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Abstract The order-1 periodic solution of the sys-
tem with impulsive state feedback control is investi-
gated. We get the sufficient condition for the existence
of the order-1 periodic solution by differential equa-
tion geometry theory and successor function. Further,
we obtain a new judgement method for the stability
of the order-1 periodic solution of the semi-continuous
systems by referencing the stability analysis for limit
cycles of continuous systems, which is different from
the previous method of analog of Poincarè criterion.
Finally, we analyze numerically the theoretical results
obtained.
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1 Introduction

In real life, there are many control methods such as
feedback control with a time delay, sliding mode con-
trol, repetitive control, iterative learning control, adap-
tive control, coefficient control [1,2], but in pest man-
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agement, the impulsive state feedback control, i.e.,
impulsively throwing natural enemies and spraying
pesticides, is usually proposed [3–5] when pest density
increases to the certain level called economic threshold
(ET). ET is the index of pest density, crop output will
not decrease much when pest density is lower than ET,
we need not adopt any control measure, but once pest
density rises to ET, some control measures should be
adopted to prevent an increasing pest population from
reaching the economic injury level.

Formerly, for the periodic impulsive system, many
experts investigate the existence and stability of peri-
odic solution by using Floquet theory and Poincarè cri-
terion [6–8]. There is no doubt that is a well method, but
in the paper, we will study the existence and stability of
periodic solution for impulsive system with state feed-
back control by applying differential equation geome-
try theory which is different from Floquet theory.

A continuous delayed pest management system with
Logistic growth and impulsive state feedback control
is constructed as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = r x

[

1 − cx − ω
t∫

−∞
exp(a(t − s)x(s))ds

]

, x < h,

�x = −βx, x = h,

(1.1)

where x(t) denotes the proportion of pest at time t , r
denotes the intrinsic rate of increase, a, c, ω are positive
constants, 0<β<1 is the ratio of killing pests by spray-
ing pesticides, h denotes ET. This model describes
that in productive practice for controlling pests, people
always take such a strategy that when the pests arrive
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744 G. Pang, L. Chen

at a given ET h, they will begin to kill the pests with
chemical pesticides.

The first equation of system (1.1) is continuous,
but under impulsive effect and state feedback control,
system (1.1) turns into a special discontinuous sys-
tem, for which there are many properties of continuous
dynamic system. The discontinuous dynamical system
was called the switching system by Luo [9] and Chen
[10] called the system as semi-continuous system (for
details, see Definition 2.1).

At present, for the semi-continuous system, [11–15]
have got some results. In [16–22] by using differen-
tial equation geometry theory, the method of successor
function and analog of Poincarè criterion, the sufficient
condition for the existence and the orbitally asymp-
totically stability of the periodic solutions have been
obtained. In this paper, we try to reference the stability
analysis of limit cycles for continuous systems to obtain
a new judgement method which is different from the
previous method of analog of Poincarè criterion for the
stability of the periodic solutions of semi-continuous
systems.

Taking the transform

y =
t∫

−∞
exp(a(t − s)x(s))ds, y > 0,

system (1.1) can be written as
⎧
⎨

⎩

dx
dt = r x(1 − cx − ωy) = P(x, y),
dy
dt = ax − ay = Q(x, y),

}

x < h,

�x = −βx, x = h,
(1.2)

which is equivalent to system (1.1).
In the next section, we give some preliminaries. In

Sect. 3, we get the sufficient condition for the existence
of the periodic solution of system (1.2) by differential
equation geometry theory and successor function. In
Sect. 4, referencing the stability analysis of the limit
cycles for continuous dynamic systems, we prove the
periodic solution of system (1.2) is orbitally asymp-
totically stable under some conditions. In Sect. 5, we
analyze numerically the theoretical results obtained.

