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Abstract A class of models of predator–prey inter-
action with Allee effect on the prey population is
presented. Both the Allee effect and the functional
response are modelled in the most simple way by means
of general terms whose conveniently chosen mathema-
tical properties agree with, and generalise, a number of
concrete Leslie–Gower-type models. We show that this
class of models is well posed in the sense that any real-
istic solution is bounded and remains non-negative. By
means of topological equivalences and desingulariza-
tion techniques, we find specific conditions such that
there may be extinction of both species. In particu-
lar, the local basin boundaries of the origin are found
explicitly, which enables one to determine the extinc-
tion or survival of species for any given initial condi-
tion near this equilibrium point. Furthermore, we give
conditions such that an equilibrium point correspond-
ing to a positive steady state may undergo saddle-node,
Hopf and Bogdanov–Takens bifurcations. As a conse-
quence, we are able to describe the dynamics governed
by the bifurcated limit cycles and homoclinic orbits
by means of carefully sketched bifurcation diagrams
and suitable illustrations of the relevant invariant man-
ifolds involved in the overall organisation of the phase
plane. Finally, these findings are applied to concrete
model vector fields; in each case, the particular relevant
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functions that define the conditions for the associated
bifurcations are calculated explicitly.
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1 Introduction

This paper deals with the interaction of two popu-
lations, a prey and a predator species, modelled by
means of two-dimensional differential equations. We
are specially interested in the case when the prey
population faces difficulties to grow from low den-
sities and avoid extinction. This phenomenon, tradi-
tionally known as an Allee effect [6,31,36], is char-
acterised by a tendency of the population growth rate
to decrease under some minimum critical level [8]. In
occasions, the Allee effect is such that the population
growth rate becomes negative and induces an extinction
threshold—commonly known as the Allee threshold—
that the population has to overcome in order to survive
and avoid extinction [8,14,20,41].

Among the causes that may generate an Allee effect
on a population are the difficulty of finding mates
or social interaction [9,19,31]. In this paper, we are
interested in the consequences of an Allee effect on
the prey generated by predation [15,18,23,27,32].
Indeed, when at low densities, the prey population
tends to have difficulties to better defend or hide from
the predator and, in general, to show an antipredator

123



630 P. Aguirre

behaviour [22,40,48,49]. In this scenario, the identi-
fication of basins of attraction of stable equilibrium
points and periodic orbits, as well as their basin bound-
aries, emerge as important challenges in order to predict
the survival or extinction of populations.

The aim of this paper is to propose a general class of
predator–prey models in which the prey population is
subjected to an Allee effect, and to study the conditions
for specific dynamical behaviours. The main novelty of
this family of models is that, rather than stating all the
equation terms explicitly, we model the Allee effect
by means of a general term—called an Allee function
throughout—that multiplies the classic logistic growth
rate in the prey equation; we have called this form a
multiplicative Allee effect. Only a few suitably chosen
basic generic properties are imposed on the Allee func-
tion, in such a way that it agrees with, and generalises,
a number of concrete realistic models studied recently
[4,24,26]. In the same spirit, the predator consumption
rate is conveniently modelled by means of a general
(non-explicit) predation function that has the same fea-
tures of the well-known class of Holling type functional
responses II–IV [34,35,38,40,43,44]; see also [3,4]
and the references therein for further discussion. More-
over, we assume that the typical environmental carrying
capacity of the predator is proportional to prey abun-
dance as in the May–Holling–Tanner model [7] and
other models recently analysed [3,4,25,35,50]. In this
way, this family of models is of Leslie type [25,30,45],
as opposed to the Gause type of interaction in which
the prey–predator mass conversion due to predation fol-
lows a kind of conservation law [24,26,29,46].

While models with known, explicit terms may be the
most common object of study in population dynamics,
the results obtained from general classes of models,
in turn, emerge as a powerful tool to understand—in
a broader setting—the rich dynamics shown in pop-
ulation interactions; see [16,29] for instance. Hence,
our goal is to shed light on the specific conditions that
our proposed, prototype model must meet in order to
present certain dynamical behaviours which are com-
mon to several—sometimes unrelated—concrete mod-
els. While a Gause-type class of models with the so-
called strong Allee effect was proposed recently in the
same spirit [46], the work in this paper is the first exam-
ple, as far as this author knows, in which a general fam-
ily of Leslie–Gower-type predation models with Allee

effect (and with any degree of severity, strong or oth-
erwise) is investigated.

Our family of models is studied with analytical tools
from dynamical systems theory. More concretely, by
means of topological equivalences [7,28,33], suitable
changes of parameters, and a smooth extension to the
entire first quadrant, we are able to construct suitable
vector fields in which the analysis is carried out. With
this approach, we construct an invariant compact region
in phase plane, which enables us to show that the model
is well posed in the sense that any realistic solution
remains non-negative and is always bounded. The local
stability of equilibria is explored as well. The origin
turns out to be a non-hyperbolic equilibrium [21] and,
hence, desingularization methods are needed to study
the local dynamics near this point. In this way, we found
the conditions on the general model such that the origin
has a non-trivial basin of attraction and we calculate the
relevant separatrices explicitly.

Positive equilibria are studied as well using an
approach from bifurcation theory. More concretely,
we find specific conditions such that our model may
undergo saddle-node and Hopf bifurcations [28]. We
also find explicit conditions such that a positive equilib-
rium undergoes a codimension-two Bogdanov–Takens
bifurcation [13,33]. These results enable us to unravel
the role of the Bogdanov–Takens point as an organi-
sation centre for the global dynamics of our model. In
particular, we are able to describe the bifurcations of
limit cycles and homoclinic orbits that the model may
present under certain regimes. These global phenom-
ena are complemented, in each case, with bifurcation
diagrams and topological sketches of selected scenarios
of different phase portraits for representative parameter
values near the Bogdanov–Takens point. Our findings
are illustrated with a series of concrete functional forms
for the Allee function and functional response.

This paper is structured as follows: the model and
general settings are presented in Sect. 2. In Sect. 3 we
study the boundedness of the model family. Section 4
treats the local stability of equilibria in the absence of
predator, including the analysis at the origin. Section 5
presents the study of positive equilibria and conditions
for bifurcations. Section 7 illustrates our findings in
concrete model vector fields. Finally, in Sect. 8 we sum-
marise and discuss the main results in this paper, as
well as explore possible future avenues of research.
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A general class of predation models with multiplicative Allee effect 631

An “Appendix” is also included featuring a normal
form theorem for the Bogdanov–Takens point studied
in Sect. 5.

2 Problem setup

2.1 The general model

We consider the following family of predation models
given by differential equations of the general form:

X :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = r x
(

1 − x

k

)
A(x) − φ(x) y;

ẏ = s y
(

1 − y

nx

)
;

(1)

where (x(t), y(t)) ∈ D := {(x, y) ∈ R
2| x >

0, y ≥ 0} represents the population densities of prey
and predator, respectively, in time t > 0. Parameter
r > 0 (resp. s > 0) is the intrinsic growth rate or
biotic potential of the population x (resp. y), and k > 0
is the environment carrying capacity of x [37]. More-
over, the conventional environmental carrying capacity
Ky of the predator is proportional to prey availability
x as a resource for the predator [37], that is, Ky = nx ,
where n > 0.

The term A(x) models an Allee effect that affects the
prey population. Since A(x) is effectively multiplying
the well-known logistic term in the prey equation, we
call it a multiplicative Allee effect as opposed to the
additive case found in [3–5,41]. Our aim is to provide
the Allee function A(x) with the minimum amount of
functional properties such that it emerges as a gener-
alisation of a number of existing models with multi-
plicative Allee effect; see [11,24,45] for instance. More
concretely, we assume that A(x) is sufficiently smooth
for every x ∈ R and satisfies the following conditions:

– (A.1) There exists a value m ∈ R with |m| < k,
such that A(m) = 0.

– (A.2) A′(x) > 0, for all x > 0.
– (A.3) limx→0+ A(x) = M < ∞.

