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Abstract The paper is concerned with the fractional
evolution inclusion cDq

t u(t) ∈ Au(t) + F(t, u(t)) in
Banach spaces, where cDq

t , 0 < q < 1, is the regular-
izedCaputo fractional derivative of order q,A generates
a compact semigroup, and F is a multi-valued func-
tion with convex, closed values. Constructing a suit-
able directionally L p-integrable selection from F , we
study the compactness and Rδ-structure of the set of
trajectories on a closed domain. Moreover, we discuss
the Rδ-structure of the set of trajectories to the control
problem corresponding to the inclusion above. Finally,
we apply our abstract theory to boundary value prob-
lems of fractional diffusion inclusions.
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1 Introduction

A great deal of studies on topological structure of solu-
tion sets (including Rδ , acyclicity, connectedness, com-
pactness, and contractibility) to differential equations
and inclusions have been made by many researchers.
For references see, e.g., Andres et al. [1,2], Aronszajn
[5], Bothe [9], Conti et al. [11], Gabor [17,18], Hu and
Papageorgiou [22], and Zhu [45]; some of the more
recent literatures are, e.g., Andres and Pavlačková [3],
Bakowska andGabor [6], Gabor andGrudzka [19], and
one can find further references therein. In particular,
in our previous work [10], we studied the topological
structure of solution sets to the Cauchy problem of non-
linear delay differential inclusion

{
u′(t) ∈ Au(t) + F(t, u(t), ut ),
u(t) = φ(t), t ∈ [−τ, 0]

both on compact intervals and non-compact intervals,
where A : D(A) ⊂ X → 2X is an m-dissipative
operator (possible multi-valued and/or nonlinear) and
F : R

+ × D(A) × C([−τ, 0]; D(A)) → 2X is
a multi-valued function with convex, closed values.
Moreover, we used the information of the structure on
non-compact intervals to show the existence of global
C0-solutions for the evolution inclusion subject to non-
local condition.

On the other hand, fractional evolution inclusions
of the form Dq

t u(t) ∈ Au(t) + F(t, u(t)) in Banach
spaces,where A is a closed linear operator and Dq

t is the
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fractional derivative of order q have been investigated
to a large extent; For some recent contributions, we
refer the reader to, for instance, Eidelman andKochubei
[15], Wang et al. [39,40], and Zhou [37,43,44] for
the case of single-valued nonlinearities, and Ouahab
[27] and Wang and Zhou [35] for the case of multi-
valued nonlinearities. Fractional evolution inclusions
are a kind of important differential inclusions describ-
ing the processes behaving in a much more complex
way on time, which appear as a generalization of frac-
tional evolution equations (such as (time-)fractional
diffusion equations) through the application of multi-
valued analysis. Comparing the fractional evolution
equations, the researches on the theory of fractional
differential inclusions are only on their initial stage of
development. It is noted that El-Sayed and Ibrahim ini-
tialed the study of fractional differential inclusions in
[16] and much interest has developed alone this line,
see, e.g., [7,20]. A strong motivation for investigat-
ing this class of inclusions comes mainly from two
compelling reasons: differential models with the frac-
tional derivative providing an excellent instrument for
the description of memory and hereditary properties
have recently been proved valuable tools in the model-
ing of many physical phenomena (cf., [13,21,24,26]).
As in [4,26], fractional diffusion equations describe
anomalous diffusion on fractals (physical objects of
fractional dimension, like some amorphous semicon-
ductors or strongly porous materials). In normal diffu-
sion described by, such as the heat equation, the mean
square displacement of a diffusive particle behaves like
const · t for t → ∞. A typical behavior for anomalous
diffusion is const · tα for some 0 < α < 1. Another
of the reasons is that a lot of phenomena investigated
in processes of controlled heat transfer, obstacle prob-
lems, and others can be described with the help of var-
ious differential inclusions, both linear and nonlinear.
See, e.g., [12,23,32] for more comments and citations.
One can find recent results in this direction from Paicu
and Vrabie [28,29], Vrabie [33,34], Wang and Zhu
[38], and the references therein.

However, as far as we know, there have been very
few applicable results on the topological structure of
solution sets for fractional evolution inclusions. This
in fact is the main motivation of the present paper. In
order to fill this gap, in thisworkwe are interested in the
problem of topological structure of set of trajectories
(formed by mild solutions) to the Cauchy problem of
evolution inclusion of the form

{ cDq
t u(t) ∈ Au(t) + F(t, u(t)), t ∈ [0, b],

u(0) = u0
(1.1)

in the Banach space X , where cDq
t , 0 < q < 1, is

the regularized Caputo fractional derivative of order
q, A is the infinitesimal generator of a C0-semigroup
{T (t)}t≥0 on X , and the forcing source F : [0, b] ×
X → 2X is a multi-valued function with convex,
closed values for which F(t, ·) is weakly upper semi-
continuous for a.e. t ∈ [0, b] and F(·, x) has a L p-
integrable selection for each x ∈ X .

Constructing a suitable directionally L p-integrable
(p > 1) selection from F and using an inter-
play between compactness arguments andmulti-valued
analysis techniques, we first consider the existence of
mild solutions to Cauchy problem (1.1). Then, a new
method, which can be considered as a modification of
the method used in [10], is developed to discuss the
Rδ-structure of the set of trajectories, which apparently
cannot be obtained by the techniques of the previous
work. All the results obtained are new in the case of
single-valued nonlinearities. Moreover, we also deal
with topological characterizations to the control prob-
lem corresponding to the inclusion above.

Another achievement of this paper, motivated by
applications of the information about the structure to
some problems in optimal control while certainly sig-
nificant for its own sake, is establishing the invariance
of a reachability set to the control problem mentioned
above under single-valued nonlinear perturbations.

We remark that in the previous papers on topologi-
cal structure such as [3,9,10], an elementary approach
consisting in finding a strongly measurable selection f
of the multi-valued function F was always available.
However, in the present work, the concept of the mild
solution involves a singular integral equation, which
enables us to find that strongly measurable selections
of multi-valued function F are not enough to obtain
the desired results. Therefore, we have to impose the
stronger assumption on F to get a L p-integrable selec-
tion of multi-valued function F . Moreover, when deal-
ing with the invariance of a reachability set under non-
linear perturbations, we note that the solution map-
ping corresponding to each control function is a multi-
valued one, which prevents us from using the known
tools as in [31] to show the desired results.

The remainder of this paper is organized as follows.
Section 2 provides some preliminarymaterial on differ-
ential inclusions and the notation to be used inwhat fol-
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lows. Section 3 contains the main results of the paper.
Finally, as a sample of applications, we present two
examples to illustrate the feasibility of our results.

2 Preliminaries

As usual, for a Banach space W , 2W is the set of all
nonempty subsets ofW , and Br (x0) stands for the open
ball in W with radius r and center x0 ∈ W .

C([0, b]; X) is the Banach space of all continuous
functions from [0, b] to X equipped with the sup-norm
and L p(0, b; X) (1 < p < +∞) is the Banach space
consisting of all Bochner integrable functions from
[0, b] to X satisfying

∫ b
0 ‖u(t)‖pdt < +∞, equipped

with the norm

‖u‖
L p (0,b;X)

=
⎛
⎝

b∫
0

‖u(t)‖pdt

⎞
⎠

1/p

.