2 Preliminaries

Definition 2.1 [10] Suppose impulsive state differen-
tial equation
{

dx
dt = P(x, y), dy

dt = Q(x, y), (x, y) �∈ M{x, y},
�x = α(x, y), �y = β(x, y), (x, y) ∈ M{x, y},

(2.1)

whose solution mapping composes the system called as
semi-continuous dynamic system, denoted by (Ω, f,
ϕ,M). Set initial point of mapping p ∈ Ω = R+

2 \
M{x, y}, ϕ is a continuous mapping, ϕ(M) = N , ϕ is
called as impulse mapping, where M(x, y) and N (x, y)
are straight lines or curves on the plane R+

2 = {(x, y) ∈
R2 : x ≥ 0, y ≥ 0}, M{x, y} denotes impulse set,
N {x, y} denotes phase set.

In system (1.2), impulse set M = {(x, y) ∈ R+
2 |x =

h, y ≥ 0}, impulse mapping ϕ: (x, y) ∈ M →
((1 − β)h, y) ∈ R+

2 , phase set N = ϕ(M) =
{(x, y) ∈ R+

2 |x = (1 − β)h, y ≥ 0}. Therefore, sys-
tem (1.2) composes a semi-continuous dynamic system
(Ω, f, ϕ,M).

Definition 2.2 Let f (P, t) be the semi-continuous
dynamical system mapping described by system (2.1)
at Ω → Ω , where f (P, t) is a mapping in itself.
If there are a point P1 in phase set N and a t1 such
that f (P1, t1) = Q1 ∈ M{x, y}, it also has ϕ(Q1) =
ϕ( f (P1, t1)) = P1 ∈ N , then f (P1, t1) is said to be
the order-1 periodic solution.

Definition 2.3 [10] Suppose that N is the phase set
of system (1.2), M is the impulse set of system (1.2),
and both N and M are straight lines, see Fig. 1. The
intersection point of N and x axis is Q, the distance
between point A (A ∈ N ) and point Q is noted by a,
M1 denotes the intersection point of trajectory passing
trough point A and M , phase point of M1 is A1 (A1 ∈
N ), and the distance between A1 and Q is noted by

Fig. 1 Successor function f (A) = a1 − a
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Periodic solution of the system 745

a1. We define that subsequent point of A is A1, and
successor function of A is f (A) = a1 − a.

Remark 2.1 If f (A) = 0, the trajectory passing
through point A is the order-1 periodic solution of the
system.

Lemma 2.1 [10] Successor function f (A) is continu-
ous.

According to Lemma 2.1, we can get the following
lemma.

Lemma 2.2 [10] Assume continuous dynamical sys-
tem (X, Ψ ), if there exist two points A, B in the phase
set such that successor function f (A) > 0, f (B) < 0,
we can find a point C between A and B in the phase
set satisfying f (C) = 0. So there must exist an order-1
periodic solution passing through point C.

3 Existence of the order-1 periodic solution

In system (1.2), if β = 0, i.e., without impulse effects,
there are two equilibrium points:

O(0, 0), P

(
1

c + ω
,

1

c + ω

)

.

Obviously, O(0, 0) is the saddle point, P
(

1
c+ω ,

1
c+ω

)

is globally asymptotically stable.

Theorem 3.1 (1) If 1
c+ω ≥ h, there exists a point C ∈

N satisfying f (C) = 0, that is to say, there exists
an order-1 periodic solution of system (1.2).

(2) If (1−β)h < 1
c+ω < h, there exists a point D ∈ N

satisfying f (D) = 0, that is to say, there exists an
order-1 periodic solution of system (1.2).

(3) If 1
c+ω ≤ (1 − β)h, there is no order-1 periodic

solution of system (1.2).

Proof (1) If 1
c+ω ≥ h (see Fig. 2).

In fact, the impulse set of system (1.2) is line segment
M1 M2, and the phase set of system (1.2) is line segment
N1 N2, where M1 is the intersections of impulse set and
isoclinic line dx

dt = 0, M1 M2 intersects vertically x axis
at M2, and the phase set intersects vertically M1 N1, x
axis at N1, N2, respectively.

