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Abstract Impact affects the dynamic characteristics
of mechanical multi-body systems and damages those
rotating parts, such as the joint rolling element bearings,
which are high-precision, defect intolerant compo-
nents. Based on multi-body dynamic theory, Hertzian
contact theory, and a continuous contact model, this
study proposed a modelling method that can describe
the dynamic behaviour of planar mechanical multi-
body systems containing a rolling ball bearing joint
under impact. In this method, the rigid bodies and bear-
ing joint were connected according to their joint force
constraints; the impact constraint between the multi-
body system and the target rigid body was constructed
using a continuous contact force model. Based on this
method, the reflection relationship between the external
impacts of the mechanical multi-body system and the
variation law governing the dynamic load on the rolling
bearing joint were revealed. Subsequently, an impact
multi-body system, which was composed of a sliding–
crank mechanism containing a rolling ball bearing joint
and the target rigid body with an elastic support, was
analysed to explore the dynamic response of such a
complex discontinuous dynamic system andthe rele-
vant relationship governing the dynamic load on the
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rolling bearing joint. In addition, a multi-body dynamic
simulation software was used to build a virtual pro-
totype of the impact slider–crank system. Compared
with the theoretical model, the prototype had an addi-
tional deep groove ball bearing. That is to say, the pro-
totype model took account of the specific geometric
structural characteristics and the complex contact rela-
tionship of the inner and outer races, rolling balls, and
bearing cage. Finally, the effectiveness of the theoreti-
cal method proposed in this study was verified by com-
parative analysis of the results. The results suggested
that the external impact of a mechanical multi-body
system was prone to induce sudden changes in the
equivalent reaction force on its bearing joint and the
dynamic load carried on its rolling balls. This study
provided an effective method for exploring the distri-
bution characteristics of dynamic loads on rolling ball
bearing joints under working impact load conditions.
Moreover, it offered support for the parameter optimi-
sation of geometric structure, performance evaluation,
and dynamic design of the rolling ball bearings.

Keywords Multi-body dynamics · Impact dynamics ·
Ball bearing · Slider–crank mechanism

1 Introduction

In recent years, the impact dynamics of mechanical
multi-body systems have been oft researched. With
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regards the dynamic modelling of impact between
objects, Zhen and Liu [1] presented a systematic the-
ory for analysing 3-D impact with friction in multi-
body systems. Their method can deal with the com-
plex motions appearing in impact such as slip, stick,
and slip resumption. Najafabadi et al. [2] proposed a
novel approach to the modelling and analysis of impact
involving multi-body systems. Their approach is based
on a decomposition of the kinetic energy of a uni-
laterally constrained multi-body system. Bhalerao and
Anderson [3] introduced a recursive scheme for flex-
ible multi-body systems involving intermittent con-
tact resulting in a minimal size linear complemen-
tarity problem (LCP) at logarithmic cost for parallel
implementation. This method is more efficient than
other LCP approaches in the presence of bilateral sys-
tem constraints. Flickinger and Bowling [4] discussed
a new dissipation principle for resolving post-impact
tangential velocities after simultaneous impact events
on a system composed of interconnected rigid bodies.
Flores et al. [5] presented a general and comprehen-
sive analysis of continuous contact force models for
soft materials in multi-body dynamics. Their approach
can be used for contact problems involving materials
with low or moderate values of coefficient of restitu-
tion. Rodriguez and Bowling [6] proposed a method for
determining the post-impact behaviour of a rigid body
undergoing multiple, simultaneous impact with fric-
tion. In their approach, velocity constraints based on the
rigid body assumption were developed and applied to
the system equations of motion to make them determi-
nate. Flores et al. [7] presented a method of modelling
and analysing contact-impact events in multi-body sys-
tems. The effectiveness of the proposed methodology
is demonstrated by the dynamic simulation of a cam-
follower system on an industrial cutting file machine.
The contact impacts followed by rebounds, sliding fric-
tion, and stick phenomena were captured in their sim-
ulations. For detecting the precise instant of impact in
multi-body dynamics, Flores and Ambrósio [8] pre-
sented a general method for the automatic detection
of precise instant of contact in contact-impact analy-
sis, and for adjusting the integration time-step accord-
ingly. Generally, the calculation of the minimum dis-
tance between the surfaces of bodies plays an important
role in computational contact-impact mechanics. For
this purpose, Lopes et al. [9] proposed a general rigid
contact detection method for non-conformal bodies
with ellipsoidal and superellipsoidal surfaces. Dopico

et al. [10] applied continuous contact force models to
the human-in-the-loop simulation of multi-body sys-
tems. Machado et al. [11] presented and discussed sev-
eral different compliant contact force models used in
the context of multi-body system dynamics to model
and analyse contact-impact events. To understand more
comprehensively the status of research on the impact
dynamics of multi-body system, readers can find more
details elsewhere [12]. This work appraises the current
status of research devoted to the problem of modelling
impact in multi-body systems.

As it well known, it is difficult to describe accurately
the spatial 3-D collision between contacting objects and
reveal the characteristics of the complex dynamic vari-
ations in the impact. Therefore, the aforementioned
research mainly focuses on impacts between simple
objects, such as the collision between a uniform slen-
der rod and a rough fixed surface [1], the impact of a
small ball with both ground and wall [6], as well as
the collision when a double pendulum freely falls on
a rigid plane [4]. Moreover, the effectiveness and cor-
rectness of the impact models proposed were proved
by numerical simulation analysis. Currently, there is
much research regarding the influences of impact on the
dynamic response of a constrained multi-body system.
In the work to date, planar mechanisms with joint clear-
ance, such as the slider–crank mechanism and the four-
bar mechanism were used as research objects to analyse
the influences of the impact of the clearance joint on the
dynamic response of the attached mechanisms. Ravn
[13] proposed a continuous analysis method for the
dynamic modelling of planar multi-body systems with
joint clearance. The contact force in their clearance
joint is calculated by Hertzian contact deformation the-
ory that accounts for the geometrical and material prop-
erties of the contacting bodies. A slider–crank mech-
anism with one clearance joint between the connect-
ing rod and the slider is used as an example. Flores
et al. [14] discussed the influence of the clearance and
the friction coefficient on the dynamic response of pla-
nar rigid multi-body systems. A four-bar mechanism
and a slider–crank mechanism are used as examples to
demonstrate how a revolute joint with clearance affects
the mechanical behaviour. Koshy et al. [15] presented
a computational and experimental study of the con-
tact forces developed in revolute clearance joints. It is
concluded that the selection of the appropriate contact
force model with proper dissipative damping plays a
significant role in the dynamic response of mechan-
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ical systems involving contact events. However, the
above research neglects the effect of lubrication on the
dynamic characteristics of a micro-contacting impact
in a clearance joint. In real engineering, there is lubri-
cating oil in the joint contact pair that is used to
reduce the wear of joint and prolong the service life
of the joint. Ravn et al. [16], Schwab et al. [17], Flores
et al. [18–20], and Alshaer et al. [21] analysed and com-
pared the dynamic response of a slider–crank mecha-
nism with a dry, and a lubricated, clearance revolute
joint, respectively. They each verified that lubrication
of the clearance joint can smooth the peak values of the
contact forces compared with the unlubricated case.
Flores et al. [22] and Machado et al. [23] presented
methods for modelling and evaluating the forces pro-
duced by a dynamic journal-bearing in a multi-body
system. A dynamic simulation of a slider–crank mech-
anism containing a clearance joint with different radial
clearances and oil viscosities verified that a hydrody-
namic fluid film journal bearing exhibits a damping
effect that plays an important role in the stability of the
motion of the system. Tian et al. [24] proposed a novel
method for the modelling and analysis of planar flex-
ible multi-body systems with clearance and lubricated
revolute joints based on an absolute nodal coordinate
method.

