
matrix inequalities (LMIs).

The remainder of the paper is organized as follows.
Some necessary preliminaries and consensus prob-
lem formulations are given in Sect. 2. In Sect. 3, we
present the sufficient conditions for ensuring consen-
sus in terms of LMIs. A numerical example is simu-
lated to verify the theoretical results in Sect. 4. Sec-
tion 5 draws the conclusion and puts forward some
future topics.

Some mathematical notations are used throughout
the paper. Let In and On be the n × n identity matrix
and zero matrix, respectively; 1n = [1, . . . , 1]T ∈ Rn ,
and 0n = [0, . . . , 0]T ∈ Rn . diag{x1, . . . , xm} denotes
the diagonal matrix with diagonal entries x1 to xm . We
say X > 0 (X < 0) if the matrix X is positive (neg-
ative) definite. λ̄(·) and λ(·) denote, respectively, the
maximum and minimum eigenvalue of a positive defi-
nite matrix.

2 Preliminaries and problem setup

We first recall some concepts from the graph theory.
A directed graph (or digraph) G = (V, E,A) of order
n consists of a set of nodes V = {1, . . . , n}, a set of
edges E ⊆ V × V , and a weighted adjacency matrix
A = [ai j ] ∈ R

n×n . A directed edge in E is denoted
by ei j = (i, j) ∈ E , which means that node i has
access to the information of node j . The element ai j

in A is decided by the edge between i and j , i.e.,
ei j ∈ E ⇔ ai j > 0, otherwise ai j = 0. The set
of neighbors of node i is denoted by Ni = { j ∈
V|(i, j) ∈ E}. The Laplacian matrix L of graph G is
defined by L = D − A, where D = diag{d1, . . . , dn}
and di = ∑

j∈Ni
ai j is the in-degree of node i . A

sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik) is
called a directed path from node ik to node i1. If there
exists at least one node (called the root) having directed
paths to any other nodes, the digraph is said to have a
spanning tree.

We consider a multi-agent system with n agents, in
which the i th agent moves according to the following
second-order dynamics:

⎧
⎨

⎩

ẋi = vi

v̇i = f (xi , vi , t)+ ui ,
(1)

where xi , vi , ui ∈ R are position state, velocity state,
and control input of agent i , respectively, and f (xi , vi , t)
is the inherent nonlinear dynamics of agent i .

For the multi-agent system (1), a protocol with com-
munication time delay is proposed as

ui (t) = −k0vi (t)+ k1

∑

j∈Ni (t)

ai j (t)[x j (t − τ)

−xi (t − τ)], i = 1, 2, . . . , n. (2)
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With protocol (2), the multi-agent system (1) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = vi

v̇i = f (xi , vi , t)− k0vi

+ k1

∑

j∈Ni (t)

ai j (t)[x j (t − τ)− xi (t − τ)].
(3)

To facilitate our derivation, we rewrite the multi-
agent system (3) in a compact form as

η̇(t) =
[

On In

On −k0 In

]

η(t)

+
[

On On

−k1L(t) On

]

η(t − τ)+
[

0n

f (x, v, t)

] (4)

with η = [xT , vT ]T , x = [x1, x2, . . . , xn]T , v =
[v1, v2, . . . , vn]T , f (x, v, t) = [ f (x1, v1, t),
f (x2, v2, t), . . . , f (xn, vn, t)]T .

Remark 1 The consensus protocol (2) is only based
on the local velocity information and the neighboring
position information. Without requiring the neighbor-
ing velocity information, the proposed protocol (2) is
more practical. Another virtue of the protocol (2) is its
simplicity even with the presence of communication
delay and nonlinear dynamics, thus it is viable even for
agents with simple computational ability.

When the connection of the nodes in the digraph
changes with time, the topology of the system is said
to be switching. To describe the variable topologies,
let Ḡ = {G1,G2, . . . ,GM } denote the finite set of
all possible topologies and M = {1, 2, . . . ,M} as
the index set. Here, we consider the switching sig-
nals as time dependent, therefore, the topology Gσ(t)
of the multi-agent system at time t is activated, where
the map σ(t) : [0,+∞) → M is a right continu-
ous piecewise constant function (called switching sig-
nal).