Let dx
dt = 0 and N intersect at B((1 − β)h, b),

according to qualitative theories of differential equa-
tion, there exists an unique trajectory L1 passing

Fig. 2 The existence of order-1 periodic solution of system (1.2)
when 1

c+ω ≥ h

through B, being tangent with the straight line x =
(1−β)h. Assume that L1 and M intersect at MB(h, b1),
the phase point is NB((1−β)h, b1) of MB after gener-
ating impulse, and NB must be under B. Then we have

f (B) = b1 − b < 0.

Choose a point A((1 − β)h, a), A ∈ N1 N2 suf-
ficiently near x axis such that a is a small enough
positive, the trajectory L2 passing through A inter-
sects M1 M2 at MA(h, a1), the phase point is NA((1 −
β)h, a1) of MA after generating impulse, NA must be
over A. Then we have

f (A) = a1 − a > 0.

According to Lemma 2.2, there exists a point C ∈ N ,
satisfying f (C) = 0, that is to say, there exists an order-
1 periodic solution of system (1.2).

(2) If (1 − β)h < 1
c+ω < h (see Fig. 3).

In the same way, it is easy to prove that there exists
an order-1 periodic solution of system (1.2).

(3) If 1
c+ω ≤ (1 − β)h (see Fig. 4).

For any point in phase set, there is no intersection
of the trajectory passing through any point, and the
impulsive set or the subsequent point is over itself, and
then there is no order-1 periodic solution of system
(1.2).

4 Stability of the order-1 periodic solution

Definition 4.1 [23] On the positive half-trajectory of
semi-continuous dynamic system denoted by f (P, I +),
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746 G. Pang, L. Chen

Fig. 3 The existence of order-1 periodic solution of system (1.2)
when (1 − β)h < 1

c+ω < h

Fig. 4 There is no order-1 periodic solution of system (1.2) when
1

c+ω ≤ (1 − β)h

I + = (0,+∞), choose any time series {0 ≤ t1 < t2 <
· · · < tn < · · · } such that lim

t→∞ tn = +∞. If Q is the

limit point of point range { f (P, tn)}, n = 1, 2, . . ., we
call Q as ω limit point of point range { f (P, tn)}, n =
1, 2, . . .. The setΩ made up of all limit points of point
range { f (P, tn)}, n = 1, 2, . . . is called as ω limit set.

Definition 4.2 Assume that Γ is the order-1 periodic
solution of semi-continuous dynamic system. If there
exists a neighborhood U (Γ ) sufficiently small such that
ω limit set of trajectory starting from any point P ∈
U (Γ ) is always Γ , the order-1 periodic solution Γ is
stable. Otherwise, the order-1 periodic solution Γ is
unstable.

Fig. 5 S1, S2, . . . , Sk , Sk+1, . . . are the subsequent points of
S0, S1, . . . , Sk−1, Sk , . . . , respectively

In system (1.2), A is any point of the phase set N ,
see Fig. 5, assume the single-closed curve consisting of
curve ̂ABC and line segment C A is an order-1 periodic
solution of system (1.2), denoted by Γ . Get point S0

near A, there exists a point range:

{S1, S2, . . . , Sk, Sk+1 . . .},
where

S1, S2, . . . , Sk, Sk+1, . . .

are the subsequent points of S0, S1, . . . , Sk−1, Sk, . . . ,

respectively.
Establish coordinates at phase set and near A, the

coordinate of A is 0. Let

s0, s1, . . . , sk, sk+1 . . .

denote the coordinates of points

S0, S1, . . . , Sk, Sk+1, . . . ,

respectively.

Proposition 4.1 For any point S0 near A, when k →
∞, the point range

S0, S1, . . . , Sk, Sk+1, . . . → A,

i.e.,

s0, s1, . . . , sk, sk+1, . . . → 0,
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Periodic solution of the system 747

then the order-1 periodic solution is stable (unidirec-
tional).