In recent years, the rapid development of computer
technology made possible the dynamic modelling and
highly efficient numerical solution of complex mechan-
ical multi-body systems with multiple clearance joints.
Erkaya and Uzmay [25] and Flores and Lankarani
[26,27] investigated the dynamic response of a four-
bar mechanism and a slider–crank mechanism having
two revolute joints with clearance, respectively. Liu
et al. [28] and Megahed and Haroun [29] analysed a
slider–crank mechanism with one and two clearance
joints when working in vertical and horizontal planes.
This study shows that, when the mechanism works
in the horizontal plane, the rate of impacts at each
clearance joint increase and consequently the clearance
joints and actuators will deteriorate faster. Muvengei
et al. [30] investigated the parametric effects of dif-
ferently located frictionless revolute clearance joints
on the overall dynamic characteristics of a multi-body
system. It is observed that different joints in a multi-
body system have different sensitivities to the clear-
ance size and the dynamic behaviour of one clearance
revolute joint cannot be used as a general case for a
mechanical system. More recently, the authors [31]

studied the dynamic behaviour of planar rigid body
mechanical systems due to the interaction of multi-
ple revolute clearance joints. It was verified that the
clearance joints in a multi-body mechanical system
have a strong dynamic interaction. The motion modes
including continuous contact, free-flight, and impact in
one revolute clearance joint will determine the motion
modes in the other clearance joints. For capturing the
dynamic behaviour of a multi-body system accurately,
all the joints therein should be modelled as clearance
joints. Erkaya [32] investigated the effects of joint
clearance on the mechanism’s trajectory in a walking
machine. It is indicated that the mechanism’s trajec-
tory is very sensitive to the clearance joint characteris-
tics even if the clearance size is small. Xu and Li [33]
discussed the influence of the revolute joint clearances
on the dynamic performance of a planar 2-DOF pick-
and-place parallel manipulator. The results indicated
that the clearance joints present two obvious separa-
tion leaps in a complete pick-and-place working cycle
of the parallel manipulator, following a collision. The
impact induces system vibration and thus reduces the
dynamic stability of the system. For improving accu-
racy in the evaluation of the dynamic behaviour of
clearance joints in multi-body systems, Brutti et al.
[34] developed a general computer-aided model of a
3-D revolute joint with clearance suitable for imple-
mentation in multi-body dynamic solvers. Except for
the aforementioned numerical simulations, Erkaya and
Uzmay [35] and Flores [36] presented experimental
investigations of revolute joint clearance’s effects on
mechanism dynamic characteristics, respectively. The
research on impact dynamics of clearance joint is not
limited to planar revolute joints. Tian et al. [37] derived
a new approach to model and analyse a spatial flexible
multi-body system with a cylindrical clearance joint. In
their approach, the misalignment of the journal inside
the bearing is studied. Flores et al. [38,39] and Tian
et al. [40] presented methods for modelling and sim-
ulating both a spatial rigid, and flexible, multi-body
system with spherical joints. Furthermore, Flores et
al. [41] presented a method for modelling transla-
tional joints with clearance in rigid multi-body sys-
tems.

Most of the existing research uses the planar multi-
body system with revolute joint clearance as its
research object to investigate the influences of joint
clearance on the dynamic characteristics of system.
However, in engineering practice, the rolling element
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bearings are often used as revolute joints to connect
mechanical components. For example, angular contact
bearings used in pairs are key components for the pre-
cise transmission of industrial robot joints. Typically,
the rolling element bearing is an assembly composed
of rolling bodies, a cage, and the inner and the outer
races. Therefore, its composition and structure is more
complex than a sliding bearing. In addition, in the rota-
tion process of rolling element bearings, there are com-
plex multi-point contacts between rolling bodies, the
bearing cage, and the races. All of these determine
the complexity of the modelling and solution of the
mechanical multi-body system with joint rolling ele-
ment bearings. In recent years, and with regards the
dynamic modelling of rolling element bearings, Jang
and Jeong [42–44] presented a non-linear model to
analyse the ball bearing vibration due to waviness in
a rigid rotor supported by two or more ball bearings.
Bai and Xu [45] presented a 5-DOF dynamic model
to study the dynamic performance of ball bearings due
to the effect of both internal clearance and waviness at
high speed, where the centrifugal force and gyroscopic
moment from balls were taken into account. Upad-
hyay et al. [46] developed a mathematical model of a
rotor bearing system to observe the non-linear response
of an unbalanced rotor. Patel et al. [47] presented a
dynamic model for a deep groove ball bearing consid-
ering single and multiple defects on the races. Patil et
al. [48] modelled a deep groove ball bearing with sin-
gle and multiple localised defects on inner and outer
raceways. Nakhaeinejad and Bryant [49] proposed a
detailed model of rolling element bearings with 33-
DOF. The effects of type, size, and shape of defects
on the vibration response in rolling element bearings
were studied. Kappaganthu and Nataraj [50] presented
a 2-DOF non-linear model of a rotor-bearing system
on rolling element bearings and influence of the bear-
ing asymmetric clearance was considered. Liu et al.
[51] proposed a piecewise continuous response func-
tion to describe a localised defect of different sizes in
a bearing. Kankar et al. [52] investigated the effect of
local defects on the stability of a rolling element bear-
ing rotor system. More recently, the present authors
[53] proposed a general method for dynamic modelling
and analysis of planar multi-body systems containing
deep grove ball bearings with clearance. The bearing

joint was modelled by introducing a non-linear con-
straint force system, which takes into account the con-
tact stiffness interaction between the rolling elements
and the raceways. The evaluation of the contact forces
was based on Hertzian contact deformation theory that
accounts for the geometrical and material properties
of the contacting bodies. Later, the dynamic load dis-
tribution characteristics of bearings under real multi-
body system movement conditions are simulated by
the method [54]. By using the approach, we can not
only get the variation in the contact load on each ball
element in bearing joints with the change of mecha-
nism configuration, but also determine the numbers of
balls which bear the load as well as the contact force
magnitude.