What followed is the criterion for weak compact-
ness in L p(0, b; X) for 1 < p < +∞ (see, e.g., [32,
Corollary 1.3.1]).

Lemma 2.1 Let X be reflexive and 1 < p < +∞. A
subset K ⊂ L p(0, b; X) is weakly relatively sequen-
tially compact in L p(0, b; X) if and only if K is
bounded in L p(0, b; X).

Definition 2.1 A nonempty subset D of a metric space
Y is said to be contractible if there exists a point y0 ∈ D
and a continuous function g : [0, 1] × D → D such
that g(0, y) = y0 and g(1, y) = y for every y ∈ D.

Definition 2.2 A subset D of ametric space Y is called
an Rδ-set if there exists a decreasing sequence {Dn} of
compact and contractible sets such that

D =
∞⋂
n=1

Dn .

Let Y be a metric space. Y is called an absolute retract
(AR-space) if for any metric space H and any closed
subset D ⊂ H , every continuous function ϕ : D → Y
can be extended to a continuous function ϕ̃ : H → Y .

Y is called an absolute neighborhood retract (ANR-
space) if for any metric space H , closed subset D ⊂
H , and continuous function ϕ : D → Y , there exists
a neighborhood U ⊃ D and a continuous extension
ϕ̃ : U → Y of ϕ.

Obviously, if Y is an AR-space then it is an
ANR-space. Furthermore, as in [14, Corollary 4.2], if
D is a convex set in a locally convex linear space then
it is an AR-space. This yields that each convex subset
of a Fréchet space is an AR-space, since every Fréchet
space is locally convex.

Any absolute retract is contractible.
The following hierarchy holds for nonempty subsets

of a metric space:

compact+convex ⊂ compact AR-space ⊂ compact

+ contractible ⊂ Rδ-set,

and all the above inclusions are proper.
Below, let Y and Z be metric spaces. As usual, we

denote C(Y ) = {D ∈ 2Y ; D is closed}, Cv(Y ) =
{D ∈ C(Y ); D is convex}, and K (Y ) = {D ∈
C(Y ); D is compact}.

For the multi-valued mapping ϕ : Y → 2Z , we let
Gra(ϕ) stand for the graph of ϕ. If D is a subset of Z ,
then we denote by ϕ−1(D) = {y ∈ Y ;ϕ(y) ∩ D �= ∅}
the complete preimage of D under ϕ. ϕ is called closed
if Gra(ϕ) is closed in Y × Z , quasi-compact if ϕ(D) is
relatively compact for each compact set D ⊂ Y , upper
semi-continuous (shortly, u.s.c.) if ϕ−1(D) is closed
for each closed set D ⊂ Z , and lower semi-continuous
(shortly, l.s.c.) if ϕ−1(D) is open for each open set
D ⊂ Z .

Definition 2.3 A multi-valued mapping ϕ : Y → 2Z

is an Rδ-mapping if ϕ is u.s.c. and ϕ(y) is an Rδ-set for
each y ∈ Y .

In the sequel, let W and V be Banach spaces.

Definition 2.4 Let ϕ : D ⊂ W → 2V be a multi-
valued mapping. Then,

(i) ϕ is called weakly upper semi-continuous (shortly,
weakly u.s.c.) if ϕ−1(D′) is closed in D for every
weakly closed set D′ ⊂ V .

(ii) ϕ is ε − δ u.s.c. if for every w0 ∈ D and ε > 0
there exists δ > 0 such that ϕ(y) ⊂ ϕ(w0)+ Bε(0)
for all y ∈ Bδ(w0) ∩ D.

Evidently u.s.c. is stronger than weakly u.s.c. and sim-
ple examples show that a weakly u.s.c. function with
compact convex values may fail to be u.s.c.

We point out that u.s.c. is stronger than ε − δ u.s.c.,
but for multi-valued mappings with compact values the
two concepts coincide. Moreover, it was proved in [10,
Lemma 2.2] that
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Lemma 2.2 Let D be a nonempty subset of W and
ϕ : D → 2V a multi-valued mapping with weakly
compact values, then

(i) ϕ is weakly u.s.c. if ϕ is ε − δ u.s.c.,
(ii) suppose further that ϕ has convex values and V

is reflexive. Then ϕ is weakly u.s.c. if and only if
for each sequence {(zn, xn)} ⊂ D × V such that
zn → z in W and xn ∈ ϕ(zn), n ≥ 1, it follows
that there exists a subsequence {xnk } of {xn} and
x ∈ ϕ(z) such that xnk → x weakly in V .

We set I = (0, T ) for some T > 0 and use the follow-
ing notation for q ≥ 0:

gq(t) =
{

1
Γ (q)

tq−1, t > 0,
0, t ≤ 0,

and g0(t) = 0, where Γ (·) is the Gamma function.

Definition 2.5 Let f ∈ L1(I ; X) and q ≥ 0. Then the
express

Jqt f (t) := (gq ∗ f )(t)

= 1

Γ (q)

t∫
0

(t − s)q−1 f (s)ds, t > 0, q > 0

with J 0t f (t) = f (t), is called Riemann–Liouville inte-
gral of order q of f .

Definition 2.6 Let f (t) ∈ Cm−1(I ; X), gm−q ∗ f ∈
Wm,1(I, X) (m ∈ N, 0 ≤ m − 1 < q < m). The
regularized Caputo fractional derivative of order q of
f is defined by

cD
q
t f (t) = Dm

t Jm−q
t

(
f (t) −

m−1∑
i=0

f (i)(0)gi+1(t)

)
,

(2.1)

where Dm
t := dm

dtm .

It is known that the Caputo definition for the fractional
derivative incorporates the initial values of the function
and of its integer derivatives of lower order and the
relevant property that the derivative of a constant is
zero is preserved.

Remark 2.1 Let us point out that in the treatment of
abstract fractional evolution equations and inclusions

in infinite dimensional spaces, one of the key points is
to give reasonable concept of solutions according to the
corresponding fractional derivative (see, e.g., [39,42]),
which indicates that there is a strong influence on topo-
logical structures because of derivative differences.

Assume that 0 < q < 1. We note that the setting
determines the necessity to use the regularized frac-
tional derivative (2.1). In particular, if, for example,
one considers instead of (2.1) the Riemann–Liouville
fractional derivative, but without subtracting t−qu(0),
then the appropriate initial data will be the limit value,
as t → 0, of the fractional integral of a solution of the
order 1 − q, not the limit value of the solution itself.
Also, we notice that for a smooth enough function u(t),
the Caputo fractional derivative cD

q
t u can be written as

cD
q
t u(t) = 1

Γ (1 − q)

t∫
0

(t − s)−qu′(s)ds.

In the physical literature, the expression on the right
is used as the basic object for formulating fractional
diffusion equations (cf., [15,39]).

Throughout this paper, A is a linear closed operator
generating a C0-semigroup {T (t)}t≥0 on X and there
exists a constant M > 0 such that

sup{‖T (t)‖, t ∈ R
+} ≤ M.

