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Abstract This study describes the experimental and
numerical dynamic analysis of a kinematically excited
spherical pendulum. The stability of the response in the
vertical plane was analyzed in the theoretically pre-
dicted auto-parametric resonance domain. Three dif-
ferent types of the resonance domain were investigated
the properties of which depended significantly on the
dynamic parameters of the pendulum and the excita-
tion amplitude. A mathematical model was used to
represent the nonlinear characteristics of the pendu-
lum, which includes the asymmetrical damping. A spe-
cial frame was developed to carry out the experiments,
which contained the pendulum supported by the Cardan
joint and two magnetic units attached to the supporting
axes of rotation, and this was able to reproduce lin-
ear viscous damping for both of the principal response
components. The stability analysis of the system was
compared with the numerical solution of the govern-
ing equations and experimental observation. The most
significant practical outcomes for designers are also
summarized.
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1 Introduction

Many systems used in civil engineering such as towers,
masts, chimneys, buildings, power piping systems, the
massive foundations of rotating machines, and other
general purpose systems have to be equipped with
devices that reduce the dynamic response to external
excitation with deterministic or random characteristics.
In their simplest form, passive tuned mass dampers
(TMDs) are such devices. When designed and posi-
tioned correctly on a structure, they draw the vibrational
energy away from the structure and dissipate it inter-
nally, thereby reducing undesired responses. Several
studies have addressed the topic of vibration absorbers,
such as the seminal work by Hartog [1] and later work
by Korenev [2]. Theoretical aspects of TMDs are still
attracting the attention of researchers throughout the
world. Many studies have considered various aspects of
this subject. For example, an optimal design theory for
structures implemented with TMD was proposed [3].
This method facilitates more extensive applications and
removes the limitations based on simplifying assump-
tions. The design parameters are determined by min-
imizing a performance index. In another study [4], a
control system was introduced for multiple dampers,
and a remarkable decrease in the amplitudes of a steel
TV tower was reported. In [5], the efficiency of a TMD
in controlling the self-excited motion of a bridge due
to wind-structure interaction forces was described. In
the paper [6], the use of a nonlinear element was intro-
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duced to describe the nonlinear behavior of the cross-tie
reducing the vibration of stay-cables.

Another interesting type of absorber, i.e., tuned liq-
uid column dampers (TLCDs), was presented in [7].
TLCDs belong to the class of liquid dampers that
damp out the oscillations of a system via the oscil-
lations in a U-shaped liquid column. The optimum val-
ues for damping have been investigated using multi-
ple TLCDs under wind excitation. Another case with
multiple dampers in the structure was analyzed in [8],
and their performance was optimized. A random load-
ing was applied in [9], where a collection of sev-
eral mass dampers with distributed natural frequen-
cies were investigated under random loading. A ball
type of absorber was studied theoretically in [10,11].
The authors discussed the function and efficiency of its
practical implementation.

A TMD is frequently a pendulum in the aforemen-
tioned disciplines. This low cost passive device (and
its variants) is used on tall masts and towers, and it
is very popular because of its reliability and simple
maintenance, e.g., see a theoretical outline of pendu-
lum dampers in engineering practice in [12]. However,
their dynamic behavior is significantly more complex
than is assumed by the widely used linear single degree-
of-freedom (SDOF) models, which work in one verti-
cal plane. This linear model is only satisfactory if the
amplitude of the kinematic excitation at the suspension
point is very low, and if its frequency remains outside a
resonance frequency domain. However, this is possible
but at the cost of a damper with lower efficiency.

In experimental and numerical treatments, unidi-
rectional harmonic excitation is generally assumed,
which may bring complexity. If the excitation fre-
quency is in the resonance domain, post-critical states
can emerge. These states are characterized either by
a highly increased longitudinal response, or by more
or less complicated space trajectories of various types
on a spherical surface. From a practical point of view,
this type of the response destroys the effectiveness of
the TMD. As the frequency increases, the shape of the
motion stabilizes in an elliptic trajectory. After the fre-
quency exceeds a certain limit, the spatial movement
(solution) disappears, and the stable solution in the
principal plane is restored.

The existence and stability level of individual solu-
tions or response types depend on the pendulum geome-
try and the excitation characteristics. To facilitate more
efficient designs, the absorber should be treated as a two

degree-of-freedom system with at least weak nonlinear
behavior. However, this treatment increases the diffi-
culty of the mathematics inherent in nonlinear systems
and the auto-parametric systems that represent a special
class of them. A typical feature is represented by the
existence of a semi-trivial solution, which means that
part of the system vibrates whereas the rest of the sys-
tem remains idle. In certain conditions, the semi-trivial
solution becomes unstable and auto-parametric reso-
nance is induced. Typical properties such as saturation
effects and the occurrence of non-periodic and quasi-
periodic vibration have been illustrated, for example,
in [13] or [14].

The auto-parametric systems and related topics have
been discussed in recent decades by Tondl and co-
authors, e.g., [13,15] and many others such as the
authors of [16,17] and [18]. Several monographs,
e.g., [19], have presented comprehensive overviews of
results and methods. The application of these tech-
niques includes stability analysis see e.g., [20] and
vibration suppression published in [21] and recently in
[22], or only theoretical analyses of dynamical systems
as in [23].

The motivations of these studies come from various
areas of mechanical and civil engineering. The evalua-
tion of a pendulum vibration absorber for a Duffing sys-
tem was reported in [24], which used the multiple scales
method to ascertain the auto-parametric resonance con-
ditions and to compare the results of a nonlinear analy-
sis with a similar application of a pendulum absorber in
a linear primary system. The influence of the primary
Duffing members on the absorber frequency response
has also been presented in a numerical manner. In [25],
for example, experimental and numerical investiga-
tions are carried out using an auto-parametric system,
which comprised a composite pendulum attached to a
harmonically base-excited mass-spring subsystem. An
interesting analysis of a structure-pendulum interaction
was presented in [26], where a planar pendulum was
assumed. However, the frequencies of the structure and
the pendulum are comparable when dealing with TMD,
which violated the first assumption of the study.