Basing on multi-body dynamic theory, Hertzian
contact theory, and a continuous contact model, this
study proposed a modelling method that can describe
the impact dynamic behaviour of a planar mechani-
cal multi-body system containing a rolling ball bear-
ing joint. Based on this method, the dynamic char-
acteristics of a rolling ball bearing joint in a multi-
body system under impact were revealed. Moreover,
we can obtain the equivalent constraint reaction force
in the bearing joint and the variation of the dynamic
load on each rolling ball in the bearing. This method
offers mechanical support for the parameter optimi-
sation of geometric structure, performance evaluation,
and dynamic design such joints. The remainder of the
paper is organised as follows: Sect. 2 introduces the
approach for modelling the impact planar multi-body
system with a rolling ball element bearing joint. The
content includes methods for modelling the ball bear-
ing joint and the contact constraint in a planar multi-
body system, the analysis of the generalised forces in
the impact system, and the combination and solution of
the equations of motion of the impacted planar multi-
body system. In Sect. 3, an impact slider–crank mech-
anism with a deep groove ball bearing joint is used as a
numeral example to verify the method. The variations
of the joint reaction force and the dynamic load on each
ball element in the bearing are obtained and discussed.
Section 4 offers a simulation of the impact slider–crank
mechanism as run in MSC.ADAMS software. In the
last section, the main conclusions from this study are
presented.
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2 Dynamic modelling of an impact planar
multi-body system with a ball bearing joint

Usually, the rolling element bearing comprises a plu-
rality of rolling elements, uniformly distributed in the
inner and outer races of the bearing, and restricted by
the cage. During the rolling process of bearing, rolling
bodies, the cage, and the inner and outer races of the
bearing undergo complex multipoint contact. More-
over, if the influences of the external impact of the
multi-body system are taken into consideration, the
multi-body system containing the rolling ball element
bearing joint is a highly non-linear dynamic system. To
reduce the difficulty in building and solving dynamic
models of such complex dynamic system, the following
assumption was needed:

(1) The outer and inner races of the bearing are fixedly
connected with the bush and journal of the rigid
bodies, respectively. With respect to the rigid bod-
ies, there is no rotational degree of freedom for the
outer and inner races of the bearing.

(2) Rolling balls uniformly distribute themselves on
the inner and outer races and rotate at the same
rate.

(3) The influence of contact friction between the
rolling balls with the inner and outer raceways is
neglected.

Figure 1 shows the dynamic model of a multi-body
system containing a rolling ball bearing joint under gen-

eralised coordinates XOY in a collision. It was assumed
that rigid bodies i and j were connected by the joint
of the rolling ball bearing; rigid bodies j and k were
restricted in collision. G j and Gk represent the impact
contact points between rigid bodies j and k; rd refers
to the vector of the relative position of the contact
point in the collision. In addition, it was assumed that
the body-fixed coordinate system ξoη was located at
the centroid of the rigid body. The generalised coor-
dinate qi of an arbitrary rigid body in the plane was
expressed as:

qi = [ξ, η, θ ]T
i (1)

where, ξ and η are the translational coordinates of the
origin in the body-fixed coordinate system; θ denotes
the rotational angle of the body-fixed coordinate system
versus the generalised coordinate system.

When rigid bodies j and k satisfy the restriction
requirements for contact position in the motion of a
multi-body system, the interaction of the forces on the
contact point is called the impact force. Obviously,
external collision forces affect the dynamic response
of the system and the distribution characteristics of the
dynamic load on the rolling ball bearing joint. To estab-
lish the dynamic model for the impacted multi-body
system containing a rolling ball bearing joint, two key
problems should be solved. First of all, an effective
model of the revolute joint of the rolling ball bearing
under the dynamic theoretical framework of a multi-
body system was needed. Moreover, the model estab-

Fig. 1 A dynamic model of
impact in a multi-body
system with a rolling ball
bearing joint
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Fig. 2 Modelling of a rolling ball bearing joint in a planar multi-
body system

lished should be capable of revealing the motion’s char-
acteristics in the bearing and the characteristics of the
contact force between rolling elements with the inner
and outer raceways. Second, an effective impact force
model of the contact of rigid bodies was needed.

2.1 Modelling a ball bearing joint in a planar
multi-body system

Generally speaking, due to their being affected by the
radial clearance of the rolling bearing, the inner and
outer races of the bearing joint are prone to shift from
the origin centre during the motion. Taking account
of the radical elastic compressive deformation of the
bearing under load, this shift will be more obvious. To
accurately describe the eccentricity of the rolling ball
bearing joint, it is necessary to obtain a general theo-
retical method of building the revolute joint of a rolling
ball bearing under a multi-body dynamics theoretical
framework, as shown in Fig. 2. The location vector cen-
tres of inner and outer races Pi and Pj in the coordinate
system can be expressed by:

rP
z = rz + AzsP

z , (z = i, j) (2)

where, rz is the position vector of the body-fixed coor-
dinate system origin of the two rigid bodies connected
by bearing in generalised coordinate system XOY; sP

z is
the position vector of the centres Pi and Pj of the inner
and outer races in the body-fixed coordinate system;
and Az is a transformation matrix.

By taking the derivative of Eq. (2) with respect to
time t , we obtain the velocity vectors of the centre Pi

and Pj of the inner and outer races (respectively) in
generalised coordinates.

ṙP
z = ṙz + ȦzsP

z , (z = i, j) (3)

If the radial internal clearance and the elastic contact
deformation of the bearing are included, the inner and
outer races will shift from the centre. The eccentricity
vector and relative velocity vector can be represented
as Eqs. (4) and (5), respectively:

e = rP
j − rP

i (4)

υ = ṙP
j − ṙP

i (5)

The amplitude of the eccentricity vector is expressed
as:

e =
√

eT e (6)

The unit normal vector to the direction of the eccen-
tricity can be expressed as:

ne = e/e (7)

As shown in Fig. 2, the contact point of the outer race
of bearing with the bush of the rigid body i is denoted
as Qi , while the contact point of the inner race of the
bearing with the journal of a rigid body j is recorded
as Q j . The position vector of contact point Qi and Q j

can be represented as:

rQ
z = rz + AzsP

z + Rzne, (z = i, j) (8)

where, Rz (z = i, j) refers to the radius of bush and
journal separately. According to this analysis, the rela-
tive eccentricity vector and eccentricity velocity vector
of the races of the bearing can be obtained.

The contact force between a rolling ball and the
rolling path in the inner and outer races of the bear-
ing are given by:

Fr = Kbδ
n
r + Cbυr (9)

where, Kb and Cb are the total stiffness and total damp-
ing of the rolling ball with the inner and outer raceways
of the bearing, respectively; δr and υr are separately
the radical shift and relative eccentricity velocity in the
direction of location angle φr ; n is a load-deformation
index (for the ball bearing, it is 3/2 and for a roller bear-
ing, it is equal to 10/9 [55]). As shown in Fig. 3, the
stiffness of the contact between the rolling ball with the
inner and outer raceways of bearing can be signified by:

Ki,o =
2
√

2

(
Eb

1−ν2
b

)

3
(∑

ρi,o
)1/2

(
1

δ∗
i,o

)3/2

(N/m3/2) (10)
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Fig. 3 Stiffness calculation
in ball raceway contact

where, Eb and νb are the elastic modulus and Poisson’s
ratio of the ball bearing elements, respectively. δ∗

i,o is
the dimensionless deflection factor and

∑
ρi,o is the

sum of the curvatures at the contact point.
The total stiffness Kb for a single ball element in

contact with the inner and outer raceways is:

Kb =
(

1

(1/Ki)
2/3 + (1/Ko)

2/3

)3/2

(N/m3/2)

(11)

Generally, estimation of the damping of a ball bearing
is difficult because of the dominant extraneous damp-
ing which swamps the damping of the bearing [56].
Based on experimental and theoretical studies, Dietl
et al. [57] pointed out that the major contributions to
bearing damping include: lubricant film damping in
the rolling contacts, material damping due to Hertzian
deformation of the rolling bodies, and damping at the
interface between the outer ring and the bearing hous-
ing. Mitsuya et al. [58] experimentally investigated the
damping of a 6,200-type deep-groove ball bearing. The
experimental damping coefficients ranged between 150
and 350 Ns/m. Based on these experimental results, an
appropriate damping value can be selected to ensure
convergence of the numerical calculation.