The following assumption and lemma are needed in
the following section.

Assumption 1 The nonlinear term f (x, v, t) satisfies
the Lipschitz condition with the Lipschitz constant ρ,
i.e.,

| f (x2, v2, t)− f (x1, v1, t)|
≤ ρ1/2

√
(x2 − x1)2 + (v2 − v1)2,∀xi , vi ∈ R,

i = 1, 2, ∀t ≥ 0.

Definition 1 [31] For any switching signal σ(t) and
t2 > t1 ≥ t0 , let Nσ (t2, t1) denote the switching num-
ber of σ(t) over the interval [t1, t2). For given τa > 0
and an integer N0 ≥ 0, if

Nσ (t2, t1) < N0 + t2 − t1
τa

holds, then τa is called an ADT.

Remark 2 The ADT will be used to describe the
switching signals. When N0 
= 0, the switching sig-
nals with ADT property are allowed to switch fast and
then compensated it by slow switching consequently.

Definition 2 The consensus of system (1) is said to be
achieved, if for all agents using the protocol (2) such
that the closed-loop system satisfies

lim
t→∞ |xi (t)− x j (t)| = 0, lim

t→∞ |vi (t)

−v j (t)| = 0,∀i, j = 1, 2, . . . , n.

Lemma 1 [32] For any two real vectors x, y ∈ Rn

and positive definite matrix � ∈ Rn×n, we have

2xT y ≤ xT�x + yT�−1 y.

3 Consensus under restricted switching topology

Here, we introduce a state transformation for both posi-
tion and velocity states

{
ψ � [ψ1, ψ2, . . . , ψn−1]T = Ex

ζ � [ζ1, ζ2, . . . , ζn−1]T = Ev
(5)

where E = [−1n−1, In−1] ∈ R(n−1)×n is the
transformation matrix. Denote ξ = [ψT , ζ T ]T and
f̄ (x, v, t)=[ f (x2, v2, t)− f (x1, v1, t), . . . , f (xn, vn,

t) − f (x1, v1, t)]T . The corresponding disagreement
system of multi-agent system (4) can be expressed in
the following reduced-order compact form

ξ̇ (t) = �0ξ(t)+�dξ(t − τ)+
[

0n−1

f̄ (x, v, t)

]

(6)

where �0 =
[

On−1 In−1
On−1 −k0 In−1

]

,

�d =
[

On−1 On−1
−k1 E L(t)F On−1

]

, F = [0n−1, In−1]T ∈
Rn×(n−1).
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Then by Newton–Leibniz formula, the disagreement
system (6) can be rewritten as

ξ̇ (t) = �0ξ(t)−�d

0∫

−τ
ξ(t +θ)dθ+

[
0n−1

f̄ (x, v, t)

]

(7)

where �0 =
[

On−1 In−1
−k1 E L(t)F −k0 In−1

]

,

�d =
[

On−1 On−1
On−1 −k1 E L(t)F

]

.

According to Definition 2, consensus of the multi-
agent system (4) is achieved if and only if the disagree-
ment system (7) is asymptotically stable.

Theorem 1 Suppose that each digraph Gi (i ∈ M)

contains a spanning tree. For given constant α > 0,
the consensus problem of the multi-agent system (1) is
solved by the protocol (2) under ADT switching topol-
ogy if there exist matrices Qi > 0, Ri > 0 such that
the following LMIs hold

⎡

⎣
ϒ11

i 0 −τ Pi�d

∗ −e−ατ Qi 0
∗ ∗ −τe−ατ Ri

⎤

⎦ < 0, i ∈ M (8)

with ϒ11
i = �T

0 Pi + Pi�0 + αPi + I2 ⊗ (P̄i +
2ρλ̄(P̄i )In−1)+ Qi + τ Ri , and

τa > τ ∗
a = ln β

α
(9)

where β satisfies

Pi ≤ βPj , Qi ≤ βQ j , Ri ≤ βR j for i, j ∈ M.