The horizontally excited spherical pendulum was
first studied by Miles [27] who considered the problem
of the stability of planar oscillations to non-planar per-
turbations with small amplitude forcing in the neigh-
borhood of resonance using truncated equations. He
found that planar solutions become unstable to non-
planar perturbations in particular parameter ranges and
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that nonplanar oscillations also emerged. Later, a more
detailed study by Miles [28] analyzed a set of bifur-
cation diagrams for planar and non-planar motions, as
well as chaotic motion. The experiments carried out
by Tritton [29] confirmed the theoretical model and
showed good agreement. An investigation of the non-
linear damping mechanisms governing the dynamics
of a chaotic spherical pendulum was presented in [30].
The authors commented on the discrepancies between
the theoretical predictions and the experiments when
neglecting the real nonlinear nature of the damping.

In the present study, we focused on the analysis of
the behavior of a spherical pendulum under the influ-
ence of damping on the overall stability. This study
is an extension of a recently published article [31] in
which the analysis of the pendulum was carried out
with respect to the variation of both principal damping
coefficients.

The movement of the pendulum is described analyt-
ically using a published purely analytical and numeri-
cal approach [14], which uses the coordinates θ, ϕ on
a spherical surface to represent the nonlinear interac-
tion of both components, or in two Cartesian coordi-
nates ξ, ζ , which represent the projection of the pen-
dulum’s bob on the x, y plane. The pendulum response
is described by a system of two simultaneous second-
order nonlinear ordinary differential equations. The
interaction between both components derives from the
nonlinear coupling terms. Depending on its parame-
ters, various types of stability loss can occur so the
critical amplitude and frequency of the excitation can
be detected. A semi-trivial solution may occur, where
one component is non-trivial, while the second remains
at zero. In certain conditions, which are also analyzed,
the semi-trivial solution can lose its stability, and vari-
ous specific types of response can occur.

Experimentally, the pendulum was examined using
a specially developed experimental rig, where the kine-
matically driven pendulum was suspended from a Car-
dan joint. The response components were measured by
rotation sensors. They are working on the principle of
an encoder comprising a magnetic actuator and sepa-
rate encoder body. Frictionless rotation of the actuator
is sensed by a custom encoder chip within the body
and processed to the required output. The angular res-
olution is up to 8,192 positions per one revolution.
The key parameter (damping) could be adjusted for
each response component via two independent mag-
netic units attached to the frame and to the supporting

Fig. 1 Mechanical model
of the idealized spherical
pendulum

axes of rotation. These units were used to reproduce
the linear viscous damping. The stability of the system
was analyzed experimentally and numerically based on
several damping values. This analytical, numerical, and
experimental study produced several recommendations
for designers.

2 Mathematical model

The spherical pendulum is modeled as a strongly non-
linear dynamic system with kinematic external excita-
tion in the suspension point, as shown in Fig. 1.

To describe the motion in the xz plane, where
the semi-trivial solution can be analyzed, the prob-
lem needs to be formulated using the components ξ, ζ ,
which correspond to the x, y coordinates. In this case,
it would be inconvenient to analyze the dynamics of
the pendulum in more natural spherical coordinates,
because the angle ϕ(t) changes very quickly when θ is
close to 0, and it cannot be defined as a function with
an arbitrary small norm, as shown in Fig. 1. Moreover,
the excitation a(t) acts in the x direction only so the
basic type of motion occurs in the vertical (xz) plane if
the time history starts with homogeneous initial condi-
tions.

The mathematical model is based on the principle
of the balance between kinetic and potential energies
T, V (m is mass of the pendulum).

T = m

2
(ξ̇2 + ζ̇ 2 + η̇2 + 2ȧξ̇ + ȧ2) (1a)

V = mgη (1b)

The relationship between the basic Cartesian system
(ξ = ξ(t), ζ = ζ(t), η = η(t)) and the coordinates
ϕ, θ, r can be expressed by the spherical transforma-
tion:
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ξ =r sin θ cos ϕ; ζ =r sin θ sin ϕ; η=r(1−cos θ)

(2)

Parameter g is the gravitational acceleration, and the
pendulum has the suspension length r . The geometry
of the model illustrated in Fig. 1 also gives the following
kinematic constraint:

r2 = ξ2 + ζ 2 + (r − η)2 (3)

The vertical coordinate η starts at the lower pole of
the sphere. The equations for the potential and kinetic
energy can be modified using the Taylor expansions
for θ :

θ = arcsin

(√
ξ2+ζ 2

r

)
≈

√
ξ2 + ζ 2

r
+ 1

6

(√
ξ2+ζ 2

r

)3

(4)

and for 1 − cos θ , respectively:

1 − cos θ ≈ 1

2
θ2 − 1

24
θ4 (5)

Using algebra, the following equations are obtained for
the kinetic and potential energy:

T = m

2

[
ξ̇2 + ζ̇ 2 + 1

4r2

(
d

dt

(
ξ2 + ζ 2

))2

·
(

1 + ξ2 + ζ 2

2r2

)2

+ 2ȧξ̇ + ȧ2
]

(6a)

V = mg

[
1

2r
(ξ2 + ζ 2) + 1

8r3 (ξ2 + ζ 2)2
]

(6b)

The linear viscous damping with the coefficients
βξ , βζ should be included to facilitate an analysis of the
true stationary response. The damping is incorporated
into the Langrange’s equations using the quadratic
Rayleigh dissipative function, see, e.g., [32]. By com-
bining the previous equations, this function can be writ-
ten as

F = 1

2
mr2

[
βξ ξ̇

2 + βζ ζ̇
2 + βηη̇

2
]
,

where: η̇2 = (ξ ξ̇ + ζ ζ̇ )2

r2

(
1+ ξ2+ ζ 2

2r2

)2

(7)