It can be seen from Fig. 4 that, the radical shift of the
rolling ball of the bearing in the direction of position
angle φr can be calculated using Eq. (12):

δr = ex cos φr + ey sin φr − 1

2
Pd (12)

where, ex and ey are separately the components of
eccentricity e in directions X and Y; Pd refers to the
radial clearance of the bearing.

Fig. 4 Radial deflection at a general rolling ball position

In the direction of position angle φr , the relative
eccentricity velocity is recorded as:

υr = υx cos φr + υy sin φr (13)

where, υx and υy are the components of relative veloc-
ity vector υ in directions X and Y.

In the assumption that the rolling balls are uniformly
distributed in the rolling paths of inner and outer races
at the same rotational speed, the angle position φr of the
rth rolling ball at arbitrary time point t can be calculated
by Eq. (14).

φr = 2π

Nb
(r − 1) + ωmt, (r = 1, 2, . . . , Nb) (14)

where, Nb denotes the number of rolling balls in the
bearing; ωm is the angular velocity of a rolling ball
(see Eq. (15)).

ωm = ωidi + ωodo

di + do
(15)
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Fig. 5 Modelling of a contact constraint between two rigid bod-
ies in a planar multi-body system

By substituting Eqs. (11), (12), and (13) into Eq. (9)
and taking account of the influences of damping, we
can obtain the contact force between the rolling ball
and the rolling paths in the inner and outer races of the
bearing.

2.2 Modelling of a contact constraint in a planar
multi-body system

Figure 5 shows the contact constraint between rigid
bodies j and k established in generalised coordinate
system XOY. The position vectors of impact contact
points G j and Gk in the generalised coordinate system
can be expressed as:

rG
u = ru + AusG

u , (u = j, k) (16)

where, ru is the position vector of the body-fixed
coordinate origin of the two rigid bodies connected
by impact constraint under the generalised coordinate
system; sG

u is the position vector of the contact points
G j and Gk of collision in the body-fixed coordinate
system; and Az is a transformation matrix.

By taking the derivative of Eq. (16) with respect to
time t , the velocity vector of the contact points G j and
Gk of the collision in generalised coordinates may be
obtained.

ṙG
u = ṙu + ȦusG

u , (u = j, k) (17)

In the contact between the rigid bodies, the relative
position vector and corresponding amplitude can be
expressed by Eqs. (18) and (19), respectively.

rd = rG
k − rG

j (18)

rd =
√

rT
d rd (19)

The unit normal vector to the direction of contact is
calculated by:

nr = rd/rd (20)

Equations (21) and (22) represent the velocity compo-
nents of the relative impact velocity between contact
points G j and Gk in the normal vector direction and
tangential direction of the normal vector, respectively:

υN =
(

ṙG
k − ṙG

j

)T
nr (21)

υT =
(

ṙG
k − ṙG

j

)T
t (22)

where, t is obtained by rotating the normal vector nr in
a counter-clockwise direction by 90◦. After the relative
penetration and velocities at the contact point have been
determined, the normal contact and friction forces can
be computed based on some contact force models and
friction models.

An appropriate contact force model is crucial for
the precise description of the collision dynamics
between bodies. So far, a variety of contact force
models have been proposed by: Hertz [59], Zukas et
al. [60], Lankarani and Nikravesh [61], Dubowsky and
Freudenstein [62], Johnson [63], Radzimovsky [64],
Goldsmith [65] and Flores et al. [5]. It is worth not-
ing that only the model developed by Lankarani and
Nikravesh [61] is widely used in dynamic studies of
mechanical multi-body systems with clearance joints.
This is attributable to the simplicity of its contact force
model, resulting ease of calculation, applicability to
impact in multi-body systems, and rapid convergence
due to the inclusion of energy dissipation modelling
upon impact. In an academic monograph, Flores et
al. [66] compared different contact force models and
proved the effectiveness of the model proposed by
Lankarani and Nikravesh when describing the dynamic
properties in the contact impact of a clearance joint.
Besides, he confirmed that Lankarani and Nikravesh’s
model can be transformed to deal with contact problems
between cylindrical surfaces. Therefore, the continuous
contact force model of Lankarani and Nikravesh was
used to depict the contact impact between clearance
joints in the present study.

Using Lankarani and Nikravesh’s continuous con-
tact force model [58], the impact force when rigid
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body j and k come into contact at point G can be
denoted by:

F̃ = Kdδ1.5
d

(

1 + 3
(
1 − e2

c

)

4

δ̇d

δ̇
(−)
d

)

(23)

where, δ̇d is the relative impact velocity; δ̇
(−)
d is the

initial impact velocity; ec is a coefficient of restitution;
and Kd is the contact stiffness. The contact stiffness
Kd can be calculated by Eqs. (24) and (25):

Kd = 4

3π
(
h j + hk

)

(
R̃ j R̃k

R̃ j + R̃k

)1/2

(24)

hu = 1 − ν̃2
u

π Ẽu
, (u = j, k) (25)

where, ν̃u is the Poisson’s ratio of the rigid bodies in col-
lision; Ẽu is the modulus of elasticity of the rigid bodies
in the collision; R̃u is the curvature radius of the contact
point for the collision. As shown in Eq. (23), it is cru-
cial to obtain the coefficient of restitution accurately to
calculate the contact force and the dynamic response of
the system. However, in reality, the coefficient of resti-
tution needs to be measured in experiments rather than
being calculated/deduced [67]. Further explanation lies
beyond the scope of this study.

In addition to the normal reaction forces, a friction
force can be included to enhance the model. Dubowsky
[68], Rooney and Deravi [69], Threlfall [70], Karnopp
[71], and Ambrósio [72] have established different fric-
tion models. In research concerning the dynamics of
multi-body systems with joint clearance, Ambrósio’s
friction force model is widely applied. The mathemat-
ical expression of this frictional force model is:

FT = −μcd FN
vT

|vT | (26)

where cd is a dynamic correction coefficient expressed
by:

cd =
⎧
⎨

⎩

0
υT −υ0
υ1−υ0

1

if
if
if

υT ≤ υ0

υ0 ≤ υT ≤ υ1

υT ≥ υ0

(27)

in which, υ0 and υ1 are the given tolerances for the
velocity. Compared with the other three friction mod-
els, the great merit of this friction force model is that
the correction factor can prevent the friction force from
changing direction when the value of the tangential
velocity approaches zero: this allows numerical stabil-
isation of the integration algorithm.