Let us first introduce two families of operators on X :

Q(t) =
∞∫
0

Ψq(s)T (stq)ds, t ≥ 0,

P(t) =
∞∫
0

qsΨq(s)T (stq)ds, t ≥ 0,

where Ψq is the function of Wright type:

Ψq (s) = 1

πq

∞∑
n=1

(−s)n−1 Γ (1 + qn)

n! sin(nπq), s ∈ (0, ∞).

Then Q(t) and P(t) are linear and bounded operators
on X , for which the following estimates hold:

‖Q(t)x‖ ≤ M‖x‖, ‖P(t)x‖ ≤ qM‖x‖
Γ (1 + q)

, t ≥ 0, x ∈ X.

Also, Q(t) and P(t) are strongly continuous on X .
Moreover, we have the following results.

Lemma 2.3 Assume that T (t) is compact for t > 0.
Then

(i) Q(t) and P(t) are compact for every t > 0, and
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(ii) Q(t) and P(t) are continuous in the uniform oper-
ator topology for t > 0.

For a detailed account and bibliographic references for
such families of operators see, e.g., the survey byWang
et al. [36,40] and Zhou and Jiao [42].

Consider the linear Cauchy problem in the form

{ cDq
t u(t) = Au(t) + f (t), t ∈ [0, b],

u(0) = u0 ∈ X,
(2.2)

where f ∈ L p(0, b; X) with p > 1, pq > 1.

Definition 2.7 A function u ∈ C([0, b]; X) is called
a mild solution of Cauchy problem (2.2), if it satisfies
the integral equation

u(t) = Q(t)u0 +
t∫

0

(t − s)q−1P(t − s) f (s)ds, t ∈ [0, b].

FromWang andYang [36] (see alsoWang et al. [39] and
Zhou and Jiao [42]), it follows that for each u0 ∈ X and
f ∈ L p(0, b; X), there exists a unique mild solution to
Cauchy problem (2.2) on [0, b] which satisfies u(0) =
u0.

Let u0 ∈ X and f ∈ L p(0, b; X). Denote by
u(·, u0, f ) the unique mild solution u : [0, b] → X , of
Cauchy problem (2.2) which verifies u(0) = u0.

The following approximation result will be used
later.

Lemma 2.4 Assume that B is a bounded linear oper-
ator from the Banach space V to X and w ∈
L p(0, b; V ). If the two sequences { fn} ⊂ L p(0, b; X)

and {un} ⊂ C([0, b]; X), where un is a mild solution
of the problem

{ cDq
t un(t) = Aun(t) + fn(t) + Bw(t), t ∈ [0, b],

un(0) = u0,

lim
n→∞ fn = f weakly in L p(0, b; X) and lim

n→∞ un = u

in C([0, b]; X), then u is a mild solution of the limit
problem

{ cDq
t u(t) = Au(t) + f (t) + Bw(t), t ∈ [0, b],

u(0) = u0.

Proof An argument similar to that in the proof of [35,
Lemma 2.4] shows that the assertion of lemma remains
true. Here we omit the details. ��

For the multi-valued nonlinearity F : [0, b] × X →
2X with convex, closed values, we have the following
standing assumptions:

(H1) F(t, ·) isweakly u.s.c. for a.e. t ∈ [0, b] and F(·, x)
has a L p-integrable selection for each x ∈ X ,

(H2) there exists α ∈ L p(0, b;R+) such that

‖F(t, x)‖:= sup{‖y‖; y ∈ F(t, x)}≤α(t)(1+‖x‖)
for a.e. t ∈ [0, b] and each x ∈ X ,

where p > 1 and pq > 1.
We present an approximation lemma in the follow-

ing, which is a slightly modified version of Lemma 3.3
in [10] (see also [17, Theorem 3.5], [12, Lemma 2.2]).
We here omit the details for simplicity.

Lemma 2.5 Assume that conditions (H1)and (H2)are
satisfied. Then there exists a sequence of multi-valued
functions {Fn} with Fn : [0, b] × X → Cv(X) such
that

(i) F(t, x) ⊂ Fn+1(t, x) ⊂ Fn(t, x) ⊂ co
(F(t, B31−n (x))) for each n ≥ 1, t ∈ [0, b] and x ∈
X;

(ii) ‖Fn(t, x)‖ ≤ α(t)(2 + ‖x‖) for each n ≥ 1, a.e.
t ∈ [0, b] and x ∈ X;

(iii) there exists E ⊂ [0, b] with mes(E) = 0 such that
for each x∗ ∈ X∗, ε > 0, and (t, x) ∈ [0, b]\E×X,
there exists a positive integer N > 0 such that for
all n ≥ N,

x∗(Fn(t, x)) ⊂ x∗(F(t, x)) + (−ε, ε);

(iv) Fn(t, ·) : X → Cv(X) is continuous for a.e. t ∈
[0, b]with respect to Hausdorff metric for each n ≥
1;

(v) for each n ≥ 1, there exists a selection gn : [0, b]×
X → X of Fn such that gn(·, x) is L p-integrable
(p > 1) for each x ∈ X and for any compact subset
K ⊂ X there exist constants CV > 0 and δ > 0
for which the estimate

‖gn(t, x1) − gn(t, x2)‖ ≤ CVα(t)‖x1 − x2‖ (2.3)

holds for a.e. t ∈ [0, b] and each x1, x2 ∈ V with
V := K + Bδ(0);

(vi) if X is reflexive, then Fn verifies (H1) with F
replaced by Fn for each n ≥ 1.

Remark 2.2 We note in particular that in the lemma
above, it is assumed that F(·, x) has a L p-integrable
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selection for each x ∈ X , which is different from those
used in many previous papers such as [9,10]. But it is
exactly what we need in the current situation.

3 Main results

In this section, we shall first study the Rδ-structure of
set of solutions to Cauchy problem (1.1).

The following compactness characterizations of
solution sets to Cauchy problem (2.2) will be useful.

Lemma 3.1 Suppose that T (t) is compact for t >

0. Let D ⊂ X be relatively compact and K ⊂
L p(0, b; X) L p-integrable bounded, that is,

‖ f (t)‖ ≤ χ(t) for all f ∈ K and a.e. t ∈ [0, b],

whereχ ∈ L p(0, b;R+). Then the set of mild solutions

{u(·, u0, f ); u0 ∈ D, f ∈ K }
is relatively compact in C([0, b]; X).