Note that A(x) is an increasing function, but it may not
be bounded. In particular, conditions (A.1) and (A.2)
ensure that there is a certain value m such that A(x) > 0
for every x > m. Hence, if 0 < x < m, then A(x) < 0
and the prey growth rate is negative for sufficiently
small values of x ; this phenomenon is called a strong

Allee effect [4]. On the other hand, if m ≤ 0, one speaks
of a weak Allee effect; see [5,9,41] for details.

On the other hand, the term φ(x) models the per
capita prey consumption by the predator or functional
response. In the same spirit as with the Allee function,
we do not assume an explicit form for φ(x). Neverthe-
less, φ(x) is taken to be smooth enough and bounded
for every x ∈ R. More specifically, it is assumed that
φ(x) satisfies the following conditions:

– (B.1) φ(0) = 0.
– (B.2) φ′(x) > 0, for all x ≥ 0.
– (B.3) limx→∞ φ(x) = N < ∞.

For example, any such function φ(x) that satisfies con-
ditions (B.1)–(B.3) may have the explicit form of a
Holling type II–IV functional response [35,40,44,48,
49].

2.2 An extended system

It is convenient to treat the system (1) as a vector field
in which each equation is a coordinate function. The
vector field (1) is not defined along the axis {x = 0}.
To deal with this, we provide an extension to the y-axis
by means of the transformation

(x, y, t) �→
(

x, ny,
xt

ns

)

(2)

and the change of parameters

(r, k, s, n) �→
(

r, k,
1

β
,

rβ

αk

)

. (3)

In this way, the new vector field, denoted as Y, is given
as

Y :
{

ẋ = α(k − x)A(x) x2 − β φ(x) x y;
ẏ = y (x − y); (4)

where α, β > 0.
The change of coordinates (2) and reparameteriza-

tion (3) define a smooth orientation-preserving bijec-
tion between orbits of Y restricted to D and orbits of
X [7,21,28,33]. Hence, the vector field Y is a C∞-
qualitatively equivalent extension of X to the entire first
quadrant D := {(x, y) ∈ R

2| x ≥ 0, y ≥ 0}. In other
words, the orbits of Y—restricted to D—have the same
topological structure as those of X and, additionally, Y
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is well defined in the axis {x = 0}. As a consequence,
it is more convenient to study system (4) throughout;
see also [3,4,24–26].

2.3 Additional definitions and notation

The vector field Y defines a flow �t that determines
the dynamics in D. Any point x∗ = (x∗, y∗) such
that Y(x∗) = (0, 0) is an equilibrium point of (4). If
the eigenvalues λ1, λ2 of the Jacobian matrix DY(x∗)
have non-zero real part, one says that the equilibrium is
hyperbolic. In such case, the Hartman–Grobman theo-
rem [7,28,33] ensures that the real parts of these eigen-
values are the contraction/expansion rates of the solu-
tions in a vicinity of x∗. Indeed, if both eigenvalues
have negative (resp. positive) real part, the equilibrium
is an attractor (resp. repeller); in particular, in either
scenario, if λ1 and λ2 are complex conjugate, one says
that x∗ is a stable or unstable focus, respectively, since
the nearby orbits spiral into or out of a neighbourhood
of the equilibrium.

If x∗ is a stable equilibrium, then there exists a neigh-
bourhood U of x∗ that satisfies

�t (U ) ⊂ U (∀t ≥ 0) and
⋂

t>0

�t (U ) = x∗, (5)

that is, the set U is invariant and orbits within it con-
verge to x∗ in forward time. The basin of attraction
B(x∗) of x∗ is then the set of all points in phase space
that converge to x∗ in forward time; it can be defined
as

B(x∗) =
⋃

t≤0

�t (U ), (6)

where U ⊂ R
2 is any open neighbourhood of x∗ satis-

fying (5).
If the eigenvalues λ1 and λ2 have opposite signs,

x∗ is a hyperbolic saddle point. In this case, the Sta-
ble Manifold Theorem [28,33] ensures that x∗ has a
one-dimensional stable (resp. unstable) manifold that
is tangent at x∗ to the eigenspace associated to λ1 < 0
(resp. λ2 > 0). These invariant sets are (immersed)
manifolds as smooth as Y and are defined as

W s(x∗) = {
x ∈ R

2 | �t (x) → x∗ as t → ∞}
,

W u(x∗) = {
x ∈ R

2 | �t (x) → x∗ as t → −∞}
,

respectively.

If (at least) one of the eigenvalues of x∗ has a zero
real part, the equilibrium is non-hyperbolic and stan-
dard linear analysis does not apply. Typically, in such
a case, the equilibrium undergoes a local bifurcation
whose unfolding depends on the non-zero eigenvalue,
if any, and higher order terms of the system (4) [28,33].
Other techniques to study non-hyperbolic equilibria
are the centre manifold theorem and desingularisation
methods that enable one to find the local structure of
orbits in a vicinity of x∗ [21].

The system (4) may also have a limit cycle γ , that
is, an isolated closed orbit. Such a periodic solution γ

is stable (resp. unstable) if nearby orbits approach γ in
forward (resp. backward) time. The basin of attraction
B(γ ) of a stable limit cycle γ can be defined in an
analogous way by replacing γ in (6) accordingly.

3 The family of models is well posed

Since Y(x, 0) = (
α (k − x − A(x)) x2, 0

)T
and

Y(0, y) = (0,−y2)T , the vector field Y is invariant
along the coordinate axes. It follows that every orbit of
Y in the interior of the first quadrant—and by exten-
sion, every corresponding orbit of X—remains inside
that region.

Theorem 1 Under the assumptions (A.1)–(A.3) and
(B.1)–(B.3), the solutions of the general system (4) are
bounded.

Proof of Theorem 1 Our aim is to prove that no trajec-
tory of Y converges to infinity. The first task is to prove
that for every ω > k, the set

Dω := {(x, y) ∈ R
2 : 0 ≤ x < ω, 0 ≤ y < ω} ⊂ D

is invariant by examining the dynamics in its boundary

∂Dω=Vω ∪ Hω ∪ {(x, y) : x=0} ∪ {(x, y) : y = 0},
where Vω := {(x, y) : x = ω, y > 0} and Hω :=
{(x, y) : y = ω, x > 0}; see Fig. 1.

Let us define the function fω : R
2 −→ R, given

by fω(x, y) = x − ω. For each ω > 0, consider the
vertical line

Vω = f −1
ω (0) ∩ D

in the (x, y)-plane. Geometrically, f −1
ω (−∞, 0) ∩ D

is a vertical stripe that extends in the y-direction and
its boundary is ∂

(
f −1
ω (−∞, 0) ∩ D) = Vω ∪ {y =
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•
0 xω

Vω

Hω

Dω

y

ω

Fig. 1 The invariant set Dω defined for a suitable ω > k

0} ∪ {x = 0}. Similarly, let gω : R
2 −→ R be given

by gω(x, y) = y − ω. For each ω > 0, consider the
horizontal line

Hω = g−1
ω (0) ∩ D

which forms the upper boundary of a horizontal stripe
in the (x, y)-plane. In this way,

Dω = f −1
ω (−∞, 0) ∩ g−1

ω (−∞, 0) ∩ D;
see Fig. 1.

With this construction in mind, we first prove that
every solution of Y on the line Vω enters the region
f −1
ω (−∞, 0) transversally; see Fig. 1. Since the vector

field Y is tangent to every solution, this is equivalent to
prove that the dot product Y · ∇ fω is negative in every
point on the line Vω for a suitable choice of ω > 0. We
have that for every (x, y) = (ω, y) ∈ Vω:

ϕω(y) :=Y · ∇ fω|Vω =α ω2 (k−ω) A(ω)−β φ(ω)ωy,

Geometrically, from conditions (B.1)–(B.3), the
graph of ϕω(y) as a function of y is a straight line with
negative slope −β φ(ω)ω < 0 and intercept

α ω2 (k − ω) A(ω).