Fig. 6 The contact load distribution in the bearing joint

2.3 The generalised force on the impacted planar
multi-body system with a ball bearing joint

2.3.1 The generalised force in the bearing joint

The joint rolling element bearing will be affected by
inertial load in the movement of the mechanical multi-
body system. Figure 6 describes the load distribution
of the rolling ball bearing joint under the influences of
inertial load. Due to the existence of radial clearance in
the bearing, some rolling balls are affected while some
are unaffected by the load at time t . As shown in Fig. 6,
even in the loaded region, the loads on different rolling
balls are different. In addition, since the amplitude and
direction of the inertial load on the bearing varies with
the movement of the mechanical multi-body system,
the loads on the rolling balls of the bearing face are
governed by a complex variational relationship. Obvi-
ously, the distribution law for the loads in the bearing
is affected by the radial clearance, eccentricity vec-
tor variations, and the motional characteristics of the
bearing. If the influences of elastic compressive defor-
mation are included, the loads on the rolling balls are
given by Eq. (9).

In the generalised coordinate system, the equivalent
constraint force of the bearing joint can be deduced
using the elastic contact force on each rolling ball as
given by:
[

Fx

Fy

]
=

Nb∑

r=1

Fr

[
cos φr

sin φr

]
(28)

As shown in Fig. 6, the joint forces of rigid body i and
its corresponding torque on the centroid of the rigid
body are:
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fi =
[

Fx

Fy

]
, T f

i =−
(

yQ
i −yi

)
f x
i +

(
x Q

i −xi

)
f y
i (29)

In similar way, the forces on the joint of rigid body j
and its corresponding torque on the centroid of the rigid
body are:

f j =−
[

Fx

Fy

]
, T f

j =
(

x Q
j −x j

)
f y

j −
(

yQ
j −y j

)
f x

j

(30)

where, x Q
i − xi and yQ

i − yi separately represent the
distances from contact point Qi to the centroid of rigid
body i in the X and Y directions; x Q

j − x j and yQ
j − y j

separately refer to the distances from contact point Qi

to the centroid of rigid body j in the X and Y directions.
In the hypotheses above, we neglected rolling fric-

tion between the rolling balls and the rolling paths
in the bearing. Therefore, friction was not taken into
consideration in establishing the generalised external
force on the rolling ball bearing joint. The reason for
this simplification is that the rolling element bearing
has a structural feature of multi-point contacts between
rolling elements and raceways. A detailed description
of the friction effect in each contact is complex and the
simulation would be time-consuming. To simplify the
computational model, only the normal contact forces
in bearing multi-point contacts were considered by the
authors. On the other hand, the rolling friction in ball
and raceway contact is usually quite small and has a
smaller effect on the dynamic response of such bear-
ing systems: many researchers [42–45,47–49] examin-
ing rolling element bearing dynamics neglect frictional
effects.

2.3.2 The generalised force caused by external impact

The impact, in which rigid body j collides with rigid
body k, gives rise to the normal contact force and
tangential frictional force at the contact point of the
collision. Normal contact forces are calculable using
Eq. (23), while tangential frictional force is found using
a frictional force model, such as the Ambrósio [72]
friction model . As shown in Fig. 7, the direction of the
normal passing through the contact point and vertical
to the contact plane is defined as the direction of the
contact force.

As suggested by Fig. 8, the contributions to the gen-
eralised vector of forces and moments working on bod-
ies j and k can be found by projecting the normal force
onto the normal direction nr, that is:

Fig. 7 The force vectors for two rigid bodies in contact

Fig. 8 The contributions to the generalised force vectors and
moments on contact bodies

f̃ N
j = F̃ N

j nr =
[

f̃ N x
j

f̃ N y
j

]

,

f̃ N
k = F̃ N

k nr =
[

f̃ N x
k

f̃ N y
k

]

, F̃ N
k = −F̃ N

j (31)

T̃ N
j =

(
yG

j −y j

)
f̃ N x

j −
(

xG
j −x j

)
f̃ N y

j ,

T N
k = −

(
xG

k −xk

)
f̃ N y
k −

(
yG

k −yk

)
f̃ N x
k (32)

Similarly, contributions from the tangential force can
be found by projecting the tangent force onto the plane
of collision, i.e. the direction t, perpendicular to the
normal direction nr:

f̃T
j = F̃T

j t =
[

f̃ T x
j

f̃ T y
j

]

, f̃T
k = F̃T

k t =
[

f̃ T x
k

f̃ T y
k

]

,

F̃T
k = −F̃T

j (33)
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T̃ T
j =

(
yG

j − y j

)
f̃ T x

j −
(

xG
j − x j

)
f̃ T y

j ,

T T
k =−

(
xG

k −xk

)
f̃ T y
k −

(
yG

k −yk

)
f̃ T x
k (34)

where, xG
j − x j and yG

i − yi separately represent the
distances from contact point G j to the centroid of rigid
body j in the X and Y directions; xG

k − xk and yG
k − yk

separately refers to the distances from contact point Gk

to the centroid of rigid body k in the X and Y directions.

2.4 The equations of motion of an impacted planar
multi-body system with a bearing joint

Based on the analysis above, the joint forces of rigid
bodies i and j and corresponding torques on the cen-
troids of the rigid bodies may be obtained using Eqs.
(29) and (30), respectively. Moreover, using Eqs. (31)–
(34), the normal contact forces and tangential frictional
forces on rigid bodies j and k, as well as the torques
they generate on the centroids of the rigid bodies can be
obtained. If these forces and torques are taken as gen-
eralised forces and substituted into the dynamic equa-
tions for the multi-body system, the equation of motion

of the impacted multi-body system with a rolling ball
bearing joint can be obtained, as shown below:

[
M �T

q
�q 0

] [
q̈
λ

]
=

[
QA

γ

]
(35)

where, M is the mass matrix of the system; �q is
the Jacobian matrix of constraint equations; q̈ is an
acceleration vector; QA is the generalised external
force vector; λ is a Lagrange multiplier; and vector
γ = − (

�qq̇
)

q q̇ − 2�qtq̇ − �tt .
Unfortunately, the equation above is prone to error.

Moreover, with the prolongation of the simulation, the
error grows and results in inaccuracy. To guaranteeing
the stability of the numerical solution and to ensure
correct results, the Baumgarte stabilisation method [73]
was used here. The values of the parameters α = β = 5
are used [74] in control equation �̈+ 2α�̇+β2� = 0
in the simulations.

[
M �T

q
�q ϕ

] [
q̈
λ

]
=

[
QA

γ − 2α� − β2�

]
(36)
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Fig. 9 Flowchart of the computational procedure for the dynamic analysis of the impacted multi-body system with deep groove ball
bearing joints
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Fig. 10 An impact slider–crank mechanism with a deep groove ball bearing joint

Furthermore, Fig. 9 shows the flowchart for the compu-
tational procedure for dynamic analysis of the impacted
multi-body system with its ball bearing joint.