Proof Write

Ω(D × K ) = {u(·, u0, f ); u0 ∈ D, f ∈ K }.
Let t ∈ (0, b] be arbitrary and ε, δ > 0 small enough.
Define the operator Jε,δ : Ω(D × K )(t) → X by

Jε,δu(t) = Q(t)u0 + T (εqδ)

t−ε∫
0

∞∫
δ

× qτ(t − s)q−1Ψq(τ )T ((t − s)qτ − εqδ) f (s)dτds

for u(t) ∈ Ω(D × K )(t). Noticing
∫ ∞
0 sγ Ψq(s)dσ =

�(1+γ )
�(1+qγ )

, γ ∈ [0, 1], we have
∥∥∥∥∥∥

t−ε∫
0

∞∫
δ

qτ(t − s)q−1Ψq (τ )T ((t − s)qτ − εqδ) f (s)dτds

∥∥∥∥∥∥
≤ qM

Γ (1 + q)

(
(b

pq−1
p−1 − ε

pq−1
p−1 )

p − 1

pq − 1

) p−1
p ‖χ‖

L p (0,b) ,

which together with the compactness of T (t) and
Q(t) for t > 0 enables us to conclude that the set
{Jε,δu(t); u(t) ∈ Ω(D × K )(t)} is relatively compact
in X . Moreover, it follows that

‖Jε,δu(t) − u(t)‖

≤ qM

t∫
0

(t − s)q−1χ(s)ds

δ∫
0

τΨq(τ )dτ

+qM

t∫
t−ε

(t − s)q−1χ(s)ds

∞∫
δ

τΨq(τ )dτ

≤ qM

(
p − 1

pq − 1

) p−1
p ‖χ‖

L p (0,b)⎛
⎝bq− 1

p

δ∫
0

τΨq(τ )dτ + ε
q− 1

p

Γ (1 + q)

⎞
⎠

→ 0 as ε → 0, δ → 0.

Accordingly, we get

‖Jε,δu(t) − u(t)‖ → 0 asε → 0, δ → 0

uniformly for t ∈ (0, b] and for u(t) ∈ Ω(D × K )(t).
This proves that the identity operator I : Ω(D ×
K )(t) → Ω(D × K )(t) is a compact operator, which
yields that the set Ω(D × K )(t) is relatively compact
in X for each t ∈ (0, b].

We proceed to verify that the set Ω(D × K ) is
equicontinuous on (0, b]. Taking 0 < t1 < t2 ≤ b and
δ > 0 small enough, we obtain that u ∈ Ω(D × K ),

‖u(t1) − u(t2)‖ ≤ I1 + I2 + I3 + I4 + I5,

u ∈ Ω(D × K ),

where

I1 = ‖Q(t1) − Q(t2)‖ · ‖u0‖,

I2= qM

Γ (1+q)
(t2−t1)

q− 1
p

(
p − 1

pq − 1

) p−1
p ‖χ‖

L p (0,b) ,

I3 = sup
s∈[0,t1−δ]

‖P(t2 − s) − P(t1 − s)‖

×
(

(t
pq−1
p−1

1 − δ
pq−1
p−1 )

p − 1

pq − 1

) p−1
p

‖χ‖
L p (0,b) ,

I4 = 2qM

Γ (1 + q)
(δ)

q− 1
p

(
p − 1

pq − 1

) p−1
p ‖χ‖

L p (0,b) ,

I5 = qM

Γ (1 + q)

(
(t2 − t1)

pq−1
p−1 + t

pq−1
p−1

1 − t
pq−1
p−1

2

) p−1
p

×
(

p − 1

pq − 1

) p−1
p ‖χ‖

L p (0,b) .

Therefore, it is not difficult to see that Ii (i = 2, 4, 5)
tends to zero as t2−t1 → 0, δ → 0. Also, fromLemma
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2.3(ii) it follows that I1, I3 → 0 as t2− t1 → 0, δ → 0.
Moreover, we see by the relative compactness of D that
these limits remain true uniformly for u ∈ Ω(D× K ).
That is to say that

‖u(t1) − u(t2)‖ → 0 as t2 − t1 → 0,

uniformly for u ∈ Ω(D × K ) and hence we get the
desired result.

Thus, an application of Arzela–Ascoli’s theorem
justifies that Ω(D × K ) is relatively compact in
C([0, b]; X). This completes the proof. ��

Let c ∈ [0, b). Consider the singular integral equa-
tion of the form

u(t) = ϕ(t) +
t∫

c

(t − s)q−1P(t −s)g(s, u(s))ds,

t ∈ [c, b]. (3.1)

Wepresent the following existence result,whichwill
be used to prove the contractibility of the solution set.

Lemma 3.2 Let p > 1, pq > 1, and T (t) be compact
for t > 0. Assume that g : [c, b] × X → X is a
function such that g(·, x) is L p-integrable for every
x ∈ X. Suppose in addition that

(1) for any compact subset K ⊂ X there exist δ > 0
and LK ∈ L p([c, b];R+) such that

‖g(t, x1) − g(t, x2)‖ ≤ LK (t)‖x1 − x2‖

for a.e. t ∈ [c, b] and each x1, x2 ∈ Bδ(K );
(2) there existsμ ∈ L p([c, b];R+) such that ‖g(t, x)‖

≤ μ(t)(c′ + ‖x‖) for a.e. t ∈ [c, b] and every
x ∈ X, where c′ is arbitrary, but fixed.

Then Eq. (3.1) admits a unique solution for every ϕ ∈
C([c, b]; X). Moreover, the solutions of equation (3.1)
depend continuously on ϕ.

Proof Let ϕ ∈ C([c, b]; X) be fixed. Write

Bρ(ϕ, ξ) = {u ∈ C([c, ξ ]; X); max
t∈[c,ξ ] ‖u(t) − ϕ(t)‖ ≤ ρ}

with

qM

Γ (1 + q)
(ξ − c)q− 1

p

(
p − 1

pq − 1

) p−1
p

×‖μ‖
L p (c,ξ)

(c′ + ρ + max
t∈[c,ξ ] ‖ϕ(t)‖) ≤ ρ.

Let us define the operator W :

(Wu)(t) = ϕ(t) +
t∫

c

(t − s)q−1P(t − s)g(s, u(s))ds.

ThenW mapping Bρ(ϕ, ξ) into itself is continuous due
to conditions (1) and (2). Moreover, from the proof of
Lemma 3.1 we see thatW is a compact operator. Thus,
there is a fixed point of W , denoted by u, which is
a local solution to Eq. (3.1). In fact, this solution is
unique due to condition (1). Also, making use of the
known Gronwall type inequality, one can derive a uni-
versal bound for all mild solutions of Eq. (3.1) (if they
exist).

In the sequel, the operatorW is treated as a mapping
from C([c, b]; X) to C([c, b]; X). Define the operator

Ψ : [c, b] × C([c, b]; X) → C([c, b]; X)

with

Ψ (t, v)(s) =
{

v(s), s ∈ [c, t],
v(t), s ∈ [t, b].

Put

J = {t ∈ [c, b]; vt ∈ C([c, b]; X), vt = Ψ (t,W (vt ))}.
Note that uξ = Ψ (ξ,W (uξ )) with uξ = Ψ (ξ, u),
which means ξ ∈ J , i.e., J �= ∅. Moreover, it is easy
to see that [c, t] ⊂ J for all t ∈ J .

Let {tn} ⊂ J a monotonically increasing sequence
such that tn tends to t0 = sup J as n → ∞. Noticing
that

Ψ (tm, utm ) = Ψ (tm,W (utm )),

Ψ (tm, utn ) = Ψ (tm,W (utn ))

on [c, tm] when m ≤ n, we obtain that utm (s) = utn (s)
for all s ∈ [0, tm]. Also, note that
‖utm (t0) − utn (t0)‖ = ‖utm (tm) − utn (tn)‖.
Therefore, by the continuity of ϕ we conclude, using a
similar argument with that in Lemma 3.1, that

‖utm (t0) − utn (t0)‖ → 0 as n,m → ∞.