The damping in the vertical direction z will be
neglected, because we consider it to be linear; the verti-
cal velocity (η̇) is small at a higher order. Finally, using
Eq. (6a, b), an approximate Lagrangian system based
on the x, y coordinates of the components ξ, ζ on the
level O(ε6); ε2 = (ξ2 + ζ 2)/r2 can be obtained after

applying Hamilton’s principle. The final form of the
differential system is (see [14] for the full derivation):

ξ̈ + 1

2r2 ξ
d2

dt2 (ξ2 + ζ 2) + 2βξ ξ̇

+ ω2
0ξ

(
1 + 1

2r2 (ξ2 + ζ 2)

)
= −ä

(8a)

ζ̈ + 1

2r2 ζ
d2

dt2 (ξ2 + ζ 2) + 2βζ ζ̇

+ ω2
0ζ

(
1 + 1

2r2 (ξ2 + ζ 2)

)
= 0

(8b)

The natural frequency of the corresponding linear
pendulum is ω2

0 = g/r . The above equations are mutu-
ally independent if only the linear terms are considered;
their interaction is given by the nonlinear terms only.
Each of the response components ξ, ζ can be separately
considered as arbitrarily small in the norm, and inde-
pendently and continuously limited to zero, whereas
the other one remains non-trivial. Therefore, the sys-
tem is auto-parametric, and appropriate procedures can
be applied.

3 Solution strategies

3.1 Properties of the pendulum and descriptions of
the experiments

In general, stability problems are very sensitive to
the boundary and initial conditions. Therefore, any sim-
ulation device and its mechanical parts need to be well
prepared and manufactured to avoid the generation of
parasitic effects. This applies to a complex kinematic
mechanism and a relatively simple spherical pendulum.
The specific experimental setup was designed to com-
ply with the assumptions of the theoretical and numer-
ical model. The pendulum shown in Fig. 2a was sus-
pended at a Cardan joint, which was attached to a trol-
ley that could move on two parallel miniature rails. The
length of the pendulum was 0.41 m.

Two specially designed magneto-dynamic units
based on the practical application of the electromag-
netic induction and the Lorentz force exploited the
effect of eddy currents induced in the aluminum cir-
cular disk moving between two disks with circum-
ferentially uniformly distributed magnets. Thus, the
moving disk acted as a proportional viscous damper.
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Fig. 2 Experimental setup and the details of the damping unit
used to measure the auto-parametric vibration of the kinemati-
cally excited spherical pendulum. a Spherical pendulum attached
to moving support on the rails with a Cardan joint and the damp-

ing units. b Damping unit with aluminum disk (light gray), disks
with magnets (dark gray), counter and rotational sensors. (Color
figure online)

Table 1 Properties of the pendulum

Length Nat. frequency Excit. frequency (lower) Excit. frequency (upper) Frequency step 
 f

(m) (Hz) (s−1) (Hz) (s−1) (Hz) (s−1) (Hz) (s−1)

0.41 0.77 (4.86) 0.70 (4.40) 0.97 (6.09) 0.002 (0.012)

This assembly is shown in Fig. 2b. The crank spin-
dle mechanism allowed the adjustment of damping
in the practically full range from zero to the critical
level by adjusting the axial distance between magnets
(neodymium) attached to the gear wheels with slightly
different numbers of gear teeth (see [31] for further
details). The damping was calibrated a posteriori, from
the free vibration decay.

The construction of the pendulum differed slightly
from the ideal. Therefore, an equivalent mathematical
pendulum with the properties based on the measure-
ment was used in the numerical solution. The main
parameters of the pendulum are summarized in Table
1. The sinusoidal kinematic excitation (movement) of
the trolley was provided by an electrodynamic shaker,
which was controlled by a wave generator. Measure-
ments of this horizontal excitation amplitude a0 were
obtained using a linear variable differential transformer

(LVDT). Differences between prescribed and measured
amplitudes were negligible.

The response of the pendulum was measured in
the specific range of the excitation frequencies, as
shown in Table 1. To include the full resonance inter-
val, each sweep started at an excitation frequency
that was slightly higher than the natural frequency of
the pendulum ω2

0, and a small initial disturbance was
applied (manually or occasionally by a random ambi-
ent excitation) to the pendulum. The excitation fre-
quency was changed gradually in small up or down
increments to cover the whole frequency range. Each
frequency was kept constant for 3 min, and the pendu-
lum angles were recorded with a pair of identical high-
speed rotary magnetic encoders, which were attached to
the axes of rotation. To eliminate the transitory effects,
only the last minute of each recording was used for
post-processing.
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3.2 Analytical solution

In this section, the system (8) is analyzed from a sta-
bility perspective. With an increase in the excitation
a(t) amplitude in the Eq. (8a), auto-parametric stability
loss can occur, and the post-critical state of the auto-
parametric resonance emerges. We assessed the stabil-
ity of the semi-trivial solution previously (see [14,31]).
Similar procedure can be used also for the asymmetri-
cal damping, where the stability limits depend on the
individual damping coefficients. In the present work, a
different procedure from [14] and [31] is used, however.
The part related to the semi-trivial stability is omitted
here, and the focus is put on the more general form of
the solution.

Hence, the response of the pendulum to the harmonic
excitation a(t) = a0 cos(ωt), where a0 and ω are the
amplitude and frequency of excitation, respectively, is
expected in the harmonic form:

ξ(t) = ac(t) cos ωt + as(t) sin ωt
ζ(t) = bc(t) cos ωt + bs(t) sin ωt

(9)

The partial amplitudes ac(t), as(t), bc(t), and bs(t)
are assumed to be functions of “slow time” where the
system response is at least nearly stationary. This has
the advantage that it allows the use of the harmonic
balance method.