From conditions (A.1) and (A.2), for every ω > k, the
following inequalities hold:

k − ω < 0 < A(ω). (7)

Hence, for every ω > k, ϕω(y) < 0 as desired.
On the other hand, following the same approach for

the structure of Y along the line Hω:

Y · ∇gω|Hω = ω(x − ω) < 0,

for every point (x, y) = (x, ω) with x < ω. Therefore,
if 0 < x < ω, for every point (x, y) ∈ Hω, its asso-
ciated trajectory crosses this line transversally towards
the region g−1

ω (−∞, 0).
Furthermore, Y(0, y) = (0,−y2)T along the invari-

ant axis x = 0 and, hence, trajectories converge to
the origin (x, y) = (0, 0). On the other hand, along

y = 0, Y(x, 0) = (
α x2(k − x)A(x), 0

)T
. From (7),

α x2(k − x)A(x) < 0 for every x ≥ ω > k. As a
consequence, no trajectory along the coordinate axes
converges to infinity.

To sum up, for any arbitrary ω > k, every solu-
tion inside Dω cannot leave this region again in for-
ward time and, in particular, these solutions remain
bounded. Therefore, for any given initial condition
(x(0), y(0)) ∈ D, there is a value ω∗ > k such that the
orbit (x(t), y(t)) of Y through the point (x(0), y(0))

is entirely contained, for every t > 0, in the bounded,
invariant set Dω for every ω ≥ ω∗. ��

4 Equilibrium points in the x-axis

The class of systems (4) always has an equilibrium
point at the origin 0 ∈ R

2 and at (k, 0). In the case
of strong Allee effect, i.e. if m > 0, it can also have
another equilibrium at (m, 0).

Lemma 1 Consider the family of models (4) and
assume that conditions (A.1)–(A.3) and (B.1)–(B.3)
hold. In particular, let m ∈ R be as in (A.1). Then, the
following holds:

(a) The equilibrium (k, 0) is a hyperbolic saddle point.
(b) If m > 0, the equilibrium (m, 0) is a hyperbolic

repeller.

Proof of Lemma 1 The eigenvalues of the Jacobian
matrix DY(k, 0) are λk

1 = −αk2 A(k) < 0 and
λk

2 = k > 0. Similarly, if m > 0, the eigenvalues
of DY(m, 0) are λm

1 = αm2(k − m)A′(m) > 0 and
λm

2 = m > 0. The results follow directly from the
Hartman–Grobman theorem [7,28,33]. ��

By calculating the eigenvectors of DY(k, 0), it is
easy to find that the upper branch of the stable manifold
W s(k, 0) of (k, 0) is contained in the x-axis.

Figure 2 shows sketches of the different possible
qualitative dynamics in a neighbourhood of the origin.
In the case of strong Allee effect, the origin is always
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Fig. 2 The four possible
qualitative behaviours of the
dynamics near the origin in
(4). In panel a, the origin is
an attractor for all nearby
orbits; in panels b and c, no
orbit in the interior of D
converges to 0. In panel d, a
separatrix Γ appears and
forms the boundary of the
parabolic and elliptic
components of the basin of
attraction B(0) of the origin

•
0 x

(c)
y

•
0 x

Γ

(d)

B(0)

y

•
0 x

(a)
B(0)

y

•
0 x

Γ

(b)
y

a local attractor; see the basin of attraction B(0) in
panel (a). On the other hand, for a weak Allee effect,
with m ≤ 0, extinction is avoided in panels (b) and
(c) where every solution in the interior of D remains
in this region. The fourth possibility—with m = 0 and
additional conditions on parameters—is shown in panel
(d) where a separatrix curve Γ appears and forms the
boundary of a parabolic and an elliptic sector [21] in
the basin of attraction B(0) of the origin. In particular,
orbits below Γ make an excursion in an elliptic fashion
before converging to the origin.

In order to find and prove the different configurations
in Fig. 2 in dependence of parameters, we define the
following quantities:

μ := 1 − αk A(0), (8)

C1(m) := βφ′(0) − αk A′(0), (9)

and

C2(m) := 2αA′(0) + βφ′′(0) − αk A′′(0). (10)

Theorem 2 Consider the family of models (4) and
assume that conditions (A.1)–(A.3) and (B.1)–(B.3)

hold. In particular, let m ∈ R be as in (A.1). Then, the
local dynamics near 0 is as in Fig. 2 in a sufficiently
small neighbourhood of 0. More concretely,

(a) If m > 0, the origin 0 is a local attractor as in
Fig. 2a. In addition, the same configuration occurs
if m = 0, A′(0) = 0 and A′′(0) < 0.

(b) If m < 0 and μ > 0, the origin 0 has a par-
abolic repelling sector and a hyperbolic sector as in
Fig. 2b. Additionally, the same configuration hap-
pens if m = 0 and C1(0) < 0, or if m = 0,
C1(0) = 0 and C2(0) < 0.

(c) If m < 0 and μ ≤ 0, the origin 0 has an hyperbolic
sector as in Fig. 2c.

(d) If m = 0 and C1(0) > 0, the origin 0 has a par-
abolic attracting sector and an elliptic sector as in
Fig. 2d. Additionally, the same configuration hap-
pens if m = 0, C1(0) = 0 and C2(0) > 0, or if
m = 0, A′(0) = 0 and A′′(0) > 0.

Proof of Theorem 2 From Theorem 1, any orbit along
the y-axis converges towards the origin. Moreover,
from Lemma 1, if m > 0, any orbit along the x-axis
converges to the origin provided its initial condition
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A general class of predation models with multiplicative Allee effect 635

(x(0), 0) satisfies x(0) < m. In turn, if m < 0, any orbit
along the x-axis diverges from the origin provided its
initial condition (x(0), 0) satisfies x(0) < k. (The case
m = 0 is analysed later in this proof). It remains to find
the other separatrices near 0, if any, and the dynamics
restricted to them.

Since DY(0) is the null matrix, the origin 0 is a non-
hyperbolic equilibrium point of (4). Therefore, we use
the blow-up technique [3,21,28] in order to get infor-
mation about the dynamics near the origin. We consider
the horizontal blow-up given by the transformation

(x, y) = (u, u v). (11)

Note that (11) effectively ‘blows up’ the origin (x, y) =
(0, 0) in the entire line u = 0 which consists of a conti-
nuum of equilibria. Hence, in addition, we use the time
rescaling

t �→ t/u (12)

and obtain the new vector field, denoted as Ỹ, given by

Ỹ :
{

u̇ = u[α(k − u)A(u) − βvφ(u)];
v̇ = v[1 − v + α(u − k)A(u) + βvφ(u)],

(13)

which has only two equilibria of the form (0, v). For a
start, the origin (u, v) = (0, 0) is an equilibrium point
of (13) with Jacobian matrix

DỸ(0, 0) =
(

1 − μ 0
0 μ

)

,

where μ is as in (8).
Moreover, there is a second equilibrium point on

the v-axis at (u, v) = (0, μ) with associated Jacobian
matrix

DỸ(0, μ) =
(

1 − μ 0
V −μ

)

,

where V := −μ
(
α(k A′(0) − A(0)) − βμφ′(0)

)
.

Case 1: m > 0. If m > 0, then A(0) < 0 and one
always has μ > 0 and 1−μ < 0. Therefore, (0, 0) is a
saddle and (0, μ) is an attractor of (13). Furthermore,
the associated local invariant curves are the axes u = 0
and v = 0.

Hence, by taking the inverse of (11) and (12), the
line u = 0—including the point (0, μ)—is collapsed
to the origin of system (4), the line v = 0 is mapped to

y = 0 and the basin of attraction of (0, μ) is mapped
to the region (locally) bounded by x = 0 and y = 0.
Since (12) preserves time-orientation for u > 0, every
orbit in this open region converges to the origin of (4)
in forward time. Hence, 0 is a local attractor as stated
in part (a).

Case 2: m < 0. Analysed in a similar fashion to
the previous case. We state the essential facts and leave
the details to the interested reader. Condition m < 0
implies that A(0) > 0 and one has the following three
cases:

Case 2.1: μ > 0. The equilibrium (0, 0) is now a
repeller. On the other hand, the equilibrium (0, μ)—
which is now a saddle—is repelling along the curve
Γ̃ := {(u, v)| v = μ + V u + O(u2)}. (Note that the
curve Γ̃ is a local approximation of the unstable man-
ifold W u(0, μ) of (0, μ)). Hence, by ‘blowing-down’
to the system (4), Γ̃ is mapped to Γ := {(x, y)| y =
μx + V x2 + O(x3) }, which is a local separatrix and
the dynamics near 0 is as in part (b).