Accordingly, the limit limn→∞ utn (t0) exists.
Consider the function

ut0(s) =
{
utn (s), s ∈ [c, tn],
lim
n→∞ utn (t0), s ∈ [t0, b],
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1752 R. N. Wang et al.

where n → ∞, which maps [c, b] into X . It follows
from the equicontinuity of the family {utn } that ut0 is
continuous. Also, note that ut0(t) = W (ut0)(t) for all
t ∈ [c, t0). Moreover, it is easy to verify, by Lebesgue’s
Dominated Convergence Theorem, that

ut0 (t0) = lim
n→∞

⎛
⎝ϕ(tn) +

tn∫
c

(tn − s)q−1P(tn − s)g(s, utn (s))ds

⎞
⎠

= ϕ(t0) +
t0∫
c

(t0 − s)q−1P(t0 − s)g(s, ut0 (s))ds.

Thus, we find that

ut0 = Ψ (t0,W (ut0)),

which yields that t0 ∈ J .
Next, we show that t0 = b. If this is not the case,

then t0 < b. Put

ϕ̃(t) = ϕ(t) +
t0∫
c

(t − s)q−1P(t − s)g(s, ut0(s))ds

with ϕ̃ ∈ C([t0, b]; X). As we can see there exists
ξ ′ > 0 such that the following integral equation:

u(t) = ϕ̃(t) +
t∫

t0

(t − s)q−1P(t − s)g(s, u(s))ds.

has a solution w ∈ C([t0, t0 + ξ ′]; X).
Denote

ut0+ξ ′
(s) =

⎧⎨
⎩
ut0(s), s ∈ [c, t0],
w(s), s ∈ [t0, t0 + ξ ′],
w(t0 + ξ ′), s ∈ [t0 + ξ ′, b].

Then it is clear that ut0+ξ ′ ∈ C([c, b]; X). Moreover,
one finds that

ut0+ξ ′
(t)=ϕ(t)+

t∫
c

(t−s)q−1P(t−s)g(s, ut0+ξ ′
(s))ds

for t ∈ [c, t0 + ξ ′], which implies that

ut0+ξ ′ = Ψ (t0 + ξ ′,W (ut0+ξ ′
)).

This yields that t0 + ξ ′ ∈ J , a contradiction.
Finally, Let ϕn → ϕ0 in C([c, b]; X) as n → ∞

and un the solution of Eq. (3.1) with the perturbation
ϕn , i.e.,

un(t) = ϕn(t) +
t∫

c

(t − s)q−1P(t − s)g(s, un(s))ds,

t ∈ [c, b], n ≥ 1. (3.2)

Then from condition (2) and the compactness of T (t)
for t > 0 it follows that the set

⎧⎨
⎩

t∫
c

(t − s)q−1P(t − s)g(s, un(s))ds; n ≥ 1

⎫⎬
⎭

is relatively compact in C([c, b]; X). This gives that
the family {un} is relatively compact in C([c, b]; X).
We assume, by passing to a subsequence if necessary,
that un → ũ in C([c, b]; X) as n → ∞. Therefore,
taking the limit in (3.2) as n → ∞, one finds, again
by Lebesgue’s Dominated Convergence Theorem, that
ũ is the solution of Eq. (3.1) with the perturbation ϕ0.
This completes the proof. ��

With the help of conditions (H1)–(H2), it can be
demonstrated that the superposition function F(t, u(t))
admits a L p-integrable selection for each u ∈
C([0, b]; X). Consider the selection set of F : for each
u ∈ C([0, b]; X),

SelF (u) = { f ∈ L p(0, b; X); f (t) ∈ F(t, u(t))

for a.e. t ∈ [0, b]}.
It will provide some useful properties of SelF in the
following lemma.

Lemma 3.3 Let conditions (H1) and (H2) be satis-
fied. Suppose in addition that X is reflexive. Then
SelF : C([0, b]; X) → 2L

p(0,b;X) is weakly u.s.c. with
nonempty, convex and weakly compact values.

Proof Let us first show that SelF (u) is nonempty
for each u ∈ C([0, b]; X). To this aim, let {un}
be a sequence of step functions such that un →
u in C([0, b]; X). Therefore, from (H1) it follows
that F(·, un(·)) has a selection fn(·) ∈ L p(0, b; X)

for each n ≥ 1. Moreover, in view of (H2) we
have { fn} is bounded in L p(0, b; X). Then, apply-
ing Lemma 2.1 yields that { fn} is weakly relatively
compact in L p(0, b; X). We may assume, by pass-
ing to a subsequence if necessary, that fn → f
weakly in L p(0, b; X). An application of Mazur’s the-
orem enables us to find that there exists a sequence
{ f̃n} ⊂ L p(0, b; X) such that f̃n ∈ co{ fk; k ≥ n}
for each n ≥ 1 and f̃n → f in L p(0, b; X). Hence,
f̃nk (t) → f (t) in X for a.e. t ∈ [0, b] with some sub-
sequence { f̃nk } of { f̃n}.

Denote by J the set of all t ∈ [0, b] such that
f̃nk (t) → f (t) in X and fn(t) ∈ F(t, un(t)) for all
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n ≥ 1. Let x∗ ∈ X∗, ε > 0, and t ∈ J be fixed.
From (H1), it follows immediately that (x∗ ◦ F)(t, ·) :
X → 2R is u.s.c. with compact convex values, so ε − δ

u.s.c. with compact convex values. Accordingly, we
have

x∗( f̃nk (t)) ∈ co{x∗( fk(t)); k ≥ n} ⊂ x∗(F(t, un(t))

⊂ x∗(F(t, u(t)) + (−ε, ε)

with k large enough. Therefore,we obtain that x∗( f (t))
∈ x∗(F(t, u(t)) for each x∗ ∈ X∗ and t ∈ J . Since F
has convex and closed values, we conclude that f (t) ∈
F(t, u(t)) for each t ∈ J , which implies that f ∈
SelF (u). This proves the desired result.

Finally, the similar argument (with {un}⊂C([0, b]; X)

instead of the step functions) together with Lemma 2.2
(ii) shows that SelF is weakly u.s.c. with convex and
weakly compact values, completing the proof. ��
Remark 3.1 We will make use of the L p-integrable
selection established in Lemma 3.3 to ensure the exis-
tence of solutions to Cauchy problem (1.1) in the
sequel. One wishes to point out that in [10], solutions
of given problems were constructed as fixed points of a
suitable transformation with contractible values, rely-
ing on a stronglymeasurable selection forweakly upper
semi-continuous multi-valued functions.

Here u ∈ C([0, b]; X) is called a mild solution of
Cauchy problem (1.1) if u is the mild solution of
Cauchy problem (2.2) with some f ∈ SelF (u).

We denote by S f the uniquemild solution to Cauchy
problem (2.2) corresponding to f ∈ L p(0, b; X) for
simplicity.