Proposition 4.2 (Königs) Assume that s = f (s) is a
continuous transform from line segment N to itself, S =
0 is a fixed point under the transform. If the part near
origin of curve s = f (s) on the plane (s, s) lies in the
interior of the domain
∣
∣
∣
∣
s

s

∣
∣
∣
∣ ≤ 1 − ε(≥ 1 + ε), ε > 0,

the fixed point S = 0 is stable (unstable).

Proof We prove firstly the fixed point S = 0 is
stable. �	

Choose η > 0 sufficiently small such that for any
point S in noncentral neighborhood U 0(0; η) of the
fixed point S = 0, |s| ≤ η.

Let
∣
∣
∣
∣
s

s

∣
∣
∣
∣ ≤ 1 − ε = δ < 1,

we have

|s| ≤ δ|s| < |s|.
For any point range

{S, S1, S2, . . . , Sk, Sk+1, . . .},
where S, Sk ∈ U 0(0; η), k = 1, 2, . . . , n, . . . , we get
sequence

{|s|, |s1|, |s2|, . . . , |sk |, |sk+1|, . . .}.
Because of |s1| ≤ δ|s|, |s2| ≤ δ|s1|, . . ., it is easy to
deduce that |sn| ≤ δn|s|, hence |sn| → 0 when n →
∞. Upon that, the fixed point S = 0 is stable.

In the same way, we prove that the fixed point S = 0
is unstable. The proof is completed.

Corollary 4.1 Assume that function s = f (s) exists
derivative at S = 0, then S = 0 is stable when∣
∣
∣ ds

ds

∣
∣
∣
s=0

< 1.

From Fig. 6, assume that the closed orbit consisted
of the curve ̂ABC , and line segment C A is the order-1
periodic solution of system (4.1), denoted by Γ , where
A ∈ N , C ∈ M , and N is the phase set, M is impulse
set. Draw normal line n passing through A ∈ Γ and
establish coordinate system (s, n) on point A. Choose
any point D ∈ N in small enough neighborhood of A.
The trajectory starting from D intersects vertically n

Fig. 6 Establish coordinate system (s, n) on point A

axis at Bk and intersects impulse set M at D. E denotes
the phase point of D, the trajectory passing trough point
E intersects vertically n axis at Bk+1 as t increases.

Assume that rectangular coordinate of A is (ϕ(s),
ψ(s)), then for Bk , there is the relation between its rec-
tangular coordinates (x, y) and curvilinear coordinates
(s, n):

x = ϕ(s)− nψ ′(s), y = ψ(s)+ nϕ′(s), (4.1)

where

ϕ′(s) = dx

ds
|A = P0

√

P2
0 + Q2

0

,

ψ ′(s) = dy

ds
|A = Q0

√

P2
0 + Q2

0

,

P0, Q0 denote the values P, Q lie in A, respectively,
we have

P0 = P(ϕ(s), ψ(s)), Q0 = Q(ϕ(s), ψ(s)).

From (4.1), it is easy that we have

dy

dx
= ψ ′(s)+ ϕ′(s) dn

ds + nϕ′′(s)
ϕ′(s)− ψ ′(s) dn

ds − nψ ′′(s)

= Q(ϕ(s)− nψ ′(s), ψ(s)+ nϕ′(s))
P(ϕ(s)− nψ ′(s), ψ(s)+ nϕ′(s))

,

hence
dn

ds
= Qϕ′ − Pψ ′ − n(Pϕ′′ + Qψ ′′)

Pϕ′ + Qψ ′ = F(s, n).