Case 2.2: μ < 0. Analogous to Case 2.1. The origin
(0, 0) is a repeller and (0, μ) is a saddle in (13). How-
ever, by blowing-down to system (4), the slope of Γ at
0 is μ < 0 and, hence, this curve is contained in the
exterior of D. Therefore, the local dynamics near 0 is
as in part (c).

Case 2.3: μ = 0. The equilibrium (0, μ) collides
with the origin of (13) and undergoes a transcriti-
cal bifurcation, i.e. their topological stability is inter-
changed [28,33]; see Cases 2.1 and 2.2. By the contin-
uous dependence of (13) on the model parameters, the
local dynamics near 0 is as in part (c).

Case 3: m = 0. This condition implies A(0) = 0
and μ = 1. Hence, V is reduced to C1(0) in (9). In what
follows we simplify the notation and denote C1(0) =
C1 and C2(0) = C2.

Both equilibria (0, 0) and (0, 1) in (13) have a zero
eigenvalue and, hence, both are non-hyperbolic. In
order to find the local dynamics near these equilib-
ria, we calculate their centre manifolds W c(0, 0) and
W c(0, 1), which are one-dimensional invariant mani-
folds associated with the zero eigenvalue of (0, 0) and
(0, 1), respectively [28,33]. A local approximation of
W c(0, 1) in the (u, v)-plane near (0, 1) is given as the
graph of the function

v = h(u) := 1 + C1u + 1

4

(
C2 + 2βφ′(0)C1

)
u2

+ O(u3),

123



636 P. Aguirre

where C1 is as in (9) and C2 is as in (10). Analo-
gously, in the (u, v)-plane near (0, 0), the centre mani-
fold W c(0, 0) is given locally as the graph of a function
of the form v = O(un), for any n sufficiently large.
Hence, we approximate W c(0, 0) locally as the axis
{v = 0}.

From centre manifolds theory [28,33], the dynamics
near each equilibrium (0, 0) and (0, 1) is dominated by
the vector field restricted to its centre manifold. For a
start, the horizontal component of the vector field Ỹ
restricted to W c(0, 1) near (0, 1) is given as

u̇|W c(0,1) = −C1u2 − 1

4

(
C2 + 2βφ′(0)C1

)
u3 + O(u4).

Analogously, the horizontal component of the vector
field Ỹ restricted to W c(0, 0) near (0, 0) is given as

u̇|W c(0,0) = αk A′(0)u2 − 1

2
α
(
2A′(0) − A′′(0)k

)
u3

+ O(u4).

The desired statements now follow directly from
‘blowing-down’ the dynamics in Ỹ back to Y. In parti-
cular, in a neighbourhood of 0 in (4), the inverse image
of the curve {(u, v)| v = h(u)} by (11)–(12) is the
invariant curve

Γ = {(x, y)| y = x + C1x2

+ 1

4

(
C2 + 2βφ′(0)C1

)
x3 + O(x4)}.

On the other hand, by blowing-down W c(0, 0), one
obtains the x-axis in (4).

Finally, note that a vertical blow-up does not provide
additional information. ��

In the previous proof, if the coefficients C1 and C2

vanish simultaneously, one needs to compute higher
order terms in the expansion of the vector field Ỹ
restricted to W c(0, 1) in order to determine the dynam-
ics in the case m = 0. A similar analysis has to be done
for W c(0, 0) as well if A′(0) = A′′(0) = 0. Given
a Taylor expansion of Ỹ around either equilibrium, a
quick look at the coefficients up to order 4 suggests
the following conjecture for the dynamics restricted to
W c(0, 1) and W c(0, 0):

Conjecture Consider the family of models (4) and
assume that conditions (A.1)–(A.3) and (B.1)–(B.3)
hold. In particular, let m = 0. If C1 = C2 = · · · =
Cn−1 = 0 and Cn �= 0, then

u̇|W c(0,1) = −MC Cnun+1 + O(un+2),

with Cn = nαA(n−1)(0) + βφ(n)(0) − αk A(n)(0) and
where MC > 0 is a constant.

Similarly, if A′(0) = A′′(0) = · · · = A(n−1)(0) = 0
and A(n)(0) �= 0, then

u̇|W c(0,0) = MA A(n)(0)un+1 + O(un+2),

where MA > 0 is a constant.

Nevertheless, regardless of how many vanishing
coefficients one has in the corresponding Taylor expan-
sion, condition A′(0) = 0 implies C1 > 0 and, hence,
u̇|W c(0,1) < 0 near (0, 1). On the other hand, C1 = 0
implies A′(0) > 0; as a consequence, u̇|W c(0,0) > 0
near (0, 0). Therefore, the possible qualitative dynam-
ics near the origin 0 in (4) is always limited to any of
the four options stated in Theorem 2.

5 Local stability of positive equilibria

Equilibrium points of (4) in the interior of D are located
on the diagonal y = x . Let p = (p, p) be any such
equilibrium, with p > 0. It is straightforward to see
that a necessary condition for p to exist is:

– (C.1) (k − p)A(p) > 0.

Consider the change of parameters

(r, k, β) �→
(

r, k,
(k − p)A(p)

φ(p)

)

(14)

and the transformation

(x, y, t) �→ (x + p, y + p, t φ(p)) . (15)

Since conditions (B.1) and (B.2) ensure that φ(p) >

0, (14) and (15) define a C∞-equivalency between (4)
and a new vector field, denoted as Z, given as the system

Z :
⎧
⎨

⎩

ẋ = α(x+p) [(x+p)(k−p−x)A(x+p)φ(p)

−(k − p)(y + p)A(p)φ(x + p)] ;
ẏ = (x − y)(y + p)φ(p).

(16)

The advantage of (16) is that the equilibrium point
of interest is now at the origin.
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Let us define the following quantities:

S(k) := (k − p)
[
φ′(p)A(p) − φ(p)A′(p)

]

+A(p)φ(p), (17)

H(α, k) := α [(k − p)A(p)φ(p) − p S(k)] − φ(p).

(18)

Lemma 2 Consider the family of models (16) and
assume that conditions (A.1)–(A.3), (B.1)–(B.3) and
(C.1) are met. Then, the following holds:

(a) If S > 0 and H < 0, the equilibrium (0, 0) is a
hyperbolic attractor.

(b) If S > 0 and H > 0, the equilibrium (0, 0) is a
hyperbolic repeller.

(c) If S < 0, the equilibrium (0, 0) is a hyperbolic
saddle.

(d) If S > 0 and H = 0, the equilibrium (0, 0) under-
goes a Hopf bifurcation.

Proof of Lemma 2 The eigenvalues of the Jacobian
matrix DZ(0, 0) are

λ
p
1,2 = p

2

(

H ±
√

H2 − 4 α p φ(p)S

)

.

Since α > 0, p > 0 and φ(p) > 0, statements (a),
(b) and (c) follow directly from the Hartman–Grobman
theorem.

In the particular case that H2 ≤ 4 α p φ(p)S and
S > 0, the eigenvalues of (0, 0) are complex conjugate

with real part Re(λp
1,2) = pH

2
and (0, 0) is a focus.

Hence, if H = 0, the eigenvalues λ
p
1,2 ∈ C cross the

imaginary axis and the equilibrium (0, 0) undergoes a
Hopf bifurcation. ��

Next, we give conditions such that our family
of models undergoes a Bogdanov–Takens bifurcation
under suitable parameter variation.

Let us define the following quantities:

G1 = A2(p) + p[φ′(p)A(p) − φ(p)A′(p)],
G2 = φ(p)

(
A(p)A′′(p) − 2(A′(p))2)

+ A(p)
(
2A′(p)φ′(p) − A(p)φ′′(p)

)
,

J20 =φ(p)
(
4(A′(p))2 − 2A(p)A′′(p)+ p A′(p)A′′(p)

)

+ A(p)
(
2A(p)φ′′(p)−φ′(p)(4A′(p)+ p A′′(p))

)
,

J11 = 2A2φ′(p) + p
(
3pφ(p)[2A2(p)φ′′(p) − J20]

+A2(p)φ′′(p)(1 − 6pφ(p))
)
.