Now we are able to prove

Theorem 3.1 Let conditions (H1) and (H2) be satis-
fied. Suppose in addition that X is reflexive and T (t)
is compact for t > 0. Then the solution set of Cauchy
problem (1.1) for fixed u0 ∈ X is a nonempty com-
pact subset of C([0, b]; X). Moreover, it is a compact
Rδ-set. In particular, it is connected.

Proof We shall find a compact convex subset of
C([0, b]; X) which is invariant under

G := S ◦ SelF .

It follows from Lemma 3.3 that SelF is weakly u.s.c.
with convex and weakly compact values. Moreover,
using Lemma 2.2(ii), Lemma 2.4 (with B = 0), and
Lemma 3.1 an similar argument with that in [10, pp.

2052–2053] enables us to find thatG : C([0, b]; X) →
2C([0,b];X) is quasi-compact and closed. This yields that
G is u.s.c due to [23, Theorem 1.1.12].

Let β ∈ C[0, b] be the unique continuous solution
of the integral equation

β(t) = a1 + a2

t∫
0

(t − s)q−1α(s)β(s)ds, t ∈ [0, b],

in which a1 and a2 are defined as

a1 = M‖u0‖ + qMbq− 1
p

Γ (1 + q)

(
p − 1

pq − 1

) p−1
p ‖α‖

L p (0,b) ,

a2 = qM

Γ (1 + q)
.

(3.3)

Therefore, if u is a mild solution of Cauchy prob-
lem (1.1), then it follows from (H2) that for each
t ∈ [0, b],
‖u(t)‖ ≤ ‖Q(t)u0‖

+
t∫

0

(t − s)q−1‖P(t − s) f (s)‖ds ≤ β(t),

where f ∈ SelF (u).
Write

D0 = {u ∈ C([0, b]; X); ‖u(t)‖ ≤ β(t) for t ∈ [0, b]},
D̃ = conv(G(D0)).

It is clear that D0 is closed, bounded, and convex and
G(D0) ⊂ D0. Also, D̃ is invariant under G, i.e.,

G(D̃) ⊂ D̃.

Moreover, G has compact values and D̃ is a com-
pact set in C([0.b]; X) since G is quasi-compact and
closed.

Thus, we obtain, thanks to [10, Lemma 2.2], that
the solution set of Cauchy problem (1.1) is nonempty
if one can show that G has contractible values.

Given u ∈ D̃. Fix f ∗ ∈ SelF (u) and put u∗ = S f ∗.
Define a function h : [0, 1] × G(u) → G(u) as

h(λ, v)(t) =
{

v(t), t ∈ [0, λb],
u(t; λ, v), t ∈ (λb, b]
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for each (λ, v) ∈ [0, 1] × G(u), where

u(t; λ, v) = Q(t)u0 +
λb∫
0

(t − s)q−1P(t − s) f̃ (s)ds

+
t∫

λb

(t − s)q−1P(t − s) f ∗(s)ds,

where f̃ ∈ SelF (u) such that v = S f̃ . It is easy to see
that h is well defined and it is continuous. Moreover,
note that

h(0, v) = u∗ and h(1, v) = v for every v ∈ G(u).

Thus, it follows that G has contractible values.
Now, we let M(u0) denote the set of all mild solu-

tions of Cauchy problem (1.1). One finds readily that
M(u0) is a compact subset of C([0.b]; X). Next, we
are going to show that it is also an Rδ-set.

To this aim, let us consider the Cauchy problem of
evolution inclusion of the form

{ cDq
t u(t) ∈ Au(t) + Fn(t, u(t)), t ∈ [0, b],

u(0) = u0 ∈ X,
(3.4)

where n ≥ 1 and the sequence of multi-valued func-
tions {Fn}with Fn : [0, b]×X → Cv(X) is established
in Lemma 2.5.

From Lemma 2.5(ii) and (vi), it follows that Fn ver-
ifies the conditions (H1) and (H2) for each n ≥ 1.
Then from Lemma 3.3 one finds that SelFn is weakly
u.s.c. with convex and weakly compact values. More-
over, one can see from the above arguments that the
solution set of Cauchy problem (3.4) is nonempty and
compact in C([0, b]; X) for each n ≥ 1.

Let Mn(u0) denote the set of all mild solutions of
Cauchy problem (3.4). We show that Mn(u0) is con-
tractible for each n ≥ 1. To do this, let u ∈ Mn(u0)
and fn be the selection of Fn , n ≥ 1. We deal with the
existence and uniqueness of solutions to the integral
equation

v(t) = Q(t)u0 +
λb∫
0

(t − s)q−1P(t − s) f u(s)ds

+
t∫

λb

(t − s)q−1P(t − s) fn(s, v(s))ds

(3.5)

where f u ∈ SelFn (u). From Lemma 2.5(iv) and (v),
we know fn(t, ·) is continuous for a.e. t ∈ [0, b] and
fn(·, x) is L p-integrable for each x ∈ X . Moreover, it
follows from Lemma 2.5(ii) that

‖ fn(t, x)‖ ≤ α(t)(2 + ‖x‖)
for a.e. t ∈ [0, b] and each x ∈ X . Therefore, noticing
Lemma 2.5(v) one finds, thanks to Lemma 3.2, that
Eq. (3.5) has a unique solution on [λb, b], denote it by
v(·, λ, u).

We define a function

Φ : [0, 1] × Mn(u0) → Mn(u0)

by

Φ(λ, u)(t) =
{
u(t), t ∈ [0, λb],
v(t, λ, u), t ∈ (λb, b]

for each (λ, u) ∈ [0, 1] × Mn(u0). It is easy to see that
Φ is well defined. Also, it is clear that

Φ(0, u) = v(·, 0, u), Φ(1, u) = u on Mn(u0).

Moreover, it follows readily thatΦ is continuous. Thus,
we have proved that Mn(u0) is contractible for each
n ≥ 1.

Finally, it is easy to verify that

M(u0) ⊂ · · · ⊂ Mn(u0) ⊂ · · · ⊂ M2(u0) ⊂ M1(u0)

in view of Lemma 2.5(i), and

M(u0) =
+∞⋂
n=1

Mn(u0)

in view of Lemma 2.5(ii) and (iii), Lemmas2.1 and 2.4
(cf., [10, Theorem 3.2]). Consequently, we conclude
that M(u0) is an Rδ-set, completing this proof. ��
Remark 3.2 It is noted that the Rδ-structure of the set of
trajectories to Cauchy problem (1.1) under the weaker
condition that the semigroup generated by A is only
equicontinuous remains still an unsolved problem.

As an interesting application of Theorem 3.1, we shall
deal with mild solutions of the Cauchy problem with
nonlocal initial condition in the form

{ cDq
t u(t) = Au(t), t ∈ [0, b],

u(0) = g(u),
(3.6)

where A is defined as that in the problem (1.1) with
M ≤ 1 (it is key) and

g : C([0, b]; X) → X

is continuous. Assume also that
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(Hg) for some r > 0, ‖g(u)‖ ≤ r for all u ∈
Ωr := {u ∈ C([0, b]; X); ‖u(t)‖ ≤ r for all t ∈
[0, b]}, and

(H ′
g) for each Q ⊂ Ωr which restricted to [η, b] is

relatively compact in C([η, b]; X) for each η ∈
(0, b), g(Q) is relatively compact in X .