3 Numerical simulation

3.1 An impact slider–crank mechanism with a ball
bearing joint

In this section, we analysed an impacted multi-body
system composed of a slider–crank mechanism con-
taining a deep groove ball bearing and the target rigid
body with its elastic support. Figure 10 shows the
dynamic model of this system: the crank and connect-
ing rod are connected by a deep groove ball bearing
(SKF 98205). The bearing in this position not only
rotates, but also undergoes translational motion along
with the slider–crank mechanism. The reason why this
joint was selected was because its inertial load variation
was more complex than the other two revolute joints in
the motion of the mechanism. The variation of the con-
tact force on each rolling ball element over an entire
rotation cycle of this bearing is readily obtained and
analysed. The outer and inner races of the rolling bear-
ing are fixedly connected with the bush on the crank
and the journal of the connecting rod, respectively. The
slider and target rigid body are restricted in the colli-
sion. With the movement of the slider–crank mecha-
nism, the slider and target rigid body will collide with

each other when they satisfy the position constraints for
contact. In addition, the target rigid body is elastically
supported on the ground. When affected by the impact
force, the compressive spring of the target rigid body
moves to the right. When the slider is separated from
the target rigid body, such elastic compressive defor-
mation recovers gradually.

Table 1 lists the geometric and inertial parameters of
the slider–crank mechanism with the target rigid body
in collision. Table 2 lists the geometric structural para-
meters and material attributes of the deep groove ball
bearing (SKF 98205). Figure 11 shows the geometrical
characteristics of the deep groove ball bearing. Taking
the specific geometric parameters of the bearing and
substituting the appropriate values into the related for-
mulae, the contact stiffness between the rolling balls
and both the inner and outer races of the bearing was
2.57 and 2.86 × 1010 N/m separately. Then, the total
contact stiffness was calculated to have been 9.57×109

N/m. A damping value of 300 Ns/m was applied to
the contact vibration arising between each rolling ball
and the raceways ensure convergence of the numer-
ical analysis and its calculations. Table 3 lists some
necessary parameters for the solution of the numeri-
cal example. Table 4 lists the initial parameters of the
slider–crank mechanism and target rigid body, includ-
ing initial position and initial speed. At the beginning, it
is assumed that crank and connecting rod lie in the same
horizontal line. Moreover, to guarantee a smooth sim-
ulation calculation, we assumed that the impact con-
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Table 1 Dimensions and
mass parameters for the
impact slider–crank
mechanism

Bodies Length (mm) Mass (kg) Moment of inertia (kg mm2)

Crank 50 0.75 520

Connecting rod 120 0.67 1, 200

Slider − 0.3 −
Target rigid body − 0.1 −

Table 2 Geometric and material properties for the deep groove ball bearing (SKF 98205)

Fig. 11 Geometrical characteristics of the 

deep groove ball bearing.

Parameters Values

Bore diameter, iD 25 mm

Outer diameter, oD 52 mm

Pitch diameter, md 37.9 mm

Inner raceway diameter, id 29.2 mm

Outer raceway diameter, od 46.6 mm

Ball diameter, D 8.7 mm

Radial clearance, dP 0.04 mm

Number of balls, bN 8

Young’s modulus of bearing material, bE

ν

207 GPa

Poisson’s ratio of bearing material, b 0.3

Table 3 Parameters used in the impact dynamic simulations

Parameters Values

Crank speed, ω 600 rpm

Coefficient of restitution, ec 0.9

Coefficient of friction, μ 0

Young’s modulus of contact bodies, Ẽ 207 GPa

Poisson’s ratio of contact bodies, ν̃ 0.3

Supporting stiffness, ks 100 kN/m

Supporting damping, cs 120 Ns/m

Contact radius of slider, r1 0.01 m

Contact radius of target rigid body, r2 0.01 m

Integration step size 0.00001 s

Integrator scheme Gear

Baumgarte stability control parameters α, β 5, 5

straint between slider and target rigid body functioned
after the crank turned through 180◦. In addition, since
the contact between the slider and the target rigid body
is considered to be a contact between circular arc sur-
faces, and slider and target rigid body merely moves
horizontally: the influences of friction in the contact
are ignored.

3.2 Results and discussion

Figure 12 shows the dynamic responses of slider and
target rigid body over a complete motion period of the
slider–crank mechanism, involving the displacements,
velocities, and accelerations of the slider and target
rigid body. As shown in the displacement response in
Fig. 12a, if the real distance between the slider and tar-
get rigid body failed to satisfy the impact constraints,
collision did not occur and target rigid body remained
stable. With the continuous motion of the mechanism,
impact will be induced when the real distance between
slider and target rigid body meet the contact constraints
on position. Meanwhile, under the impact of the slider,
the target body generates displacement variation by
compressing the support spring. As time goes on, the
rigid body separates from the slider and recovers to its
initial position with the help of the supporting spring.
In addition, the responses of velocity and acceleration
(Fig. 12b, c) imply that the impact between the slider
and the rigid body shows a large vibration amplitude
when collision occurs instantaneously. Subsequently,
the vibration amplitude of the impact decays gradu-
ally and the sliding block and target rigid body move
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Table 4 The initial values of the impact slider–crank mechanism necessary to start the dynamic analysis

Crank
speed
(rpm)

The initial positions

Crank Connecting rod Slider Target rigid body

ξ2 (mm) η2 (mm) θ2 (rad) ξ3 (mm) η3 (mm) θ3 (rad) ξ4 (mm) η4 (mm) θ4 (rad) ξ5 (mm) η5 (mm) θ5 (rad)

600 25 0 0 110 0 0 170 0 0 180 0 0

Crank
speed
(rpm)

The initial velocities

Crank Connecting rod Slider Target rigid body

ξ̇2

(mm/s)
η̇2

(mm/s)
θ̇2

(rad/s)
ξ̇3

(mm/s)
η̇3

(mm/s)
θ̇3

(rad/s)
ξ̇4

(mm/s)
η̇4

(mm/s)
θ̇4

(rad/s)
ξ̇5

(mm/s)
η̇5

(mm/s)
θ̇5

(rad/s)

600 0 1,570.8 62.83 0 1,570.8 −26.18 0 0 0 0 0 0

in close contact until separation. When the slider was
completely separated from the target rigid body, the
free vibration gradually attenuates under the spring
damping effect.

Figure 13 shows the variation characteristics of the
contact force between the slider and the target rigid
body. It is observed that at the instant of the colli-
sion, the contact impact force between slider and target
rigid body varied significantly. In this process, there are
two situations arising between the slider and the target
rigid body, namely, contact and separation. In detail,
the contact of the slider and target rigid body gives rise
to an instant collision force of high amplitude, while
the impact forces instantly decrease to zero upon sep-
aration. In the initial stage of the impact between the
slider and target rigid body, the contact and separation
are repeated several times. Moreover, due to the energy
loss in the collision, the impact force gradually decays
before the following contact. In the late stage of the col-
lision, the contact force is smooth owing to the close
contact between the slider and target rigid body. Until
the separation of the slider from the target rigid body,
the contact force between the two decreases to zero.