Theorem 3 Suppose that the family of vector fields
(16) satisfies assumptions (A.1)–(A.3), (B.1)–(B.3)
and (C.1), and let S and H be as in (17) and (18),
respectively. Additionally, suppose that the following
conditions hold:

– (BT.1) G1 �= 0.
– (BT.2) G2 �= 0.
– (BT.3) J20 �= 0.
– (BT.4) A2(p)

(
2φ′(p) + pφ′′(p)

) − 3p J20 �= 0.

Then, if S = 0 and H = 0, the origin (0, 0) in
(16) undergoes a codimension-two Bogdanov–Takens
bifurcation.

Proof of Theorem 3 The proof is based on the con-
struction in the “Appendix”, namely, it suffices to verify
that the theorem therein is satisfied: We prove the exis-
tence of a germ of a Bogdanov–Takens bifurcation and
show that the conditions (BT.1)–(BT.4) ensure that the
system is locally topologically equivalent to a normal
form of the Bogdanov–Takens bifurcation. We refer
to the “Appendix” and the references therein for the
derivation of the genericity conditions that need to be
verified during this proof.

For the sake of clarity, it is convenient to state the
dependence of the vector field Z on parameters α and
k explicitly. Hence, throughout this proof we write

Z = Z(x, y;α, k)

and denote the Jacobian matrix of Z with respect to the
variables (x, y) as

∂Z
∂(x, y)

(x, y;α, k).

Step 1. We verify that the singularity has a double
zero eigenvalue with geometric multiplicity one.

From condition (C.1), S = 0 implies that

ϕ := φ′(p)A(p) − φ(p)A′(p) �= 0. (19)

Hence, equations S(k) = 0 and H(α, k) = 0 determine
the bifurcation point (α, k) = (α∗, k∗) implicitly in the
form:

α∗ = − 1

A(p)

ϕ

A(p)φ(p)
; (20)

k∗ = p − A(p)φ(p)

ϕ
. (21)

From the proof of Lemma 2, at (α, k) = (α∗, k∗),
the equilibrium (x, y) = (0, 0) has a double zero eigen-
value. Moreover, the linear part of Z with respect to
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(x, y) at (0, 0) is

∂Z
∂(x, y)

(0, 0;α∗, k∗) =
(

pφ(p) −pφ(p)

pφ(p) −pφ(p)

)

, (22)

and its generalised eigenvectors are

v1 = (1, 1)T and (23)

v2 =
(

1,
pφ(p) − 1

pφ(p)

)T

. (24)

In particular, note that the Jacobian matrix ∂Z
∂(x,y)

at
(0, 0;α∗, k∗) is not the null matrix.

Step 2. The next goal is to prove that the following
genericity condition of a Bogdanov–Takens bifurcation
is met, namely, that the map

� : R
4 → R

4, (x, y, α, k) �→ (Z, T,)

is regular at (x, y, α, k) = (0, 0, α∗, k∗), where T and
 are the trace and determinant of the matrix

∂Z
∂(x, y)

(x, y;α, k),

respectively. In particular, note that T (0, 0;α, k) =
pH(α, k) and (0, 0;α, k) = αp3φ(p)S(k).

After some calculations, det D�(0, 0, α∗, k∗) can
be written as the following product:

det D�(0, 0, α∗, k∗) = −p3φ2(p)(k∗ − p)

×
(

∂

∂x
(0, 0, α∗, k∗) + p2φ(p)φ′(p)

)

G1,

where

∂

∂x
(0, 0, α∗, k∗) = −p2φ(p)

A2(p)

(

2ϕ p A′(p)

+ A(p)
(
3ϕ + φ(p)(3A′(p) + p A′′(p))

)

− A2(p)(2φ′(p) + pφ′′(p))

)

.

Note that condition (C.1) prevents the term k∗ − p
in det D�(0, 0, α∗, k∗) to vanish. Furthermore, from
condition (BT.1), G1 �= 0. Moreover, the remaining
factor
∂

∂x
(0, 0, α∗, k∗) + p2φ(p)φ′(p) = −p3φ(p)

A2(p)
G2 �= 0,

after some algebraic manipulation and thanks to con-
dition (BT.2). Therefore,

det D�(0, 0, α∗, k∗) �= 0 (25)

and the map� is regular at (x, y, α, k) = (0, 0, α∗, k∗).
Step 3. We now prove that Z(x, y;α, k) satisfies

the remaining genericity conditions to exhibit the
Bogdanov–Takens bifurcation; we refer to the “Appen-
dix” again.

Let P = [v1, v2] be the matrix whose columns are v1

and v2; see (23) and (24). Next, consider the following
change of coordinates:

(
u
v

)

= P−1
(

x
y

)

, (26)

Note that the origin (x, y) = (0, 0) is mapped by
(26) to (u, v) = (0, 0). Then, the vector field given by

J = P−1 ◦ Z ◦ P,

is C∞-conjugated to Z.
Taking a Taylor expansion of J(u, v;α, k) with res-

pect to (u, v) around (u, v) = (0, 0) and evaluating at
(α, k) = (α∗, k∗), one obtains

(
u̇
v̇

)

=
(

0 1
0 0

)(
u
v

)

+ 1

A2(p)

(
a20u2+O(||(u, v)||3)

b20u2+b11uv+O(||(u, v)||3),
)

where

a20 = 3p (pφ(p) − 1) J20,

b20 = −3p2φ(p)J20,

and b11 = J11. (27)

Condition (BT.3) ensures that

b20 �= 0. (28)

Furthermore, after some algebraic manipulation, one
obtains

a20 + b11 = A2(p)
(
2φ′(p) + pφ′′(p)

) − 3p J20 �= 0,

(29)

because of condition (BT.4).
Therefore, (22) and inequalities (25), (28) and (29)

ensure that the genericity conditions of a Bogdanov–
Takens normal form are satisfied; see the “Appendix”.
Hence, there exists a smooth, invertible transformation
of coordinates, an orientation-preserving time rescal-
ing, and a reparametrization such that, in a sufficiently
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small neighbourhood of (x, y, α, k) = (0, 0, α∗, k∗),
the system (16) is topologically equivalent to one of the
following normal forms of a Bogdanov–Takens bifur-
cation:

{
ξ̇1 = ξ2,

ξ̇2 = β1 + β2ξ2 + ξ2
2 ± ξ1ξ2,

(30)

where the sign of the term ξ1ξ2 in (30) is determined
by the sign of b20(a20 + b11). ��

Under the conditions of Theorem 3, the unfolding
of the Bogdanov–Takens point in (16) includes a sin-
gle limit cycle, which can be either stable or unstable.
Conditions for either case are collected in the following
corollary.

Corollary 1 Under the hypotheses of Theorem 3, there
is an open region in parameter space such that system
(16) has a unique small-amplitude limit cycle that sur-
rounds the origin (x, y) = (0, 0). Moreover, the limit
cycle is stable if sign (b20(a20 + b11)) = −1, and it is
unstable if sign (b20(a20 + b11)) = 1, where b20, a20

and b11 are as in (27).

Proof of Corollary 1 The result follows from the
unfolding of the normal form (30) of the Bogdanov–
Takens bifurcation. More precisely, the associated Hopf
bifurcation near the codimension-two point is either
supercritical if sign (b20(a20 + b11)) = −1, or subcrit-
ical if sign (b20(a20 + b11)) = 1, which gives rise to a
stable or unstable limit cycle, respectively; we refer to
[33] for details.