Let us now substitute the expressions (9) into the
differential system (8) and apply the harmonic balance
operation. This procedure leads to the nonlinear differ-
ential system, which can be written in the form:

H(X) Ẋ = K(X)X + F; (10)

The detailed structures of the right-hand side vector F
and the vector of the amplitudes X are as follows:

X(t) = [ac(t), as(t), bc(t), bs(t)]T , (11)

F =
[
0, 4r2ω2a0, 0, 0

]T
(12)

The system matrix H(X) ∈ R
4×4 is

H(X) = ω

[
Za, Zab

Zab, Zb

]
(13)

where

Zx =
[ −2xcxs, 4r2 + 3x2

c + x2
s

−4r2 − x2
c − 3x2

s , 2xcxs

]
,

for x ∈ {a, b}
Zab =

[ −asbc − acbs, 3acbc + asbs

−acbc − 3asbs, asbc + acbs

]

The system matrix H is always regular because its
determinant is positive, which follows from this expres-
sion:

det H(X)=16r2ω
(

4r2+R2
) (

4r4+3r2 R2+2S4
)
(14)

where

R2 =XT · X=a2
c +a2

s +b2
c +b2

s , S2 =asbc − acbs

(15)

It can be shown that the following holds for the matrix
K(X):

K(X)=−(4�2r2+ 1

2
R2�1) I +

[
8r2ωβξ J, −S2�4 J
S2�4 J, 8r2ωβζ J

]
(16)

where I represents the 4 × 4 identity matrix and the
following notation is used:

�1 = 3ω2
0 − 4ω2, �2 = ω2

0 − ω2,

�3 = ω2
0 + 4ω2, �4 = ω2

0 − 4ω2,
(17)

J =
[

0, 1
−1, 0

]
(18)

It should be remembered that the validity of Eq. (10)
is limited to conditions where the harmonic balance
operation is meaningful. In principle, the variability in
time of the above amplitudes should be small to accept
that their increments are negligible within one period.

At this point, the normal form of the differential sys-
tem can be formulated using the inverse of H. However,
the determinant (14) is always positive, so the quali-
tative analysis of the overall system behavior can be
determined equivalently simply by using the original
right-hand side.

Let us consider the steady state response of the sys-
tem. In this case, the derivatives Ẋ vanish, and the dif-
ferential system (10) reduces to an algebraic equation

K(X)X = −F (19)

The general properties of the amplitudes ac, as, bc,
and bs can be described using R2 and S2. We sum
up the squares in all the rows of (19) and subtract the
product of the 2nd and 3rd rows from the product of the
1st and 4th rows, and two relationships for generalized
amplitudes emerge after some adaptation:
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R2
(

R2�1

8r2 + �2

)2

+ 4ω2
(

R2
1β2

ζ + R2
0β2

ξ

)

+ S2
(
P2ω

(
βζ − βξ

) − S2
((

R2�1

8r2 + �2

)

− R2�4

16r2

))
�4

r2 = a2
0ω4

(20)

S2
(

4ω2βζ βξ + �2
2 + R2

4r2

(
R2

16r2 �1�3 + 2ω2
0�2

)

+ S4�2
4

16r4

)
+ 2P2ω

(
βξ − βζ

) (
R2�1

8r2 + �2

)
= 0

(21)

where R and S were introduced in (15),

R2
0 =

(
a2

c + a2
s

)
, R2

1 =
(

b2
c + b2

s

)
, R2 = R2

0 + R2
1

and S2 = asbc − acbs, P2 = acbc + asbs .

The parameter R2 represents the total amplitude of
the response, and S2 and P2 represent the vector and
scalar product of the individual response components,
respectively.

Both of the Eqs. (20–21) introduce a new parameter
P2 into the expressions, which makes both conditions
less transparent and usable. Let us analyze these equa-
tions in detail. First, we analyze the stability of the
movement in the planar ξ condition. If we assume that
motion occurs in this direction only, we can see that S,
P , and R1 vanish. Thus, R = R0 and this holds for the
reduced Eq. (20) as follows:

R0(ω, R2
0) = R2

0

(
4ω2β2

ξ +
(
�2 + 1

8r2 �1 R2
0

)2
)

−ω4a2
0 = 0 (22)

This equation is the relationship for the resonance
curve of the semi-trivial (planar ξ ) solution, which was
derived earlier in detail in a previous study [14]. It
describes the theoretical steady state response of the
pendulum moving in the vertical plane only. Eq. (22)
is a cubic equation for R2. By varying the excitation
amplitude a0 or damping βξ , a set of resonance curves
can be obtained as functions of the excitation frequency
ω. It is well known that these functions can lose their
uniqueness in some intervals of ω, which are related to
the existence of one or three real roots of Eq. (22) for
particular values of the parameters a0, βξ , see Fig. 3a.

Provided that the resonance curve remains single-
valued, the nonlinear behavior of the pendulum is neg-
ligible. However, the presence of multiple branches of

the resonance curve indicates possible problems with
the efficiency of the damper. The positions of both ends
of this interval (see c1 and c2 in Fig. 3a) are determined
by solving the nonlinear system:

R0(ω, R2
0) = 0; dR0(ω, R2

0)

d(R2
0)

= 0 (23)

where

dR0(ω, R2
0)

d(R2
0)

= 4ω2β2
ξ +

(
R2

0

8r2 �1 + �2

)
(

3R2
0

8r2 �1 + �2

)
= X0(ω, R2

0)

(24)

The curve X0 = 0 defined by Eq. (24) defines the
stability limit of the domain of the linear response type
of the pendulum, which depends on βξ , and it only
affects the longitudinal component ξ of the response.
The intersections c1 and c2 of (22) and (24) indicate
the unstable parts of the resonance curve (22), and the
interval of the ambiguous values of the response ampli-
tude, respectively.

Next, we can analyze the case with the non-planar
motion of the pendulum bob, i.e., ξ �= 0; ζ �= 0.
In this case, the analytic solution is much more diffi-
cult to obtain, if not impossible, because the terms S
and P are non-zero, and the structure of Eqs. (20–21) is
rather complex. However, we can make their qualitative
analysis more transparent by neglecting the difference
between both dampings. Thus, by setting βξ = βζ in
these equations, they are simplified, because the terms
involving P become zero, and we can compare the
results with the solution given in [14] by observing
the restored structure of the original equations.