(10)

Proof First, we choose a Lyapunov–Krasovskii func-
tional as

Vi (t) = V 1
i (t)+ V 2

i (t)+ V 3
i (t) (11)

where

V 1
i (t) = ξ T (t)Piξ(t)

V 2
i (t) =

t∫

t−τ
eα(s−t)ξ T (s)Qiξ(s)ds

V 3
i (t) =

0∫

−τ

t∫

t+r

eα(s−t)ξ T (s)Riξ(s)dsdr

and Pi =
[

k0 P̄i P̄i

P̄i P̄i

]

with positive definite matrix P̄i ∈
R(n−1)×(n−1) satisfying P̄i (E Li F) + (E Li F)T P̄i =
In−1 and k0 > 1. Qi and Ri are positive definite matri-
ces determined by (8).

For the term V 1
i , its time derivative along trajectory

of the disagreement system (7) is

V̇ 1
i (t) = ξ T (t)(�T

0 Pi + Pi�0)ξ(t)− 2ξ T (t)Pi�d

×
0∫

−τ
ξ(t + θ)dθ + 2ξ T (t)Pi

[
0n−1

f̄ (x, v, t)

]

= ξ T (t)(�T
0 Pi + Pi�0)ξ(t)− 2ξ T (t)Pi�d

×
0∫

−τ
ξ(t+θ)dθ+ 2ξ T diag{P̄i , P̄i }

[
f̄ (x, v, t)
f̄ (x, v, t)

]

.

(12)

Using Lemma 1, we have

2ξ T diag{P̄i , P̄i }
[

f̄ (x, v, t)
f̄ (x, v, t)

]

≤
[

f̄ T (x, v, t) f̄ T (x, v, t)
]

diag{P̄i , P̄i }
[

f̄ (x, v, t)
f̄ (x, v, t)

]

+ ξ T diag{P̄i , P̄i }ξ
≤ ξ T (I2 ⊗ (P̄i + 2ρλ̄(P̄i )In−1))ξ. (13)

For the term V 2
i and V 3

i , we have

V̇ 2
i (t) = − αV 2

i (t)+ ξ T (t)Qiξ(t)

− e−ατ ξ(t − τ)Qiξ(t − τ),
(14)

and

V̇ 3
i (t) = − αV 3

i (t)+ τξ T (t)Riξ(t)

−
t∫

t−τ
eα(s−t)ξ T (s)Riξ(s)ds

≤ − αV 3
i (t)+ τξ T (t)Riξ(t)

− e−ατ
0∫

−τ
ξ T (t + θ)Riξ(t + θ)dθ.

(15)
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Then, combining (12)–(15), we conclude that

V̇i (t)+ αVi (t) ≤ ξ T (t)
(
�T

0 Pi + Pi�0 + αPi

+ Qi + τ Ri ) ξ(t)

+ ξ T (t)
(
I2 ⊗ (

P̄i + 2ρλ̄(P̄i )In−1
))
ξ(t)

− e−ατ ξ(t − τ)Qiξ(t − τ)

− 2ξ T (t)Pi�d

0∫

−τ
ξ(t + θ)dθ

−
0∫

−τ
e−ατ ξ T (t + θ)Riξ(t + θ)dθ

≤ 1

τ

0∫

−τ
� T (t)

⎡

⎣
ϒ11

i 0 −τ Pi�d

∗ −e−ατ Qi 0
∗ ∗ −τe−ατ Ri

⎤

⎦�(t)dθ

(16)

where �(t) = [ξ T (t), ξ T (t − τ), ξ T (t + θ)]T .
Therefore, if (8) holds, we have

V̇i (t) ≤ −αVi (t) (17)

whose integration gives

Vi (t) ≤ e−α(t−t0)Vi (t0), i ∈ ∀M. (18)

Second, we construct a family of piecewise
Lyapunov–Krasovskii functionals for each subsystem
as follows:

Vσ(t)(t) = V 1
σ(t)(t)+ V 2

σ(t)(t)+ V 3
σ(t)(t) (19)

where

V 1
σ(t)(t) = ξ T (t)Pσ(t)ξ(t)

V 2
σ(t)(t) =

t∫

t−τ
eα(s−t)ξ T (s)Qσ(t)ξ(s)ds

V 3
σ(t)(t) =

0∫

−τ

t∫

t+r

eα(s−t)ξ T (s)Rσ(t)ξ(s)dsdr.