Let M0(u0) denote the set of all mild solutions of
Cauchy problem (3.6) with g(u) = u0. Then fromThe-
orem 3.1 it follows that for fixed u0 ∈ X , M0(u0) is a
nonempty compact subset of C([0, b]; X). Moreover,
it is a compact Rδ-set, which implies, for given r0 > 0,
that the multi-valued map M0 : Ω0

r0 := {x ∈ X; ‖x‖ ≤
r0} → 2C([0,b];X) is an Rδ-mapping.

Next, letting u0 ∈ Ω0
r0 and u ∈ M0(u0) we have

‖u(t)‖ = ‖Q(t)u0‖ ≤ r0.

Accordingly, we obtain M0(Ω
0
r0) ⊂ Ωr0 .

Let

Ω̂0
r0 = conv( g(Ωr0)),

Ω̃r0 = conv( M0(Ω̂
0
r0)),

Ω̃0
r0 = conv( g(Ω̃r0)).

Note that Ω̃r0 and Ω̃0
r0 are AR-spaces and M0(Ω̃

0
r0) is

compact due to (H ′
g).

Now, by (Hg) it is not difficult to verify that the
multi-valued mapping

M0 ◦ g : Ω̃r0 → Ω̃r0

iswell defined.Therefore, from the resultM0(g(Ω̃r0)) ⊂
M0(Ω̃

0
r0) and [10, Theorem 2.1] we infer that M0 ◦ g

admits a fixed point in Ω̃r0 , which in fact is a mild
solution of Cauchy problem (3.6).

Remark 3.3 We mention that condition (H ′
g) is satis-

fied when condition (Hg) above and the following con-
dition hold:

(H ′′
g ) there exists δ′ ∈ (0, b] such that for every u, w ∈

Ωr satisfying u(t) = w(t) (t ∈ [δ′, b]), g(u) =
g(w).

Let us note that condition (H ′′
g ) is the case when the

values of the solution u(t) for t near zero do not affect
g(u), which was used in some situations of previous
research such as [36,40].

In what follows, we treat the topological structure of
control problem for fractional evolution inclusion of
the form

{cDq
t u(t) ∈ Au(t)+F(t, u(t))+Bw(t), t ∈ [0, b],

u(0) = u0,

(3.7)

where u0 ∈ X is given, the control function w takes
values in the Banach space V , B is a bounded linear
operator from V to X , and A and F are defined the
same as those in the problem (1.1).

We first consider the linear control problem{ cDq
t u(t)= Au(t)+ f (t)+Bw(t), t ∈ [0, b],

u(0) = u0,
(3.8)

where f ∈ L p(0, b; X).
Denote by u(·, f, w) the unique mild solution of

linear control problem (3.8).
We present the following compactness characteri-

zation of solution set to linear control problem (3.8),
whose proof is very closely to that of Lemma 3.1.

Lemma 3.4 Suppose that T (t) is compact for t > 0.
Let p > 1, pq > 1, K ⊂ L p(0, b; X) be L p-
integrable bounded and K̃ ⊂ L p(0, b; V ) be bounded.
Then the set of mild solutions

{u(·, f, w); f ∈ K , w ∈ K̃ }
is relatively compact in C([0, b]; X).

The topological characterization to control problem
(3.7) is given in the following theorem.

Theorem 3.2 Let conditions (H1), (H2) be satisfied.
Suppose in addition that X is reflexive and T (t) is com-
pact for t > 0. Then the solution set of control problem
(3.7) for fixed w ∈ L p(0, b; V ) is a compact Rδ-set.

Proof Let β̂ ∈ C[0, b] be the unique continuous solu-
tion of the integral equation

β̂(t)= a′
1 + a2

t∫
0

(t − s)q−1α(s)β̂(s)ds, t ∈ [0, b],

in which a2 is the constant appearing in (3.3) and a′
1 is

defined as

a′
1 = M‖u0‖ + qMbq− 1

p

Γ (1 + q)

(
p − 1

pq − 1

) p−1
p

×
(
‖α‖

L p (0,b) + ‖Bw‖
L p (0,b;X)

)
.

Denote by S′ f the uniquemild solution to linear control
problem (3.8) corresponding to f ∈ L p(0, b; X). Just
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the same with the proof of Theorem 3.1, we can find
a compact convex subset Ẽ of C([0, b]; X) which is
invariant under

G ′ := S′ ◦ SelF ,

where

Ẽ = conv(G ′(E0)),

E0 = {u ∈ C([0, b]; X); ‖u(t)‖ ≤ β̂(t) for t ∈ [0, b]}.

With the above preparation, the rest of the proof follows
from an argument similar to the latter part in the proof
of Theorem 3.1 (with Lemma 3.4 instead of Lemma
3.1). We here omit the proof for simplicity. The proof
is completed. ��
Remark 3.4 The extra condition: X is reflexive in The-
orem 3.2 can be dropped the case of F being a single-
valued function.

As an application of Theorem 3.2, we can prove the
invariance of a reachability set of control problem (3.7)
under single-valued nonlinear perturbations.

Define theoperatorT : L p(0, b; X) → C([0, b]; X)

by

(T f )(t) =
t∫

0

(t − s)q−1P(t − s) f (s)ds,

f ∈ L p(0, b; X),

where p > 1 and pq > 1. Evidently T is a linear
bounded operator.

Let us assume that

(H3) the single-valued function F : [0, b] × X → X
is continuous and ‖F(t, x)‖ ≤ α(t)(1+‖x‖) for
each t ∈ [0, b], x ∈ X , where α is the function
appearing in (H2),

(H4) for each f ∈ L p(0, b; X), there exists w ∈
L p(0, b; V ) such that (T (Bw))(b) = (T f )(b).

Remark 3.5 (H4) first introduced in Seidman [31] is
fulfilled if B is surjective.

The set

KF = {u(b, F, w);w ∈ L p(0, b; V )}

is called the reachability set of control problem (3.7).
By K0 we denote the reachability set for the corre-
sponding linear problem (F ≡ 0).

We refer the reader to [8] for the basic notions and
facts of control problems.

Theorem 3.3 Let p > 1, pq > 1 and conditions (H3),
(H4) be satisfied. Suppose in addition that T (t) is com-
pact for t > 0. Then there exists r0 > 0 such that
the reachability set of control problem (3.7) is invari-
ant under nonlinear perturbations, i.e., KF = K0 if
‖B‖V→X < r0.

Proof Let N (w) for fixed w ∈ L p(0, b; V ) denote
the set of all mild solutions of control problem (3.7).
Then by Theorem 3.2 we see that N (w) is an Rδ-set for
every w ∈ L p(0, b; V ). Furthermore, it is easy to ver-
ify that the multi-valued mapping N : L p(0, b; V ) →
2C([0,b];X) is an Rδ-mapping. Based on this, an argu-
ment similar to that in Seidman [31] enables us to find
that the assertion of the theorem remains true. This
completes the proof. ��

4 Examples

In this section, we present examples showing how to
apply our abstract results to specific problem.