In the proof of Theorem 3 , the implicit function
theorem guarantees that there exists an open neigh-
bourhood V of (α, k) = (α∗, k∗), in which the cor-
responding terms b20 = b20(α, k), a20 = a20(α, k)

and b11 = b11(α, k) in the Taylor expansion of sys-
tem J(u, v;α, k) near (u, v) = (0, 0) are such that the
expression b20(a20+b11) does not vanish and, hence, it
is either positive or negative. This ensures that the Hopf
bifurcation in V is of codimension-one and rules out
the possibility of additional infinitesimal limit cycles.
Finally—from the unfolding of the Bogdanov–Takens
point [33], under suitable variation of (α, k) in V, this
limit cycle disappears at a codimension-one homoclinic
bifurcation and no extra bifurcations of limit cycles
occur. ��

Note that this corollary does not dismiss the possibil-
ity of additional limit cycles under different parameter

regimes. Indeed, bifurcations of higher codimension
may occur, such as generalised Hopf bifurcations, giv-
ing rise to the coexistence of multiple limit cycles [4].
In addition, whenever one of the conditions (BT.1)–
(BT.4) is violated, the system may undergo a higher
codimension Bogdanov–Takens bifurcation. In either
case, one has to look at higher order terms in suitable
normal forms in order to characterise the associated
unfolding.

6 Bifurcation analysis

Theorem 3 gives a criterium to detect a Bogdanov–
Takens bifurcation in (4). Under the hypotheses of
Theorem 3, only two types of unfoldings are possi-
ble depending on the stability of the bifurcated limit
cycle, which is determined by Corollary 1. Figures 3a
and 4a show topological sketches of the two possi-
ble bifurcation diagrams in the (α, k)-plane near the
Bogdanov–Takens point—labelled as BT—in the case
when the limit cycle is stable and unstable, respec-
tively. In both cases, these diagrams remain valid in a
sufficiently small neighbourhood of the BT point. The
accompanying panels show sketches of the qualitative
dynamics near the point p for representative parameter
values around the codimension-two point BT.

Let us first describe in more detail the elements in the
bifurcation diagrams. From Lemma 2, equation S(k) =
0 in (17) defines a locus of saddle-node bifurcation.
Geometrically, the curve {(α, k) ∈ R

2+ : S(k) = 0}—
denoted as SN in Figs. 3a and 4a—is a horizontal line
for k = k∗ fixed in the first quadrant of the (α, k)-
plane; see (21). Moreover, the curve SN indicates the
presence of a secondary equilibrium point q = (q, q),
with q > 0, which is a hyperbolic saddle for parameter
values in the half plane k < k∗.

On the other hand, the equation H(α, k) = 0 in (18)
defines a locus of Hopf bifurcation. Moreover, since
φ(p) > 0, condition H(α, k) = 0 implies that

∂ H

∂α
= (k − p)A(p)φ(p) − pS > 0. (31)

Hence, the Hopf bifurcation curve in the (α, k)-plane
is defined implicitly as the graph of the function

α = αH (k) := φ(p)

(k − p)A(p)φ(p) − pS(k)
. (32)
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Fig. 3 The unfolding of the
Bogdanov–Takens
bifurcation in panel a and
corresponding sketches of
the dynamics in panels b–f
near the point p in the case
when the Hopf bifurcation
is supercritical

•

•
(e)

p

B(γh)

hom

q

γh

•

•
(f)

p

W u(q)

W s(q)

3

q

•

•
(c)

p

W u(q)

B(p)

W s(q)

H

q

•

•
(d)

p

W u(q)

B(γ)

W s(q)

2a

q

γ

•
3

hom

2a

4

BT

H
1

(a)

SN
SN

k

α

•

•
(b)

p

W u(q)

B(p)

W s(q)

1

q

The Hopf bifurcation curve {(α, k)) ∈ R
2+ : α =

αH (k)}—denoted as H in Figs. 3a and 4a—meets the
curve SN at the Bogdanov–Takens point BT located
at (α∗, k∗) defined in (20)–(21), where αH (k∗) = α∗.
Note that, from condition k∗ > 0 one obtains

0 < 1/p <
ϕ

A(p)φ(p)
.

In addition, since α∗ > 0 in (20) and φ(p) > 0, we
have A(p) < 0 and ϕ < 0. In this way, since d S

dk = ϕ <

0, the set S−1(0,∞) corresponds to the region where
k < k∗. On the other hand, if ε > 0 is sufficiently
small, then

(k∗ − ε − p)A(p)φ(p) −
pS(k∗ − ε) > (k∗ − p)A(p)φ(p).

Therefore, evaluating in (32), one obtains αH (k∗ −
ε) < αH (k∗). Hence, the curve H is locally increas-
ing near (α∗, k∗), and is entirely contained in the
region S−1(0,∞) in the first quadrant of the (α, k)-
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Fig. 4 The unfolding of the
Bogdanov–Takens
bifurcation in panel a and
corresponding sketches of
the dynamics in panels b–f
near the point p in the case
when the Hopf bifurcation
is subcritical
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plane. Moreover, from (31), the region H−1(−∞, 0)

is always located on the left side of the curve H, i.e. for
values of (α, k) with α < αH (k).

In addition, the unfolding of a Bogdanov–Takens
bifurcation includes a homoclinic bifurcation curve that
emerges from the codimension-two singularity as well
[13,28,33]. For any point (α, k) along this bifurcation
curve, denoted as hom in Figs. 3a and 4a, a homo-
clinic orbit connects the saddle point q in both forward

and backward time to form a loop. In this way, the
bifurcation curves SN, H and hom separate four differ-
ent open regions near the point BT in the (α, k)-plane,
where the dynamics is topologically non-equivalent.
The analytical form and exact location of the curve
hom, in relation to the other bifurcation curves, depend
on the critical parameters in the versal unfolding of the
normal form of (16) at the Bogdanov–Takens bifur-
cation [13,33]. Nevertheless, one can still sketch its
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relative position depending on the nature of the Hopf
bifurcation and the bifurcated limit cycle; see Corollary
1.

Figure 3a shows the case when the Hopf bifurca-
tion is supercritical and the curve hom is located in the
region H−1(0,∞), i.e. on the right side of H. For any
point (α, k) in region 1, the equilibrium p is a stable
focus; see Fig. 3b. In particular, one of the branches of
the one-dimensional unstable manifold W u(q) (which
is rendered as a red curve) is contained in the basin of
attraction B(p) of p—which is highlighted as a shaded
region—and, hence, approaches the attractor p in an
exponential spiral. The basin boundary is given by the
stable manifold W s(q) of q which is rendered as a
blue curve. The focus p undergoes a supercritical Hopf
bifurcation when the point (α, k) is on the curve H.
At the moment of the Hopf bifurcation, the focus p is
not hyperbolic but remains an attractor; see Fig. 3c. If
(α, k) crosses H towards region 2a, a small stable limit
cycle γ appears surrounding the focus p, which is now
a hyperbolic repeller; see Fig. 3d. The basin B(γ ) can
be seen as the continuation of B(p) after the supercriti-
cal Hopf bifurcation. As the point (α, k) approaches the
curve hom, the limit cycle γ increases both its ampli-
tude and its period until it becomes a homoclinic orbit
γh at the moment when the point (α, k) reaches the
curve hom in Fig. 3e. At this global bifurcation, the
invariant manifolds W u(q) and W s(q) of q intersect
along the homoclinic loop γh . Note that the homoclinic
orbit γh is internally stable and, hence, it has a basin of
attraction B(γh) whose boundary is ∂B(γh) = γh ∪ p.
In particular, the focus p remains a hyperbolic repeller.
As the point (α, k) enters the region 3 by crossing the
curve hom in Fig. 3f, the homoclinic orbit is broken and
the stable manifold W s(q), when followed in backward
time, approaches the unstable focus p. Finally, when the
point (α, k) crosses the curve SN from either region 1
or 3, the two equilibria p and q collide with one another
and no longer exist in the region k > k∗, labelled as
4.

In turn, Fig. 4 shows the unfolding of the Bogdanov–
Takens point when the Hopf bifurcation is subcritical
and the homoclinic bifurcation curve hom is located
in the region H−1(−∞, 0), i.e. on the left side of H.
In this case, if the point (α, k) approaches the curve
hom from region 1, the invariant manifolds W u(q)

and W s(q) approach one another until they inter-
sect along the homoclinic orbit γh ; see Fig. 4b, c.
Note that the focus p remains a hyperbolic attractor

at the moment of the homoclinic bifurcation. How-
ever, its basin of attraction B(p) is now bounded by
γh . In region 2b, the homoclinic orbit is broken and
a global limit cycle γ bifurcates. The periodic orbit
γ is unstable and bounds the basin B(p); see Fig. 4d
and compare to Fig. 3d. Ultimately, this limit cycle
disappears at the subcritical Hopf bifurcation along
the curve H and p becomes an unstable focus; see
Fig. 4e, f.