Combining (10) and (11), we have for any switching
instants t j ( j = 1, 2, . . .)

Vσ(t j )(t j ) ≤ βVσ(t−j )
(t−j ). (20)

Therefore, when t ∈ [tk, tk+1), from (18) and (20),
we have

Vσ(t)(t)≤e−α(t−tk )Vσ(tk )(tk)≤βe−α(t−tk )Vσ(t−k )
(t−k )

≤ βe−α(t−tk )e−α(tk−tk−1)Vσ(tk−1)(tk−1) . . .

≤ βke−α(t−t0)Vσ(t0)(t0)

= βNσ (t, t0)e−α(t−t0)Vσ(t0)(t0)

≤ βN0 e−(α− ln β
τa
)(t−t0)Vσ(t0)(t0)

(21)

According to (11), we have

a||ξ(t)||2 ≤ Vσ(t)(t), Vσ(t0)(t0) ≤ b||ξ(t0)||2c . (22)

where ||ξ(t0)||c = sup−τ≤θ≤0{||ξ(t0 + θ)||}, a =
mini∈M λ(Pi ), b = maxi∈M{λ̄(Pi ) + τ λ̄(Qi ) +
τ 2

2 λ̄(Ri )}.
Substituting (22) into (21), we have

||ξ(t)|| ≤
√

b

a
β

1
2 N0 e− 1

2 (α− ln β
τa
)(t−t0)||ξ(t0)||c. (23)

With (9) holds, we can conclude that the consensus
of the multi-agent system (4) has been achieved expo-
nentially by the designed protocol (2). The proof is
completed. �

Remark 3 The final consensus state of the multi-
agent system (4) is influenced by the nonlinear term
f (xi , vi , t). Unlike the linear cases where the states
of the agents will converge to a static position with
the velocities ending up at 0, the consensus states of
the agents here are variable. Therefore, by designing
proper nonlinear term, we are able to regulate the con-
sensus states of the multi-agent system (4).

4 Numerical simulation

In this section, we give an example to demonstrate the
effectiveness of theoretical analysis. The considered
second-order multi-agent system consists of six agents
labeled 1 through 6. Figure 1 shows four digraphs
G1 − G4 each of which contains a directed spanning
tree. For simplicity, all the elements in the adjacency
matrices are assumed to be 0 or 1.

The set of possible communication topologies is
composed of G1 − G4. The inherent nonlinear dynam-
ics is given as f (xi , vi , t) = 0.1(xi + cos vi ). Sup-
pose the communication delay τ = 0.01, then the
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Fig. 1 Four digraphs G1−G4 each of which contains a spanning
tree
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Fig. 2 a Position states xi (t); b velocity states vi (t); c switching
signal σ(t)

LMIs (8) in Theorem 1 are feasible if we choose
α = 0.2, k0 = 20.25 and k1 = 22. We can also obtain
that when β = 1.84, LMIs (10) hold. As predicted by
Theorem 1, the protocol (2) solves the consensus prob-
lem of the second-order nonlinear multi-agent system
(1) for the switching signal with ADT satisfying

τa > τ ∗
a = ln β

α
= 3.05.

In the simulation, the initial states of agents are
selected randomly from the interval [−0.2, 0.2]. Fig-
ure 2 shows the consensus dynamics with τa = 3.1,

where all velocities converge to a constant while all
positions of the agents change with time.

5 Conclusion

In this paper, we have studied consensus of second-
order multi-agent systems with inherent nonlinear
dynamics, communication time delay, and restricted
switching topology simultaneously. A novel approach
based on state transformation was employed to facili-
tate consensus analysis. We not only established suffi-
cient conditions for consensus in terms of LMIs, but
also calculated lower bound of ADT for admissible
switching signals. Instead of using the concept of gen-
eralized algebraic connectivity in the literature, our
results are more effective especially for models with
large number of agents. The final consensus state is
time varying according to the nonlinear term. Here, we
point out that although we only consider the agents with
only one dimension case, all results are valid for agents
with any dimension by introducing the notation of the
Kronecker product. In future, we will remove the con-
straint on nonlinear terms and tackle it with approx-
imation capability of neural networks or fuzzy logic
algorithm.
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