Consider the following system of partial differential
inclusion:

⎧⎪⎪⎨
⎪⎪⎩

cDq
t u(t, ξ) − uξξ (t, ξ) ∈

F(t, ξ, u(t, ξ)), (t, ξ) ∈ [0, b] × [0, π ],
u(t, 0) = u(t, π) = 0, t ∈ [0, b],
u(0, ξ) = u0(ξ), ξ ∈ [0, π ],

(4.1)

where cDq
t ,

1
2 < q < 1, is the regularized Caputo

fractional derivative of order q, that is,

cDq
t u(t, ξ) = 1

Γ (1 − q)

×
⎛
⎝ ∂

∂t

t∫
0

(t − s)−qu(s, ξ)ds − t−qu(0, ξ)

⎞
⎠ ,

and

F(t, ξ, u) = [ f1(t, ξ, u), f2(t, ξ, u)]
is a closed interval for each (t, ξ, u) ∈ [0, b]×[0, π ]×
R.

We let the functions

fi : [0, b] × [0, π ] × R → R, i = 1, 2

be such that

(F1) f1 is l.s.c. and f2 is u.s.c.,
(F2) f1(t, ξ, u) ≤ f2(t, ξ, u) for each (t, ξ, u) ∈

[0, b] × [0, π ] × R,
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(F3) there exist α1, α2 ∈ L∞(0, b;R+) such that

| fi (t, ξ, u)| ≤ α1(t)|u| + α2(t), i = 1, 2

for each (t, ξ, u) ∈ [0, b] × [0, π ] × R,

Take X = L2(0, π) and denote its norm by ‖ · ‖ and
inner product by (·, ·). Now we are able to prove

Theorem 4.1 Let the conditions (F1)–(F3) be satis-
fied. Then the set of all mild solutions to system (4.1)
is a compact Rδ-set. In particular, it is connected.

Proof From our assumptions on f1 and f2, it follows
readily that the multi-valued function

F(·, ·, ·) : [0, b] × [0, π ] × R → 2R

is u.s.c. with nonempty, convex, and compact val-
ues. Also, we see, for given x ∈ X , that (t, ξ) →
fi (t, ξ, x(ξ)), i = 1, 2, are measurable on [0, π ].
Moreover, it is easy to verify that

max{| f1(t, ξ, x(ξ))|, | f2(t, ξ, x(ξ))|}
≤ α1(t)|x(ξ)| + α2(t)

a.e. for (t, ξ) ∈ [0, b] × [0, π ], which yields that
ξ �→ α1(t)|x(ξ)| + α2(t) belongs to X a.e for
t ∈ [0, b]. Therefore, we conclude that (t, ξ) �→
fi (t, ξ, x(ξ)), i = 1, 2, belong to L2([0, b]; X). Thus,
the multi-valued function F : [0, b] × X → 2X define
as

F(t, x) = { f ∈ X; f (ξ) ∈ [ f1(t, ξ, x(ξ)),

f2(t, ξ, x(ξ))]a.e. in [0, π ]}
for each (t, x) ∈ [0, b] × X , has nonempty and convex
values and F(·, x) has a L2-integrable selection for
each x ∈ X . Also, it follows that for each f ∈ F(t, x),

| f (ξ)| ≤ ‖α1‖L∞(0,b) |x(ξ)| + ‖α2‖L∞(0,b)

a.e. for ξ ∈ [0, π ]. This proves that F(t, x) is bounded
in X . Therefore, noticing that X is a Hilbert space, we
conclude that F(t, x) is weakly compact. Moreover, it
is to see that F(t, ·) is weakly u.s.c. for a.e. t ∈ [0, b]
(cf., e.g., [33, Lemma 5.1]) and a direct calculation
shows that for each f ∈ F(t, x),

‖ f ‖ ≤ α(t)(1 + ‖x‖)
a.e. for each t ∈ [0, b], x ∈ X , where α(·) =√

π max{α1(·), α2(·)}.
The operator A : D(A) ⊂ X → X is defined as

Ax= x ′′, x ∈ D(A), D(A)=H2(0, π) ∩ H1
0 (0, π).

As in Pazy [30], A has a discrete spectrumand its eigen-
values are −n2, n ∈ N

+ with the corresponding nor-

malized eigenvectors xn(ξ) =
√

2
π
sin(nξ). Moreover,

A generates a compact C0-semigroup {T (t)}t≥0 on X
such that ‖T (t)‖ ≤ e−t for all t ≥ 0. Denote by Eq,l

the generalizedMittag–Leffler special function defined
by

Eq,l(t) =
∞∑
j=0

t j

Γ (q j + l)
q, l > 0, t ∈ R

(cf., e.g., [40]). Therefore, we have that for x ∈ X ,

Q(t)x =
∞∑
n=1

Eq(−n2tq)(x, xn)xn,

‖Q(t)‖ ≤ 1 for all t ≥ 0,

P(t)x =
∞∑
n=1

eq(−n2tq)(x, xn)xn,

‖P(t)‖ ≤ q
Γ (1+q)

for all t ≥ 0,

where Eq(t) := Eq,1(t) and eq(t) := Eq,q(t). Accord-
ing to the compactness of T (t) for t > 0, we know that
Q(t) and P(t) are compact operators for t > 0 (see
[36,42]).

Then, system (4.1) can be rewritten as an abstract
Cauchy problem of the form (1.1). Accordingly, Theo-
rem 3.1 can apply to the situation, and hence we assert
that the set of all mild solutions to system (4.1) is a
compact Rδ-set. The proof is completed. ��
We continue to use the setting as in the above example
and consider the system (4.1) replacing the boundary
condition with homogeneous Neumann boundary con-
dition, i.e.,

uξ (t, 0) = uξ (t, π) = 0, t ∈ [0, b].
In this case, let the operator A : D(A) ⊂ X → X is
defined as

Ax = x ′′, x ∈ D(A),

D(A) = {x ∈ H2(0, π) : x ′(0) = x ′(π) = 0}.
Then the operator −A has eigenvalues 0 = λ1 < λ2 <

· · · < λn → ∞with the property thatλ j has finitemul-
tiplicity Γ j (which equals to the dimension of the cor-
responding eigenspace). Also, there is a complete set
{Φ j,k} of eigenvectors of −A and the operator A gen-
erates an analytic semigroup {T (t)}t≥0 on X defined
by

T (t)x = E1x +
∞∑
j=2

e−λ j t E j x, x ∈ X,
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where the family {E j } is a family of complete ortho-
normal projections in X and

E j x =
Γ j∑
k=1

(x, Φ j,k)Φ j,k

Moreover, using the standard energy estimate method
andSobolev embedding theoremsonefinds that‖T (t)‖ ≤
1 for all t ≥ 0 and T (t) is compact for each t > 0 (see,
e.g., [25,41] for more details).

With the preparation above at hand, we conclude
that the set of all mild solutions for the above system
is a compact Rδ-set, which can be proved by the same
kind of manipulations as in the proof of Theorem 4.1.
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