Figures 3 and 4 are helpful in that they unravel
the role of the Bogdanov–Takens point (α∗, k∗) as an
organisation centre for the dynamics of the system (16).
In this way, we are able to understand the topologi-
cal mechanisms for (dis)appearance of limit cycles via
both local and global phenomena given by Hopf and
homoclinic bifurcations, respectively, and the associ-
ated configuration of attractors, basins of attraction and
separatrices in the phase plane.

7 Examples

Among the explicit forms for the Allee function that
satisfy conditions (A.1)–(A.3), one of the most com-
mon is

A(x) = x − m, (33)

where m is as in condition (A.1); see also [14,24,45]. In
particular, by replacing (33) in (1), the factor r(x − m)

represents a decrease of the population growth rate at
low densities due to the Allee effect. Another pos-
sible concrete form for the Allee function is given
by

A(x) = 1 − m + c

x − c
, (34)

where m is as in condition (A.1) and c > 0 is an addi-
tional parameter. The Allee function (34), proposed
in [11], is a generalisation of a model first studied in
[12,17,18] in the case c = 0, where the behaviour
of the prey population approaches a logistic-type of
growth as x → ∞, provided the predator population is
sufficiently low.

On the other hand, the function φ(x) may have the
explicit form of a Holling type functional response [35,
40,44,48,49]:
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Table 1 The relevant
functions in Theorems 2
and 3, and the
Bogdanov–Takens point in
the case when the Allee
function A(x) is given as in
(33) and φ(x) is a
Holling-type II functional
response as in (35)

A(x) = x − m, φ(x) = N x

x + a
.

μ = 1 + αkm; C1(0) = −aαk + βN

a
; C2(0) = 2

(

α − βN

a2

)

S(k) = −N
(
(k + m − 2p)p2 + a(km − p2)

)

(a + p)2

H(α, k) = −N p

a + p
+ α

(
N p(k − p)(p − m)

a + p
− pS(k)

)

α∗ = am + p2

p(m − p)2(a + p)

k∗ = p2(a − m + 2p)

am + p2

φ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N x

x + a
(Type II);

N xν

xν + aν
(Type III);

N x

x2 + a
(Type IV);

(35)

where N is as in condition (B.3), and a > 0 and ν > 1
are additional parameters.

For instance, in the case that A(x) is given as in (33)
and assuming φ(x) is as in (35)-Type II, the quantities
μ, C1(0) and C2(0) in Theorem 2 take the particular
forms in Table 1. Also shown are the functions S(k) and
H(α, k) that determine saddle-node and Hopf bifurca-
tions in Theorem 3, as well as the particular form of the
Bogdanov–Takens point (α∗, k∗). The same quantities
are shown in Tables 2, 3, 4 and 5 in other particular
combinations of Allee functions (33)–(34) and func-
tional responses (35). In particular, in the case when
A(x) = x −m and φ(x) is a Holling type III functional
response, if m = 0 one obtains C1(0) = −αk < 0
and A′(0) = 1; see Tables 2 and 3. Hence, in these
particular cases, the hypotheses of part (d) in Theo-
rem 2 do not hold for any combination of parameter
values.

Nevertheless, Tables 1, 2, 3, 4 and 5 serve the pur-
pose of illustrating the procedure to find the explicit
forms of relevant functions for the bifurcations and
dynamical behaviour of interest for any model vector
field of the general form (1) whenever the particular
conditions of the theorems are satisfied. In addition, the
results in these tables may also form the basis for further
investigation of the corresponding particular models.

8 Discussion

In this work we introduced a class of general two-
dimensional predator–prey models which present the
main mathematical characteristics of a multiplicative
Allee effect on prey population x = x(t). The proposed
model vector fields are described by just a minimum
amount of explicit terms and yet are able to describe
and illustrate some of the main dynamical features of
the species interaction that are common in a number of
concrete Leslie–Gower-type examples.

By means of a topologically equivalent extension of
the model vector fields to the entire first quadrant and
a suitable reparameterization, we prove that our family
of models is well posed in the sense that any realis-
tic solution remains both non-negative and bounded.
In particular, our approach involved the construction,
for any given trajectory, of an invariant set in the first
quadrant which turned out to be a trapping set for that
particular orbit.

We also examined the existence and local stability
of equilibrium points in the absence of predators. One
of such equilibria appears when the prey population
density x is equal to its carrying capacity k, and it is
always a saddle point. A second equilibrium exists—a
repeller—in the case when the Allee effect is of strong
type.

On the other hand, the study of the equilibrium at the
origin (x, y) = (0, 0) in the extended system emerged
as a particular challenge, since this point is always non-
hyperbolic. By means of desingularization techniques,
it was found that the local stability of the origin depends
on the sign of parameter m (which determines either a
weak or strong Allee effect), the Allee function A(x),
the functional response φ(x) and their respective deriv-
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Table 2 The relevant
functions in Theorems 2
and 3, and the
Bogdanov–Takens point in
the case when the Allee
function A(x) is given as in
(33) and φ(x) is a
Holling-type III functional
response as in (35) with
ν = 2

A(x) = x − m, φ(x) = N x2

x2 + a2 .

μ = 1 + αkm; C1(0) = −αk; C2(0) = 2

(

α − βN

a2

)

S(k) = N p
(

p3(2p − k − m) + a2(mp + k(p − 2m))
)

(a2 + p2)2

H(α, k) = −N p2

a2 + p2 + α

(
N p2(k − p)(p − m)

a2 + p2 − pS(k)

)

α∗ = a2(2m − p) + p3

p(m − p)2(a2 + p2)

k∗ = a2mp + p3(2p − m)

a2(2m − p) + p3

Table 3 The relevant
functions in Theorems 2
and 3, and the
Bogdanov–Takens point in
the case when the Allee
function A(x) is given as in
(33) and φ(x) is a
Holling-type III functional
response as in (35) with
ν > 1, ν �= 2

A(x) = x − m, φ(x) = N xν

xν + aν
.

μ = 1 + αkm; C1(0) = −αk; C2(0) = 2α

S(k) = N pν−1 B

(xν + aν)2 with

B = (
(k + m − 2p)pν+1

+ aν(ν(k − p)(m − p) + (k + m − 2p)p))

H(α, k) = −N pν

xν + aν
+ α

(
N pν(k − p)(p − m)

xν + aν
− pS(k)

)

α∗ = aν (ν(m − p) + p) + pν+1

p(m − p)2(xν + aν)

k∗ = aν p (m − νm + (ν − 2)p) + pν+1(m − 2p)

aν (ν(m − p) + p) + pν+1

Table 4 The relevant
functions in Theorems 2
and 3, and the
Bogdanov–Takens point in
the case when the Allee
function A(x) is given as in
(33) and φ(x) is a
Holling-type IV functional
response as in (35)

A(x) = x − m, φ(x) = N x

x2 + a
.

μ = 1 + αkm; C1(0) = −aαk + βN

a
; C2(0) = 2α

S(k) = N
(
a(p2 − km) + p2(k(m − 2p) + p(3p − 2m))

)

(a + p2)2

H(α, k) = −N p

a + p2 + α

(
N p(k − p)(p − m)

a + p2 − pS(k)

)

α∗ = am + p2(2p − m)

p(m − p)2(a + p2)

k∗ = p2 (a + p(3p − 2m))

am + p2(2p − m)

atives at zero. More concretely, we state specific con-
ditions on the model such that the origin has an open
two-dimensional basin of attraction and, hence, both
species may extinguish simultaneously. Furthermore,
we found the explicit boundaries of this basin of attrac-
tion near the origin.