Figure 14 shows the variations of equivalent reaction
force of the rolling ball bearing joint in the slider–crank
mechanism. It is observed that the impact between the
slider and the target rigid body causes violent variations
in the dynamic loading of rolling ball bearing joint. At
the instant of collision, the equivalent reaction force on
the bearing joint shows sudden changes in amplitude.
In the impact, it fluctuates with repeated occurrences of
the contact and separation of the slider and target rigid
body with a gradually reducing amplitude attributable
to the gradual loss of the energy in the collision. It

should be noted that the equivalent reaction force of
the bearing joint shows small amplitude fluctuations
when the slider had completely separated from the tar-
get rigid body. These fluctuations are mainly induced
by the inertial load variations in the bearing joint after
the slider separated from the target rigid body.

Generally, the distribution characteristics of the load
on the rolling ball bearing joint are mainly affected by
the radial clearance of the bearing, the inertial load
on the joint, and the kinetic properties of the bearing.
Since the inertial load on the bearing and the positions
of the rolling balls are in constant variation with the
movement of the mechanism, the variation of the load
on the rolling balls of the bearing joint differed from
ball to ball. That is to say, at certain positions of the
mechanism, some rolling balls are stressed while others
in the bearing are free from load. Even if the rolling
balls were simultaneously located in the loaded region,
the amplitude of the load thereon differed from ball to
ball.

Figure 15 shows the variations of the contact loads
on the rolling balls in the bearing joint when the slider–
crank mechanism was at collision and free from colli-
sion, respectively. It can be found that, in the free-from-
collision condition, the balls 1 and 8 in the bearing were
free from load over an entire period of slider–crank
mechanism motion (from 0.04 to 0.14 s). Meanwhile,
balls 2–7 are loaded differently.

Table 5 lists the load amplitude on each rolling ball
in the bearing throughout a complete motional period
of the slider–crank mechanism. As shown, given cer-
tain positions, or times, in the slider–crank mecha-
nism’s cycle, the load on the rolling balls of the bearing
presents different amplitudes and variation properties.
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Fig. 12 Dynamic responses of the slider and target rigid body:
a displacement, b velocity, c acceleration

It should be noted that, Fig. 15 merely illustrates the
variation of the loads on the rolling balls of the bearing
in one motional period of the slider–crank mechanism.
Considering that the angular position directions of the
rolling balls in the bearing vary with the movement of
the slider–crank mechanism, that is to say, the rolling
balls in the bearing were distributed at different angu-
lar positions under different motional periods of the
slider–crank mechanism, the variations in loads on the
rolling balls differed during each cycle.

Additionally, as shown in Fig. 15, if the impact effect
of the slider–crank mechanism is excluded, the contact
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Fig. 13 Variation of the contact impact force between slider and
target rigid body
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Fig. 14 Variations of the equivalent reaction force: a force in
x-direction, b force in y-direction c force amplitude
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Fig. 15 Variation of the contact force on each rolling ball: a Ball
1, b Ball 2, c Ball 3, d Ball 4, e Ball 5, f Ball 6, g Ball 7, h Ball 8

loads on the rolling balls of the bearing fluctuate more
smoothly. However, in case of including the collision
effect arising from the target rigid body, the contact
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Fig. 15 continued

loads on the rolling bodies in the bearing were subjected
to sudden changes due to this external impact.Besides,
since the rolling balls were located at different angu-
lar position directions, the external impact force of the
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system exhibits different influences on the variations of
contact load on the rolling balls. Generally speaking,
research concerning the fatigue lifetime and reliability
of the bearing is based on the analysis of its load char-
acteristics. The present study offers an effective way of
exploring the distribution characteristics of dynamic
loads on the bearing in the case where the mechanical
multi-body system suffers external impact(s). More-
over, it provides support for the performance evalua-
tion, dynamic design, and geometric parameter opti-
misation of joints involving rolling ball bearings.

4 Verification of the approach: a simulation
of the impact slider–crank mechanism with a
ball bearing joint as modelled by MSC.ADAMS
software

In this section, we established a virtual prototype
model of an impacted slider–crank mechanism using
MSC.ADAMS software, as shown in Fig. 16. In this
model, the crank is fixed to the ground using an ideal
revolute joint; the connecting rod is also linked to the
slider using an ideal revolute joint; the deep groove
bearing between the crank and connecting rod was
taken as a revolute joint for connection purposes. The
impact function in the software was used to model the
contact force in the ball bearing joint. The slider and
target rigid body are connected with the ground using
ideal translational joints. Impact constraints are estab-
lished between the slider and the target rigid body. The
contact stiffness was 1.07 × 1010 N/m as calculated by
Eq. (24). In addition, in the virtual prototype model, the
slider is simplified into a cylinder and the target rigid
body connected to the ground using a support spring.

In the plane of motion of the virtual mechanism, the
geometric and inertial parameters of the crank, connect-
ing rod, slider, and target rigid body are in agreement
with the parameters of the theoretical model established
in this study. The advantages of the model lie in its abil-
ity to involve the real geometric structural characteris-
tics of the deep groove ball bearing and the complex
contact relationships of the internal components in the
bearing. As shown in Fig. 17, the contact relationships
between the rolling balls with the inner race, outer race,
and cage are defined in the ADAMS software. Table 6
lists the mass and inertial parameters of the components
in the bearing, as well as the contact stiffness, contact
damping, and frictional coefficients between compo-

nents. Constricted by the constraint forces of the cage,
the rolling balls were uniformly distributed around the
rolling paths of the inner and outer races of the bearing.

In the simulation of the virtual prototype model,
the bearing rotates with the motion of the slider–crank
mechanism. Moreover, due to the interaction of the con-
tact forces between the inner and outer races, rolling
balls, and cage, the cage will rotate with the rolling
balls. Figure 18 shows the variations of the displace-
ment of the rotational angle of the cage in a complete
motional period of the slider–crank mechanism. It can
be found that, the rotational angle displacements of the
cage in the bearing simulated by ADAMS are consis-
tent with the results yielded by the theoretical method
proposed in this study. Figure 19 shows the variations
of the angular velocities of the cage in the bearing.
It can be found that the angular velocity of the cage
obtained in the ADAMS simulation exhibits larger vari-
ations due to the changes of the complex contact forces
between the components of the bearing. However, since
the motional variations of the cage are controlled by
kinematic constraints in the theoretical model proposed
in this study, i.e. in Eq. (14), the angular velocities
of the rolling balls in the bearing show no variations
in the theoretical analysis, heed should be paid to the
fact that, upon impact between the slider and the target
rigid body, the angular velocity of the cage in the bear-
ing generates violent fluctuations due to the impact, as
shown in Fig. 19. Upon separation of the slider from
the target rigid body, it also showed larger variations.

Figure 20 shows the influences of the external impact
on the load variations of the rolling balls of the bear-
ing. Comparison of these results indicated that the the-
oretical method proposed in this study yielded a basi-
cally consistent variation law for the contact loads on
the rolling balls of the bearing with both that and the
ADAMS simulation results. The effectiveness of the
theoretical method proposed in this study was thereby
verified.