Therefore, assuming β = βξ = βζ , Eq. (21) for the
unknown S2 has another two real roots in addition to
one zero root (solved in the paragraph above):

S2
2,3 = ± 4r2

√−D(ω, R2)

�4
(25)

where the discriminant is as follows:

D(ω, R2) = 4ω2β2 +
(
�2 + R2

8r2 �1

)
(
�2 + R2

8r2 (�1 − 2�4)

)
(26)

Given S2 �= 0, the necessary condition required for
a positive value of S2 (for �4 = ω2

0 − 4ω2 < 0) is the
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(a) (b)

(c) (d)

Fig. 3 Stable and unstable parts of the individual branches of
the resonance curve R0(ω, R2

0) = 0 (blue solid and red dashed)
and the stability limits X0, X1 (black, long-dashed and dotted,
respectively) and D (magenta, dot-dashed). The hatched areas
indicate the instability intervals (c1, c2) and (c3, c4). a In the gen-

eral case, the resonance is affected detrimentally by both types
of instability. b Detail of Fig. a showing the stable and unsta-
ble resonance curves (solid blue and dashed red respectively).
c Critical case, c1 = c2, according to (31). d Critical case,
c3 = c4, according to (33). (Color figure online)

negative discriminant value D(ω, R2) in (25). Thus,
the curve magenta

D(ω, R2) = 0 (27)

represents a limit of such part of the (ω, R2) plane,
where the value of S2 attains real values. This curve
cuts out an another unstable part of the resonance curve
(see c3 and c4 in Fig. 3, curve (27) itself is shown
in magenta, dot-dashed line). This corresponds to the
range of excitation frequencies where a pure planar
movement is unstable, and a spatial movement is sta-
ble. An explicit form of the resonance curve in this
case can be obtained by substituting the positive root
S2

2 defined in (25) into Eq. (20). The resulting general-

ized resonance curve comprises the amplitudes of both
components ξ and ζ :

R1(ω, R2) = R6 1

8r4

�1

�4
ω4

0

+ R4 1

4r2

�2

�4

(
(�4 − 2�1)

2 − �2
1

)

+ R2
(

2
�1

�4

(
4β2ω2 + 3�2

2

)
− 4�2

2

)

+ 16r2 �2

�4

(
4β2ω2 + �2

2

)
− a2

0ω4 = 0

(28)

A plot of both branches of the generalized resonance
curve is shown in Fig. 3a, c, where the stable resonance
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curve is plotted as solid blue curves, and the unstable
parts are shown as dashed red curves.

The unstable part of the spatial branch is delimited
by a stability limit X1 (black-dotted line in Fig. 3):

X1 = dR1(ω, R2)

d(R2)
= 0 (29)

Point c5 in Fig. 3a, c shows intersection of the resonance
curve R1 and the stability limit X1, defined by Eqs.
(28) and (29), respectively.

The determination of the limit values of the damping
and the excitation amplitude is of importance from a
practical viewpoint. These critical values correspond to
the case where c1 = c2 or c3 = c4 and the resonance
curve touches the corresponding limit (see Fig. 3c and
d). The first case is characterized by the system:

dR0(ω, R2
0)

d(R2
0)

= 0; d2R0(ω, R2
0)

d(R2
0)2

= 0 (30)

The solution of (30) leads to the relationship between
the system parameters a0 and βξ with the following
form:

512r2β3
ξ = 3a2

0

·
(√

9β2
ξ + 3ω2

0

(
48β2

ξ + ω2
0

)
− 9βξ

(
16β2

ξ + 3ω2
0

))
(31)

where a0 can be approximately expressed as a series in
βξ :

a0 ≈ r
4
√

3

(
16

√
2

3ω
3/2
0

β
3/2
ξ + 24

√
6

ω
5/2
0

β
5/2
ξ

)
+ O

(
β

7/2
ξ

)
(32)

According to condition (27), the critical values of
the damping and excitation coefficients follow from
the relationship:

G =
(

R0(ω, R2)

D(ω, R2)

)
= 0; det dG = 0 (33)

where dG is the Jacobi matrix of the system G. Unfortu-
nately, there is no closed-form solution, and the system
(33) has to be solved numerically.

It is worth noting that whereas condition (31) or
its approximate version (32) depends on βξ only, the
stability limit (27) and the corresponding critical value
(33) depend on both βξ , βζ . Indeed, the symbol β2 in
Eqs. (26)–(28) represents the product βξβζ if symbols
βξ , βζ are kept formally distinct during the derivation.

Figure 3 summarizes the possible mutual positions
of the resonance curve and the stability limit for three

Fig. 4 Dependency of the critical excitation amplitude a0 on
the damping coefficient (β = βξ = βζ ) values, leading to the
crossing of the resonance curve and the respective stability limit.
Solid line: exact value according to (31); dotted: approximate
expression (32), where both are related to the stability limit X ,
c1 = c2. Dashed: expression (33) related to the stability limit D ,
c3 = c4. (Color figure online)

different excitation amplitudes. We note that neither
of the stability limits (24), (27) and (29), which are
represented as black long-dashed curve, magenta dot-
dashed and black-dotted curves, respectively, do not
depend on the excitation amplitude. Figure 3a shows
the case when both intervals (c1, c2) and (c3, c4) are
non-empty, where the intervals are indicated by for-
ward and backward hatching, respectively. In (c1, c2)

and (c4, c5), the amplitude of the response can attain
two distinct (stable) values. The length of the unstable
part of the resonance curve between c1 and c2 or c4

and c5 is positive. A magnified detail of the resonance
peak is shown in Fig. 3b. In (c3, c4), the resonance
curve has two individual branches, where the planar
branch becomes unstable. Case (c) corresponds to a
critical case where the planar resonance curve loses its
uniqueness with the increasing excitation amplitude,
c1 = c2, cf. Eq. (30). Finally, Fig. 3d shows the second
critical case: the excitation amplitude computed based
on the relationship (33) leads to contact between the
resonance curve and the stability limit, c3 = c4.