(4.2)
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Since there is a zero solution n = 0 for (4.2), when
there exist continuous partial derivatives for functions
P, Q, there does also on n for F(s, n), (4.2) is written
as
dn

ds
= F ′

n(s, n) |n=0 n + o(n). (4.3)

In order to calculate
dn

ds
= F ′

n(s, n) |n=0,

we first get

ϕ′′(s) = − Q0

P2
0 + Q2

0

[
P2

0 Qx0 + P0 Q0(Qy0 − Px0)− Q2
0 Py0

]
,

ψ ′′(s) = P0

P2
0 + Q2

0

[
P2

0 Qx0 + P0 Q0(Qy0 − Px0)− Q2
0 Py0

]
,

(4.4)

where Py0, Px0, Qy0, Qx0 denote partial derivatives of
P, Q when n = 0, respectively. Since P = P0, Q =
Q0 when n = 0, it is easy to know P0ϕ

′′ + Q0ψ
′′ = 0.

By (4.2) and (4.4), we have

F ′
n(s, n)|n=0 = P2

0 Qy0 − P0 Q0(Py0 + Qx0)+ Q2
0 Px0

(P2
0 + Q2

0)
3/2

= H(s),

where H(s) denotes the curvature of orthogonal trajec-
tory at A for system (1.2). Therefore the approximate
equation of (4.3) is
dn

ds
= H(s)n,

whose solution is

n = n0e

s∫

0
H(s′)ds′

, n0 = n(0). (4.5)

Theorem 4.1 Assume that h is the length of curve
̂ABC which is a section of the order-1 periodic solu-
tion Γ of system (1.2). The order-1 periodic solution
Γ is stable when

h∫

0

H(s)ds < 0. (4.6)

Proof Let us investigate trajectory Bk DE Bk+1 (see
Fig. 6). In the coordinate system (s, n), the ordinate of
Bk is denoted by n0, and the ordinate of D is denoted
by n. From (4.5), we have

|n(h)| < |n0|
when

∫ h
0 H(s)ds < 0, where h is the length of curve

̂ABC . By Propositions 4.1 and 4.2, the order-1 periodic
solution Γ is stable.

Corollary 4.2 (Diliberto) [24] If the integral along the
order-1 periodic solution Γ satisfies H(s) < 0, the
order-1 periodic solution Γ is stable.

Let ds =
√

P2
0 + Q2

0dt , the left of (4.6) can be
rewritten as

h∫

0

H(s)ds

=
T∫

0

1

P2
0 + Q2

0

[
P2

0 Qy0 − P0 Q0(Py0 + Qx0)+ Q2
0 Px0

]
dt

=
T∫

0

[

Px0+Qy0− P2
0 Px0+P0 Q0(Py0+Qx0)+Q2

0 Qy0

P2
0 +Q2

0

]

dt

=
T∫

0

(Px0 + Qy0)dt −
T∫

0

1

2

1

P2
0 + Q2

0

d

dt
(P2

0 + Q2
0)dt

=
T∫

0

(Px0 + Qy0)dt −
T∫

0

1

2

d

dt

[
ln(P2

0 + Q2
0)

]
dt,

i.e.,
h∫

0

H(s)ds =
T∫

0

(Px0 + Qy0)dt

−
T∫

0

1

2

d

dt

[
ln(P2

0 + Q2
0)

]
dt < 0. (4.7)

Consider the integral along the periodic solution Γ ′
of continuous system

JΓ ′ =
T∫

0

1

2

d

dt

[
ln(P2

0 + Q2
0)

]
dt = 0,

we suppose that the integral along the order-1 periodic
solution Γ of semi-continuous system has the same
result.

Denote F(x, y) = 1
2

d
dt

[
ln(P2

0 + Q2
0)

]
.

Lemma 4.1 If function F(x, y) is continuous and dif-
ferentiable, the integral along the order-1 periodic
solution of system (1.2) satisfies

T∫

0

dF(x, y)

dt
dt = 0,

where period of the order-1 periodic solution is T .

Proof Let Γ be an order-1 periodic solution of system
(1.2), see Fig. 7, S1(t) denotes the curve ofsystem (1.2)
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Fig. 7 Γ is the order-1 periodic solution of system (1.2)

Fig. 8 Γ n is the order-1 periodic solution of system (4.8)

from A(x1, y) to B(x2, y), S1(t) = A when t = 0, and
S1(t) = B when t = T . S2(t) denotes line segment
B A.