It is notable that the contact stiffness of the rolling
balls with the inner and outer races of the bearing was
2.57 and 2.86 × 1010 N/m separately as calculated by
Eq. (10). However, in the ADAMS virtual prototype
model, they were 2.57 and 2.86 × 106 N/m, respec-
tively. The reason for this discrepancy was that, if the
contact stiffness of the rolling balls with the inner and
outer races of the bearing in the virtual prototype model
echoes the theoretical values, the ADAMS simulation
tends to shift from the convergent results. This was
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Table 5 Contact force statistics for each ball element in bearing joint at different positions of the slider–crank mechanism

Ball elements

t = 0.04 s t = 0.06 s t = 0.08 s t = 0.1 s t = 0.12 s

Ball 1 0 N 0 N 0 N 0 N 0 N

Ball 2 42.9 N 92.2 N 0 N 0 N 0 N

Ball 3 109.7 N 64.8 N 53.1 N 24.9 N 0 N

Ball 4 0 N 0 N 0 N 193.8 N 0 N

Ball 5 0 N 0 N 0 N 45.1 N 40.7 N

Ball 6 0 N 0 N 0 N 0 N 0 N

Ball 7 0 N 0 N 0 N 0 N 0 N

Ball 8 0 N 0 N 0 N 0 N 0 N

Fig. 16 An ADAMS model of the impact slider–crank mechanism with a rolling ball bearing joint

attributable to the idea that the contacts between the
rolling balls with the inner and outer races of the bear-
ing were a type of smooth curve surface contact. How-
ever, the ADAMS software is prone to develop errors in
the accurate description of complex three-dimensional
curved surface, as shown in Fig. 6. In the contact, tiny
fluctuations in geometry would result in large contact
forces. The stability of the simulation is thereby diffi-
cult to ensure. Moreover, there are complex multi-point
contacts in the rolling ball bearing. The more numer-
ous the contact points, the higher the contact stiffness,
and the harder the ADAMS simulation. Therefore, to
reduce the difficulty of ADAMS simulation and guar-
antee the convergence of the numerical calculation, the

contact stiffness of the rolling balls with the inner and
outer races of the bearing should be much smaller than
those used in theoretical calculations.

Additionally, Fig. 20 reveals that, in the collision
between the slider and the target rigid body, the contact
load of the bearing obtained by the theoretical method
proposed in this study showed large fluctuation ampli-
tude and high fluctuation frequency. This was because
of the differences in the contact stiffness of the rolling
balls with the inner and outer races of the bearing in
the theoretical model and the ADAMS virtual model.

In the last part of this paper, the computational effi-
ciency, when simulating the impact slider–crank mech-
anism with its rolling ball bearing joint, is discussed.
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Table 6 The parameters of the deep groove ball bearing modelled by MSC.ADAMS software

Fig. 17  The deep groove ball 

bearing in ADAMS software.

Parameters Values

Contact stiffness, damping and friction 

between ball and outer raceway

2.86 × 106 N/m, 3 × 102 Ns/m, 

0.01

Contact stiffness, damping and friction 

between ball and inner raceway

2.57 × 106 N/m, 3 × 102 Ns/m, 

0.01

Contact stiffness, damping and friction 

between ball and cage
1 × 106 N/m, 1 × 103 Ns/m, 0

Mass and inertia of ball element 2.69 × 10-3 kg, 2.03 × 10-8 kg·m2

Mass and inertia of outer race 4.08 × 10-2 kg, 2.411 × 10-5 kg·m2

Mass and inertia of inner race 1.97 × 10-2 kg, 3.89 × 10-6 kg·m2

Mass and inertia of cage 1.11 × 10-2 kg, 3.99 × 10-6 kg·m2
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Fig. 18 Variation in the angular displacement of the bearing
cage
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Fig. 19 Variation in the angular velocity of the bearing cage

For this, a DELL computer (CPU 3.1 GHz) was used to
perform the calculations. Suppose that the total simula-
tion time was 0.1 s (a whole period of the motion), then
the computational time required for complete numeri-

cal simulations was 194 s. The ADAMS software took
685 s to finish the same work. Comparison with the
ADAMS simulation model suggested that the theoret-
ical method proposed in this study had a higher model
solution efficiency.

5 Conclusions

This study proposed a modelling method to describe the
dynamic behaviour of a mechanical multi-body system
containing a rolling ball bearing joint under impact.
With this method, the connection between rigid bodies
and a bearing joint was established based on joint force
constraints. Moreover, the impact constraints between a
multi-body system and a target rigid body were devel-
oped using a continuous contact force model. Based
on the theoretical method proposed, an impact multi-
body system, which comprised a slider–crank mech-
anism containing a deep groove ball bearing and the
target rigid body with its elastic support, was analysed
to explore the dynamic response of such a complex
discontinuous dynamic system and the variation of
the dynamic load on the rolling ball bearing joint.
In addition, multi-body dynamic simulation software
(MSC.ADAMS) was used to build a virtual prototype
of this impact slider–crank system. Analysis and com-
parison of the results proved the effectiveness of the
theoretical method proposed in this study.

The results suggested that the external impact of the
mechanical multi-body system was prone to inducing
sudden changes of the equivalent reaction force on the
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Fig. 20 Variations of the contact force on each rolling ball: a
Ball 1, b Ball 2, c Ball 3, d Ball 4, e Ball 5, f Ball 6, g Ball 7, h
Ball 8

rolling ball bearing joint and the dynamic load on each
rolling ball. However, due to the influences of the radial
clearance, the inertial load on the bearing, and the posi-
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Fig. 20 continued

tion angles of the rolling balls, the load on the rolling
balls of the bearing were governed by different rela-
tionships. Generally speaking, research into the fatigue
lifetime and reliability of such bearings is based on the
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analysis of the load characteristics. This study provided
an effective method for the analysis of the distribution
characteristics of dynamic load on rolling ball bear-
ing joints under impact. Moreover, it offered support
for the parameter optimisation of geometric structure,
performance evaluation, and dynamic design of joints
incorporating rolling ball bearings.

In addition, comparison with the ADAMS simula-
tion model suggested that the theoretical method pro-
posed in this study showed higher model solution effi-
ciency and was more readily convergent. However, it
failed to reveal the influences of external impact of
the system on the dynamic response characteristics of
the cage in the bearing. This was attributed to the fact
that, in the theoretical method proposed in this study,
the revolutions of the rolling balls in the bearing were
controlled by kinematic constraints. In comparison, the
ADAMS simulation model involved the real geometric
structural characteristics of the inner and outer races,
rolling balls, the cage of the bearing, and all corre-
sponding complex dynamic contacts. Unfortunately, it
was prone errors in the accuracy of its descriptions
of complex three-dimensional curved surfaces. Since
small fluctuations in size would result in large reaction
forces in the contact, the stability of the simulation cal-
culation was thereby difficult to guarantee. Moreover,
there were complex multi-point contacts in the rolling
ball bearing. The more numerous the contact points,
the higher the contact stiffness, and the more difficult
the ADAMS simulation.

It should be noted that both rolling, and sliding,
friction at the ball bearing and in the contact between
the slider and the target rigid body were neglected in
this simulation. However, friction is an inevitable phe-
nomenon and is one of the major limitations prevent-
ing good performance (both actual and simulated) in
controlled mechanical systems, and hence it should be
taken into account in the early stages of engineering
design. In future research, the focus will be on the mod-
elling of the impact of a multi-body system containing
a bearing joint with friction.
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