Figure 4 shows the mutual dependence of the criti-
cal values of the individual damping coefficients, β =
βξ = βζ , and the corresponding amplitude of harmonic
excitation a0. The area below the curve corresponds to
the safe configuration. It is clear that while increasing
the excitation amplitude and keeping the damping con-
stant, the transverse stability limit (33) is exceeded first,
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i.e., the green-dashed line. The figure also shows that
the approximation (32) is always on the safe side of the
critical limit defined by (31).

In general, the mutual position of the resonance
curve and both stability limits depend on the structural
(r, ω0, βξ , βζ ) and excitation (a0) parameters. With a
low excitation amplitude a0 or sufficiently large damp-
ing β, the curves do not intersect, and the instability
interval can disappear completely. By contrast, with
a large excitation amplitude and/or small damping,
the instability interval can occupy a wide frequency
domain. This suggests that in the design recommenda-
tion, the damping should not drop below a certain limit
to avoid instability, which indicated reduced pendulum
efficiency, especially with broad band excitation.

3.3 Analytical-numerical solution

As mentioned in 3.1, reflecting the asymmetry of the
individual damping coefficients causes difficulties in
the analytical treatment of the stability assessment. In
this case, the stationary solutions of Eq. (10) must be
searched to find solutions to the nonlinear algebraic
Eq. (19). The positions of the numerical roots, which
depend on the excitation frequency, can be enumerated
using various continuation techniques. Selected reso-
nance curves are shown in Fig. 5. This figure is orga-
nized as follows: the plots in the rows have common
values of βξ and a common scale, but they differ with
respect to the increasing value of the transverse damp-
ing coefficient βζ . The graphs in the columns corre-
spond to increasing βξ , and they differ in scale. The
peak value on the right-hand spike is cut off in cases
(d), (g), and (h) to ensure that the plot range is consis-
tent. Its position in case (d) is ω = 5.45, R2 = 0.18, in
case (g) it is ω = 11.85, R2 = 3.4, and in case (h) it is
ω = 5.46, R2 = 0.18.

With respect to the planar resonance curve, it should
be noted that the relationship (22) is valid even in the
case of asymmetrical damping. In this case, both S2

and P2 vanish, and Eq. (21) becomes trivial, while
(20) reduces to (22). Thus, the planar resonance curve
depends only on βξ and a0, and it does not change
within the rows in Fig. 5. By contrast, the spatial branch
of the resonance curve (S2 �= 0 and P2 �= 0) depends
on both βξ , βζ , and it changes within each row.

The spatial response is characterized by the side
branch of the resonance curve, which begins close to

the highest peak of the planar resonance and ends at the
right foot of the resonance area. This is analogous to
the spatial branch defined by (28), which is indicated
by points c3 and c4 in Fig. 3. The right-hand part of the
spatial response increasing from the local minima cor-
responds to the spatial movement of the pendulum in
the form of a spatial curve, which resembles an ellipse
(see [14]). Both the numerical and experimental verifi-
cations confirm the stability of the upper spatial and the
lower planar branch of the resonance curve, although
the spatial stable response is generally not easy to reach.

The most significant difference from the symmetri-
cal case occurs in the first column of Fig. 5, in cases
(a) and (d) where βζ is kept low at 0.005, and βξ is
significantly higher. The stable part of the resonance
curve of the spatial motion exceeds the peak value of
the planar resonance curve even with decreasing values
of ω, and it returns to R0 as an unstable solution (see
the details in Fig. 5 cases (a) and (d)). However, the
interpretation of this theoretical result is problematic,
because numerical and experimental models exhibit
chaotic behavior in the lower part of the resonance
interval. The response of the system is not static so
the first assumption of the preceding theoretical analy-
sis is violated. Thus, the interval of the frequencies
ω with an unstable response should be subjected to
detailed analysis. The resonance curve only provides
very rough or no information about the response in this
interval. The non-stationary response of the damping
device can have very negative effects on the structure,
and this behavior has to be avoided in practical designs
of a TMD.

4 Discussion of the results

4.1 Comments on the numerical results

To obtain an overview of the system behavior in the res-
onance frequency intervals, several numerical analy-
ses of the governing differential system (8) were per-
formed. In the numerical simulation, the implicit Back-
ward Difference Method as implemented in NDSolve
from Mathematica [33] for variable difference order
2–5 or the M = 2 variant of the implicit Gear method
(routine gear2) from the GNU Scientific Software
Library [34] was the most stable and efficient.

Figure 6 shows the maximum and minimum ampli-
tudes depending on the excitation frequency (ω,
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(d) (e) (f)

(g) (h) (i)

Fig. 5 Resonance curves with a fixed excitation amplitude a0 = 0.0022 and various damping coefficients βξ , βζ ∈
{0.005, 0.0015, 0.0025}. The stable branches are shown as solid blue lines and the unstable branches as dashed red curves. (Color
figure online)

rad s−1). The responses computed for several of damp-
ing coefficient (β ∈ {0.04, . . . 1.2})values are shown in
the individual rows. The longitudinal ξ and transverse
ζ components are shown in the left and right columns,
respectively. To reach the steady state, only the last
25 % of the integration interval t ∈ (0, 900) was con-
sidered. Three curves are present in each plot, which
represent the maximum, minimum, and mean values of
the amplitudes. In the case where all three curves coin-
cide, the response of the pendulum is harmonic. If the
minimum and maximum curves form a stripe, a multi-

harmonic or chaotic type of response occurs. However,
this very simple criterion cannot be used to distinguish
chaotic, quasi-periodic, and multi-harmonic responses.