Take the transform τ = n−1
n t , system (1.2) can be

written as
⎧
⎨

⎩

dx
dτ = r x(1 − cx − ωy) = P(x, y),
dy
dτ = ax − ay = Q(x, y),

}

x < h,

�x = −βx, x = h,
(4.8)

where the trajectory Γ n of system (4.8) is similar to
system (1.2) except for time variable.

Let Sn
1 (τ ) denote the curve of system (4.8) from

A(x1, y) to B(x2, y), see Fig. 8, Sn
1 (τ ) = A when τ =

0, Sn
1 (τ ) = B when τ = n−1

n T . Sn
2 (τ ) denotes line

segment B A, the parameter equation of Sn
2 (τ ) is

{
x = (x1−x2)n

T τ + x2,

y = y,

Sn
2 (τ ) = B when τ = 0, Sn

2 (τ ) = A when τ = T
n .

Obviously, system (4.8) → system (1.2), i.e. Γ n →
Γ , when n → ∞, thus we have

Γ

T∮

0

dF(x, y)

dt
dt = S1

n−1
n T∮

0

dF(x, y)

dt
dt

+S2

T∮

n−1
n T

dF(x, y)

dt
dt

= S1

n−1
n T∮

0

dF(x, y)

dt
dt

+S2

T
n∮

0

dF(x, y)

dt
dt →0(n →∞),

i.e., the integral along the order-1 periodic solution Γ
of system (1.2) satisfies

T∫

0

dF(x, y)

dt
dt = 0.

The proof is completed.
According to (4.7), we have the following theorem.

Theorem 4.2 If the integral the along order-1 periodic
solution Γ of system (1.2) satisfies

T∫

0

(Px0 + Qy0)dt < 0,

Γ is stable.

Theorem 4.3 The order-1 periodic solution of system
(1.2) is stable.

Proof Structure Dulac function u(x, y) = x−1 which
is continuous, differentiable and positive on the domain
G(x > 0, y > 0), then system (1.2) can be written as
⎧
⎨

⎩

dx
d = r x(1 − cx − ωy) = p(x, y)u(x, y)
= r(1 − cx − ωy) = p1(x, y),

dy
dt =ax−ay =q(x, y)u(x, y)=a − a y

x = q1(x, y),

we have
∂p1(x, y)

∂x
+ ∂q1(x, y)

∂y
= −rc − a

1

x
< 0.
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Fig. 9 Time series and phase portrait of system (1.2) with h = 1.3, r = 1.53, c = 0.2, ω = 0.5, a = 0.6, β = 0.48

By Theorem 4.2, the order-1 periodic solution of sys-
tem (1.2) is stable. The proof is completed.

5 Numerical analysis and discussion

For system (1.2), there is an equilibrium point P( 1
c+ω ,

1
c+ω ) which is globally asymptotically stable without

impulse effects. According to Theorem 3.1, if 1
c+ω ≥

h or (1 − β)h < 1
c+ω < h, there exist the order-1

periodic solutions; if 1
c+ω ≤ (1−β)h, there is no order-

1 periodic solution.
To verify the theoretical results obtained in this

paper, we choose ET h as the parameter and analyze
numerically the existence of order-1 periodic solution

for system (1.2) under the different values of impulse
set, there are the following three cases:

Case 1 Let h = 1.3, r = 1.53, c = 0.2, ω =
0.5, a = 0.6, β = 0.48, we have impulse set M =
{(x, y) ∈ R+

2 |x = 1.3, y ≥ 0}, phase set N =
{(x, y) ∈ R+

2 |x = (1 − β)h = 0.676, y ≥ 0}, and
1

c+ω
.= 1.43 ≥ h, that is to say, the equilibrium point

P
(

1
c+ω ,

1
c+ω

)
is on the right of impulse set (see Fig. 2).