Next, we treated the bifurcations of equilibria in the
interior of the first quadrant. For any such equilibrium,

the proportion of prey and predator densities is equal to
parameter n, i.e. the same proportion between the car-
rying capacity of the predator and the prey abundance.
We found the conditions on the model parameters, on
the Allee function A(x) and on the functional response
φ(x), such that an equilibrium undergoes saddle-node,
Hopf and Bogdanov–Takens bifurcations. In particu-
lar, specific genericity conditions are stated such that
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Table 5 The relevant
functions in Theorems 2
and 3, and the
Bogdanov–Takens point in
the case when the Allee
function A(x) is given as in
(34) and φ(x) is a
Holling-type II functional
response as in (35)

A(x) = 1 − m + c

x − c
, φ(x) = N x

x + a
.

μ = 1 − αk

(

1 + c + m

c

)

C1(0) = (2αk − 1) (αa(k − 2c) + βcN (2αk − 1))

ac

C2(0) = 2

(
α(c − k)

c2 − βN

a2

)

S(k) = N (B1 + B2)

(c − p)2(a + p)2 with

B1 = p2(2c2 − km + c(m − k − 2p) + p2)

B2 = a(ck(2c + m) − 2k(2c + m)p + (c + k + m)p2)

3 H(α, k) = −N p

a + p
+ α

⎛

⎝
N p

(
1 + c+m

c−p

)
(k − p)

a + p
− pS(k)

⎞

⎠

α∗ = (c + m)p2 − a
(
2c2 + c(m − 4p) + p(p − 2m)

)

p(2c + m − p)2(a + p)

k∗ = p2
(
2c2 + a(c + m) + c(m − 2p) + p2

)

(c + m)p2 − a
(
2c2 + c(m − 4p) + p(p − 2m)

)

the Bogdanov–Takens bifurcation is of codimension-
two. In doing so, we find the boundaries of an open
region in parameter space for which the system has
a limit cycle, which can be either stable or unstable
depending on certain coefficients in the normal form of
the Bogdanov–Takens bifurcation. Moreover, we also
describe how this limit cycle converges to a homoclinic
orbit under parameter variation. This is illustrated by
means of bifurcation diagrams which were constructed
from careful examination of the bifurcation loci and
analytical results from bifurcation theory. In this way,
our findings shed light on the conditions our model has
to fulfil in order to the codimension-two Bogdanov–
Takens point to be an organisation centre in terms of
basins of attraction, coexistence of both species and
multi-stability of the ecological system. In particular,
our analytical results are applied to a number of par-
ticular models with explicit forms for the Allee func-
tion A(x) and Holling-types functional response φ(x).
In every case, the relevant quantities and bifurcation
values that determine the dynamics in our results are
calculated explicitly.

Altogether, the results in this paper provide a theo-
retical basis for further investigation in concrete Leslie–
Gower predation models with multiplicative Allee
effect and prey-dependent functional responses. While
more complicated dynamics is known to occur in
explicit predation models with Allee effect, our find-

ings emerge as a first step in the detection and extension
of the local basin boundaries of the origin as global sep-
aratrices in the phase plane; such study should also treat
the interaction of these separatrices with the (un)stable
manifolds of other equilibria, possibly with the aid
of numerical methods for the computation of global
invariant manifolds [1]. This investigation would iden-
tify the Allee thresholds as global objects in the phase
plane that both species have to overcome in order to
avoid extinction. Another important question is related
to the number of limit cycles that a concrete model may
have. For instance, the analytical criteria found in this
work can be used as starting data in standard continu-
ation packages in order to trace curves of Hopf bifur-
cation that contain higher codimension points, from
which one can find the existence of additional limit
cycles. Similar procedures can be used to explore loci
of homoclinic and heteroclinic bifurcations.

Our results also serve the purpose of highlighting
the mathematical methods used in this paper as help-
ful tools for analysing the qualitative dynamics of any
two-dimensional model of species interaction, regard-
less of the specific functional properties of the vector
field. In this way, we are also currently studying a sim-
ilar class of general predation models where the prey
equation is modelled with an additive Allee effect [3,4].
Other future challenges involve, for instance, differ-
ent ways of modelling the predation consumption rate,
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for instance, as a ratio-dependent functional response
φ = φ(x, y) [2,39,47]. Another alternative of mod-
elling the species interaction is to consider Gause-type
models for the predator growth rate [24,26,29] in which
it is assumed that a mass conservation principle acts on
the prey consumption by the predator. Furthermore, the
Allee effect may also interact with random environ-
mental conditions such as alien species invasions or
other catastrophic events; see [5,20] and the references
therein. As a consequence, the amplitude of population
fluctuations may increase and even drive a population
to extinction.

Acknowledgments This work was partially funded by FONDE-
CYT Postdoctoral Grant No. 3130497, DGIP-UTFSM Grant
12.13.10 and Proyecto Basal CMM Universidad de Chile.

Appendix: A normal form of the Bogdanov–Takens
bifurcation

Consider a planar vector field

ẋ = f (x, μ), x ∈ R
2, μ ∈ R

2, (36)

where f is smooth enough. Assume that the origin
x = 0 of (36) is an equilibrium with two zero eigen-
values λ1,2 = 0 at μ = 0, and such that the Jaco-
bian Dx f (0, 0) is nilpotent and different from the null
matrix. Equation (36) can be written at μ = 0 in the
form

ẋ = Dx f (0, 0)x + F(x), (37)

where F(x) contains all the quadratic and higher order
terms O(||x||2).

The matrix Dx f (0, 0) has a single linearly indepen-
dent eigenvector v1 that corresponds to the repeated
eigenvalue 0. In addition, one can find a genera-
lised eigenvector v2 as a solution of the equation
Dx f (0, 0)v2 = v1.

Let P = [v1, v2] be the matrix whose columns are
the (linearly independent) vectors v1 and v2. Hence,
the change of coordinates

y = P−1x (38)

maps the vector field f to a C∞-conjugated system
defined as

g = P−1 ◦ f ◦ P. (39)

In particular, at μ = 0, system (37) takes the form

ẏ = Dyg(0, 0)y +
(

P−1 ◦ F ◦ P
)

(y), (40)

where Dyg(0, 0) =
(

0 1
0 0

)

.

Expanding (39) as a Taylor series with respect to
y = (y1, y2) around (y1, y2) = (0, 0), one obtains

ẏ1 = y2 + a00(μ) + a10(μ)y1 + a01(μ)y2

+ 1

2
a20(μ)y2

1 + a11(μ)y1 y2

+ 1

2
a02(μ)y2

2 + O(||y||3),
ẏ2 = b00(μ) + b10(μ)y1 + b01(μ)y2

+ 1

2
b20(μ)y2

1 + b11(μ)y1 y2

+ 1

2
b02(μ)y2

2 + O(||y||3),

where the coefficients ai j (μ) and bi j (μ) are smooth
functions which can be found from (36), (38) and (39).
In particular, at μ = 0, from (37) and (40), we have
a00(0) = a10(0) = a01(0) = b00(0) = b10(0) =
b01(0) = 0.

In this setting, one can prove the following result for
the normal form of the Bogdanov–Takens bifurcation:

Theorem Suppose that the planar system (36) has, at
μ = 0, an equilibrium at the origin x = 0 with a double
zero eigenvalue λ1,2(0) = 0. Assume that the following
genericity conditions are satisfied:

i. The Jacobian Dx f (0, 0) is not the null matrix;
ii. a20(0) + b11(0) �= 0;

iii. b20(0) �= 0;
iv. The map

(x, μ) �→ (
f (x, μ), trDx f (x, μ), detDx f (x, μ)

)

is regular at (x, μ) = (0, 0) ∈ R
4.

Then, there exists a smooth invertible change of
parameters, such that the vector field f , in a sufficiently
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small neighbourhood of (x, μ) = (0, 0), is topologi-
cally equivalent to one of the following normal forms:

{
ξ̇1 = ξ2,

ξ̇2 = β1 + β2 ξ2 + ξ2
2 + s ξ1ξ2,

(41)

where s = b20(0)
(
a20(0) + b11(0)

) = ±1.

The construction of the normal form (41) was first
developed by Bogdanov [10]. An equivalent normal
form was introduced simultaneously by Takens in [42].
The interested reader can also find the proof of this
theorem in [13,33], as well as further details.
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