4.2 Comments on the experimental results

The resonance curves were investigated via semi-
continuous sweep procedure described in Sect. 3.1. In
some cases with low damping, the pendulum entered
an auto-parametric oscillation without any external
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Fig. 6 Numerical integration: computed amplitudes (m) of
the response depending on the excitation frequencies ω =
4.6 . . . 6.1 rad s−1 for several values of damping coefficients,
which are the same in both directions. Longitudinal movement
(ξ ) is shown on the left-hand side and the transverse response (ζ )

on the right-hand side. For each plot, the maximum, minimum,
and mean amplitudes are shown. The parameters of the model
were selected to satisfy the geometrical properties of the exper-
imental setup. Base excitation is a0 = 0.01 m. (Color figure
online)
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impulse, but in other cases a random initial disturbance
was given to the pendulum manually. Nevertheless,
amplitude of this initial ϕ and ϕ̇ was not important for
a pendulum bob to reach the stable trajectory, because
just above the natural frequency of the pendulum is
the periodic spatial trajectory the only stable solu-
tion, see [14]. There were several cases of the asymp-
totic stability of semi-trivial solution, as well as cyclic
oscillations with regular and quasi-harmonic patterns.
The forcing frequency was in the interval ωl = 3.58
to ωu = 4.02 rad−1. The frequency increment was
selected as 
ω = 0.0126 rad−1. The natural frequency
in both directions was 3.877 rad−1. The base excitation
was kept constant during the whole experiment at the
value a0 = 0.01 m.

Figure 7 shows the measured amplitudes, depend-
ing on the excitation frequency ω and damping coeffi-
cients values β ∈ {0.04, . . . , 1.2}. The longitudinal ξ

and transverse ζ components are shown in the left and
right columns, respectively, analogously to the numer-
ical case.

To assess the agreement between the numerical
simulations and experimental results, let us compare
Figs. 6 and 7. These graphs show the resonance curves
obtained from the computed and measured data, respec-
tively. The qualitative behavior is comparable at the
lower end of the resonance interval, whereas there is
a fairly significant difference in the upper part of the
studied frequency interval, specifically with low damp-
ing coefficients βξ = βζ ∈ {0.04, 0.05}. It appears that
the experimental pendulum was able to follow the (less
stable) upper branch of the solution during the sweep-
up simulation better than it did in the numerical model
in Eqs. (8). It is because this model does not com-
prise the significant dependence of the instantaneous
frequency of the response on its instant amplitude. For
a given excitation frequency and large amplitude of the
response, the frequency of the response of the experi-
mental pendulum is lower than it is determined by the
numerical solution; thus it remains in the resonance
interval. This effect became more apparent than it was
in [31], for other pendulums.

4.3 Influence of damping on the amplitude

Let us consider the influence of the individual damp-
ing coefficients on the overall response of the system
(8) in both directions. Figure 8 shows selected results

obtained during the extensive parametric study. For the
interval of excitation frequencies ω ∈ (4.6, 6.1) and the
values of damping coefficients βξ , βζ ∈ (0.005, 0.12),
the system (8) was integrated repeatedly, and the max-
imum amplitudes were recorded in both directions. In
this case, the integration of each excitation frequency
started from non-zero but low initial conditions. Thus,
only the lower stable response branches were covered
by this study in the areas where multiple stable branches
coexist.

Ten pairs of grayscale plots are shown in Fig. 8,
where each pair of plots corresponds to a single exci-
tation frequency ω ∈ {4.7, . . . , 4.88}, i.e., the areas
close to the natural frequency of the pendulum. In each
pair, the left plot shows the response in the longitu-
dinal direction (ξ ), and the right plot corresponds to
the transverse direction. The values on the horizontal
axis of each plot represent the damping coefficients
βξ , whereas the vertical axis represented the values of
the damping coefficients βζ . Finally, the grayscale map
shows the distribution of the maximum amplitudes of ξ

and ζ in the left and right plots, respectively. The black
dots in each plot represent the discrete values of β used
in the simulation.

Several points can be highlighted based on observa-
tions of Fig. 8.

1. It appears that the presence of the spatial character-
istics of the system response did not depend signif-
icantly on the value of the damping coefficient βζ

(transverse motion). Similarly, the overall ampli-
tude of the response appears to have been influ-
enced mostly by βξ (longitudinal motion) and far
less by βζ .

2. The spatial response in the lower part of the reso-
nance interval had higher amplitudes, but it could
be suppressed by lower damping values, βξ . The
lower amplitudes that appear in the upper part of
the resonance interval require higher damping βξ

for their removal.
3. It is not always the case that higher damping (in

transverse direction) automatically leads to a lower
response (cf. ξ plots for ω > 4.78 in Fig. 8).

For comparison with the numerical study, Fig. 9
summarizes the maximum amplitudes of the measured
response in directions ξ and ζ using individual con-
figurations of the damping coefficients βξ and βζ . The
left figure shows clearly that the maximum longitudi-
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Fig. 7 Experimental pendulum: measured amplitudes (m) of
the response depending on the excitation frequency ω =
4.6 . . . 6.1 rad s−1 for several damping coefficient values, which
were the same in both directions. Longitudinal movement (ξ ) is

shown on the left-hand side and the transverse response (ζ ) is on
the right-hand side. In each plot, the maximum, minimum, and
mean amplitudes are shown. Base excitation is a0 = 0.01 m.
(Color figure online)
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Fig. 8 Maximum amplitude of the response depending on
the damping coefficients values in both directions βξ , βζ ∈
(0.005, 0.12) for excitation frequencies ω =∈ {4.7, 4.72, . . . ,

4.88}. For each frequency, the left plot shows the response in the
longitudinal direction (ξ ), and the right plot corresponds to the
transverse direction
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Fig. 9 The maximum amplitude of the measured response in the ξ (left) and ζ (right) direction with various values of βξ and βζ

nal response ξ depended mainly on the value of βξ , and
the influence of βζ was negligible.