From Fig. 9, we can observe that there exists an order-
1 periodic solution of system (1.2) which lies between
phase set and impulse set (i.e. between 0.676 and 1.3).
It indicates that the numerical simulation result is con-
sistent with the first case of Theorem 3.1.

Case 2 Let h = 1.45, r = 1.53, c = 0.2, ω =
0.5, a = 0.6, β = 0.48, we have impulse set M =
{(x, y) ∈ R+

2 |x = 1.45, y ≥ 0}, phase set N =
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Fig. 10 Time series and phase portrait of system (1.2) with h = 1.45, r = 1.53, c = 0.2, ω = 0.5, a = 0.6, β = 0.48

{(x, y) ∈ R+
2 |x = (1 − β)h = 0.754, y ≥ 0} and

(1 − β)h < 1
c+ω

.= 1.43 < h, that is to say, the equi-

librium point P
(

1
c+ω ,

1
c+ω

)
lies between phase set and

impulse set (see Fig. 3). From Fig. 10, we can observe
that there exists an order-1 periodic solution of system
(1.2) which lies between phase set and impulse set (i.e.,
between 0.754 and 1.45). It indicates that the numeri-
cal simulation result is consistent with the second case
of Theorem 3.1.

Case 3 Let h = 1.7, r = 1.53, c = 0.6, ω =
0.8, a = 0.6, β = 0.38, we have impulse set M =
{(x, y) ∈ R+

2 |x = 1.7, y ≥ 0}, phase set N =
{(x, y) ∈ R+

2 |x = (1 − β)h = 1.054, y ≥ 0} and
1

c+ω
.= 0.71 ≤ (1 − β)h, that is to say, the equilib-

rium point P
(

1
c+ω ,

1
c+ω

)
is on the left of phase set

(see Fig. 4). From Fig. 11, we can observe there is no
order-1 periodic solution of system (1.2). It indicates
the numerical simulation result is consistent with the
third case of Theorem 3.1.

According to Theorem 4.3, the order-1 periodic
solution of system (1.2) is stable, it illustrates that we
can achieve the aim of controlling pest by impulsively
spraying pesticides when pest density increases to ET
h.

The control strategy with impulsive state needs
observing and recording the number of the pests. In
theory, we can predict the cycle time without repeated
measurements, which can save a lot of manpower and
material resources. The model with impulsive state
feedback control is closer to the reality than the periodic
impulsive model that there is no density dependence.
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Fig. 11 Time series and phase portrait of system (1.2) with h = 1.7, r = 1.53, c = 0.6, ω = 0.8, a = 0.6, β = 0.38

Acknowledgments We would like to sincerely thank the
reviewers for their careful reading of the original manuscript
and many valuable comments and suggestions that greatly
improved the presentation of this paper. This work is supported
by the National Natural Science Foundation of China (11161052,
11371306), the Natural Science Foundation of Guangxi Province
(2011jjA10044), the Scientific Research Foundation of Guangxi
Education Office (201012MS183) and the Sustentation Fund of
the Elitists for Guangxi Universities (GJRC0831).

References

1. Awrejcewicz, J., Tomczak, K., Lamarque, C.-H.: Control-
ling systems with impacts. Int. J. Bifurc. Chaos 9(3),
547–553 (1999)

2. Awrejcewicz, J.: Numerical investigations of the constant
and periodic motions of the human vocal cords including
stability and bifurcation phenomena. Dyn. Stab. Syst. J. 5(1),
11–28 (1990)

3. Pang, G., Chen, L.: Dynamic analysis of a pest-epidemic
model with impulsive control. Math. Comput. Simul. 79,
72–84 (2008)

4. Li, C., Tang, S.: The effects of timing of pulse spraying and
releasing periods on dynamics of generalized predator-prey
model. Int. J. Biomath. 5, 157–183 (2012)