4.4 Influence of damping on resonance

Experiments were also conducted to test the damping
influence on the resonance curves. The results are sum-
marized in Figs. 10–12. Each figure shows the exper-
imental and numerical resonance curves for selected
values of the damping coefficients. The experimental
results are shown by plain thick lines (blue and purple),
which represent the maximum and minimum ampli-
tudes of the measured time histories, as shown in the
previous figures. The grayish area between these curves
indicates the non-stationarity of the response. Thus,
both curves coincided if the response was stationary.
The brown curve with bullets in the figures for the ξ

component (left) and the green line with triangles in
figures for ζ (right) show the numerically computed
maxima. The numerical results were obtained by fol-
lowing the procedure used to generate Fig. 8, i.e., by
performing a semi-continuous sweep that resembled
the experiment.

Finally, each figure is supplemented with the the-
oretical resonance curve of the corresponding semi-
trivial solution (thin dotted) and two (ξ -,ζ -) stability
limits (thin dot-dashed and dashed, respectively). In
this case, the resonance curve (22) and ξ stability limit

(24) were computed using the longitudinal damping
value βξ and the curve corresponding to ζ stability limit
(27) using the value of transverse damping βζ .

The resonance interval, which was also analyzed
by [28] and [14], is characterized by a stationary or
non-stationary spatial response, which is indicated by
the presence/absence of the grayish area in the reso-
nance plots. The non-stationary response has the form
of a quasi-periodic or chaotic movement. The station-
ary spatial response is characterized by movement on
an elliptic trajectory. This movement was very stable in
the case of the experimental pendulum. The total ampli-
tude R of the stationary response followed the S �= 0
branch of the resonance curve (20) (see the solid curves
in Fig. 5 and their increasing parts).

The difference between the numerical and experi-
mental amplitude responses in the stationary part of
the resonance interval was not highly significant. This
agrees with the formulation of the approximate mathe-
matical model, where the instantaneous frequency does
not depend on the amplitude of the pendulum. However,
the good agreement between the numerical and exper-
imental resonance curves in the non-stationary part of
the resonance interval is surprising.

In Fig. 10, the longitudinal damping is set to a low
value βξ = 0.018. The correspondence between the
numerical and experimental resonance curve is rather
good, but the main difference is in the upper stable
branch of the theoretical resonance curve. Despite this,
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Fig. 10 Experimental and numerical resonance plots for βξ =
0.018 with increasing βζ . Longitudinal component (ξ ) and total
amplitude are shown on the left, with transverse movement (ζ )
and the total amplitude on the right. In Figs. 10–12: solid lines—

experimental data; solid lines with signs—numerical data; dotted
and dashed lines—theoretical results; cf. Fig. 5. Blue, magenta,
brown, & green—component amplitudes (ξ and ζ ). (Color figure
online)

the frequency increment in the experimental case was
larger than that in the numerical computation (0.063 vs.
0.01 rad s−1, i.e., 0.01 vs. 0.0016 Hz), where the exper-
imental pendulum followed the stable spatial branch
significantly longer (i.e., up to higher frequencies) than
the numerical procedure, see Sect. 4.2.

Increasing βζ from 0.023 to 0.094 while maintain-
ing βξ = 0.018 reduced the upper end of the resonance
interval significantly, i.e., from 6.0 to 5.1 rad s−1. The
lower end depended on the value of βξ . However, main-
taining βζ at a constant value 0.023 and increasing βξ to
0.073 almost completely eliminated the non-stationary
response, and it moved the upper end of the resonance
interval even lower, i.e., to 5.05 rad s−1 (see the first
lines of Figs. 10–12). Similar conclusions can be drawn
based on the results shown in the individual Figs. 10–
12 compared with the results in the first, second, or
third rows of these graphs. Increasing βξ while main-

taining βζ at a constant value caused the non-stationary
response region to fade away and the interval of the sta-
tionary spatial response declined in size. Increasing βζ

and maintaining βξ had only a marginal effect on the
non-stationary response, but it significantly reduced the
interval of stationary spatial response.

5 Conclusions

Using analytical, experimental, and numerical approa-
ches, the widely used linear model of a damping pendu-
lum was shown to be acceptable only for a very limited
set of parameters related to the pendulum characteris-
tics and excitation properties. Thus, a more complex
nonlinear model must be introduced for general analy-
sis.

123



388 S. Pospíšil et al.

Fig. 11 Experimental and numerical resonance plots for βξ = 0.038 with increasing βζ . The longitudinal component (ξ ) and total
amplitude are shown on the left, with the transverse movement (ζ ) on the right. (Color figure online)

The results of the experimental and numerical inves-
tigations exhibited good agreement. The descriptions of
the influence of the individual damping coefficients βξ

and βζ were improved compared with previous studies.
It was shown that the initiation of the spatial response
is more sensitive to damping in the longitudinal direc-
tion (βξ ). The maximum amplitude of the longitudinal
response had almost no sensitivity to the value of the
transverse damping (βζ ). Increasing both components,
βξ andβζ , shortened the resonance interval and reduced
the maximal amplitude of the transverse component of
the response.

It was also shown that the stable branch of the res-
onance curve that corresponded to spatial movement
of the pendulum could coexist with a much milder
stable planar branch, and both branches could be

reached numerically and experimentally. However, the
spatial movement was much more sensitive to the ini-
tial conditions in both the numerical and experimental
approaches. Surprisingly, the experimental pendulum
could follow the spatial branch of the resonance curve
for significantly longer that the numerical procedure
with an increasing excitation frequency.

From a practical viewpoint, it is highly recom-
mended that in a case of advanced design, damping
pendulum absorber is projected to avoid any intersec-
tions of the stability limits with the resonance curve.
In particular, intersections with the longitudinal stabil-
ity limit should be prevented; otherwise the negative
influence of the pendulum in the resonance domain is
to be expected in both the along-wind and cross-wind
directions.
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Fig. 12 Experimental and numerical resonance plots for βξ = 0.073 with increasing βζ . The longitudinal component (ξ ) and the total
amplitude are shown on the left, with transverse movement (ζ ) on the right. (Color figure online)
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