5. Wang, T., Chen, L.: Nonlinear analysis of a microbial pesti-
cide model with impulsive state feedback control. Nonlinear
Dyn. 65(1–2), 1–10 (2011)

6. Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd
edn. Springer, New York (2009)

7. Zhou, Z., Yu, Y.: Poincarè mapping and periodic solution
for the nonlinear differential system. J. Syst. Sci. Math. Sci.
(Chin. Ser.) 26(1), 59–68 (2006)

8. Jin, L., Lu, Q., Wang, Q.: Calculation methods of Floquet
multipliers for non-smooth dynamic system. J. Appl. Mech.
21(3), 21–26 (2004)

9. Luo, A.C.J.: Discontinuous Dynamical Systems. Higher
Education Press and Springer, Beijing and Heidelberg
(2012)

123



Periodic solution of the system 753

10. Chen, L.: Pest control and geometric theory of semi-
continuous dynamical system. J. Beihua Univ. (Nat. Sci.)
12(1), 1–9 (2011)

11. Clark, Colin W.: Mathematical Bioeconomics: The Optimal
Management of Renewable Resources. Wiley, New York
(1990)

12. Bonotto, E.M.: Flows of characteristic in impulsive semidy-
namical systems. J. Math. Anal. Appl. 332(1), 81–96 (2007)

13. Bonotto, E.M.: LaSalle’s theorems in impulsive semidynam-
ical systems. Cad. Mat. 9, 157–168 (2008)

14. Bonotto, E.M., Federson, M.: Limit sets and the Poincarè–
Bendixson theorem in impulsive semidynamical systems. J.
Differ. Equ. 244, 2334–2349 (2008)

15. Bonotto, E.M., Federson, M.: Poisson stability for impul-
sive semidynamical systems. Nonlinear Anal. 71(12),
6148–6156 (2009)

16. Huang, M., Duan, G., Song, X.: A predator–prey system
with impulsive state feedback control. Math. Appl. 25(3),
661–666 (2012)

17. Wei, C., Chen, L.: Periodic solution and heteroclinic bifurca-
tion in a predator–prey system with Allee effect and impul-
sive harvesting. Nonlinear Dyn. 76, 1109–1117 (2013).
doi:10.1007/s11071-013-1194-z

18. Huang, M., Song, X., Guo, H., et al.: Study on species coop-
erative systems with impulsive state feedback control. J.
Syst. Sci. Math. Sci. 32(3), 265–276 (2012)

19. Wei, C., Chen, L.: A Leslie–Gower pest management model
with impulsive state feedback control. J. Biomath. 27(4),
621–628 (2012)

20. Bainov, D., Simeonov, P.: Impulsive Differential Equations:
Periodic Solutions and Applications. Longman Scientific
and Technical, New York (1993)

21. Fu J, Wang Y.: The mathematical study of pest management
strategy. Discret. Dyn. Nat. Soc. (2012). doi:10.1155/2012/
251942

22. Wei C, Zhang S, Chen L.: Impulsive state feedback control of
cheese whey fermentation for single-cell protein production.
J. Appl. Math. (2013). doi:10.1155/2013/354095

23. Chen L.: Theory and application of “semi-continuous
dynamical system”. J. Yulin Norm. Univ. (Nat. Sci.)
2013;34(2):1–10

24. Diliberto, S.P.: Contributions to the Theory of Nonlinear
Oscillations, I. Princeton University Press, Princeton (1950)

123

http://dx.doi.org/10.1007/s11071-013-1194-z
http://dx.doi.org/10.1155/2012/251942
http://dx.doi.org/10.1155/2012/251942
http://dx.doi.org/10.1155/2013/354095

	Periodic solution of the system with impulsive  state feedback control
	Abstract
	1 Introduction
	2 Preliminaries
	3 Existence of the order-1 periodic solution
	4 Stability of the order-1 periodic solution
	5 Numerical analysis and discussion
	References


