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Abstract Discontinuous piecewise linear systems
with two zones are considered. A general canonical
form that includes all the possible configurations in
planar linear systems is introduced and exploited. It is
shown that the existence of a focus in one zone is suffi-
cient to get three nested limit cycles, independently on
the dynamics of the another linear zone. Perturbing a
situation with only one hyperbolic limit cycle, two addi-
tional limit cycles are obtained by using an adequate
parametric sector of the unfolding of a codimension-
two focus-fold singularity.

Keywords Discontinuous piecewise linear systems ·
Liénard equation · Limit cycles

1 Introduction and statement of main results

Planar piecewise linear systems (planar PWL systems,
for short) are extensively studied since they are capa-
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ble to model different devices and process appearing
in mechanics, electronics and economy, among other
fields, see for instance [1,6,19]. Frequently, such mod-
els contain several parameters and it is crucial to deter-
mine the response of the system under study for the
different values of the parameters, getting so a global
understanding of all possible dynamical behaviors. One
of the possible final behaviors is the occurrence of
self-sustained oscillations, being the number and stabil-
ity character of these isolated periodic solutions, also
called limit cycles, one important issue in the field.
Nowadays, as explained below, the specific case of dis-
continuous PWL systems with two zones is receiving
a great attention, because even in these simple cases it
is a non-trivial problem to characterize such a number
of limit cycles; in fact, this problem can be seen as a
particular instance of 16th Hilbert’s problem and it is
by no means solved at all.

The determination of upper bounds for the number
of limit cycles in all possible configurations within the
family of planar PWL systems with two zones has been
the subject of some recent papers. First, Han and Zhang
[12] conjectured in 2010 that general planar PWL sys-
tems with two linear zones have at most two limit
cycles. In 2012, Huan and Yang [13] gave a negative
answer to this conjecture by means of a concrete exam-
ple with three limit cycles under a rather specific focus-
focus configuration. This numerical example greatly
stimulated the research to verify this fact and a com-
puter assisted proof was given in [17]. Recently, in [3]
one can find a study showing that the three limit cycles
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of the Huan and Yang’s example can be simultaneously
obtained through a boundary equilibrium bifurcation.
Later, a general and analytical proof for the existence of
three nested limit cycles in certain open regions of the
parameter space in the focus-focus configuration has
been given in [9]. This number three seems to be the
maximum number of limit cycles that can be obtained
through piecewise linear perturbation of a linear cen-
ter, see [5]. When the boundary between linear zones
is not a straight line the situation is completely differ-
ent and it seems possible to obtain as much cycles as
you want, see [4]. Regarding other configurations, sev-
eral examples leading to the existence of at least two
limit cycles in the focus-saddle and in the node-saddle
cases have appeared in [16]. The general node–node
case has been studied in [14] while saddle–saddle cases
appeared in [2,15,18].

In this paper, we present for the first time a general
canonical form that includes all the possible configura-
tions in planar linear systems, see Proposition 2. This
normalized canonical forms helped us to obtain other
relevant results. Thus, we improve the lower bounds for
the maximum number of limit cycles by showing that it
suffices a focus zone to have at least three limit cycles,
independently of the dynamics in the other zone. More
specifically, we prove that one can have three limit
cycles not only in the focus-focus case, as shown in [9],
so that the lower bounds for the maximum number of
limit cycles corresponding both to the focus-node and
focus-saddle cases is 3, one more than stated before,
see [16].

The key point for getting the aforementioned three
limit cycles is to select parameters in such a way that
we have a focus-fold singularity at the origin, see [11],
and simultaneously one non-local crossing limit cycle
surrounding the origin. As a second and final step, we
move the two crucial parameters that unfold the codi-
mension two singularity, by entering in a parametric
sector of the unfolding where two new small cross-
ing limit cycles appear, so obtaining a phase plane
with three nested limit cycles, all of them surround-
ing the small segment corresponding to the sliding set.
Remarkably enough, such a parametric sector is pre-
cisely the one lacking in the analysis of the focus-fold
singularity included in [11], and pointed out recently
in [10].

To start with, let us assume without loss of generality
that the linearity regions in the phase plane are the left
and right half-planes

S− = {(x, y) : x < 0}, S+ = {(x, y) : x > 0},
so that x = 0 is the separation line and the systems to
be studied become

ẋ = X(x) =
{

X−(x), if x ∈ S−,

X+(x), if x ∈ S+,
(1)

where

X±(x) = A±x + b±,

and x = (x, y)T ∈ R
2, A− = (a−

i j ), A+ = (a+
i j )

are 2 × 2 constant matrices, and b− = (b−
1 , b−

2 )T ,
b+ = (b+

1 , b+
2 )T are constant vectors of R

2.

The above discontinuous PWL systems (DPWL sys-
tems, for short) have in principle 12 parameters and so
their complete analysis seems to be an impossible task.
Through some change of variables, we obtain an ade-
quate canonical form with few parameters which is, in
all the relevant aspects concerning limit cycles, topo-
logically equivalent to system (1), see [8].

By denoting as T − and T + the traces and as D−
and D+ the determinants of matrices A− and A+, the
following result can be stated, see Proposition 3.1 in
[8].

Proposition 1 (Liénard canonical form for DPWL
systems) Assume that a+

12a−
12 > 0 in system (1). Then

the homeomorphism x̃ = h(x) given by

x̃ =
(

1 0
a−

22 −a−
12

)
x −

(
0

b−
1

)
, if x ∈ S−,

x̃ = 1

a+
12

(
a−

12 0
a−

12a+
22 −a−

12a+
22

)
x −

(
0

b−
1

)
, if x ∈ S+,

after dropping tildes, transforms system (1) into the
Liénard canonical form,

ẋ =
(

T − −1
D− 0

)
x −

(
0

a−
)

, if x ∈ S−,

ẋ =
(

T + −1
D+ 0

)
x −

(−b
a+

)
, if x ∈ S+,

(2)

where a− = a−
12b−

2 − a−
22b−

1 , and

b = a−
12

a+
12

b+
1 − b−

1 , a+ = a−
12

a+
12

(a+
12b+

2 − a+
22b+

1 ).

There is a topological equivalence between systems (1)
and (2) for all the orbits not having points in common
with the sliding set, that is, the segment of the y-axis
between the tangency points (0, b) and (0, 0).
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Besides the invariance of the separation line, the
crossing and sliding sets, tangency points, and bound-
ary equilibria of the original system (1) are trans-
formed by the homeomorphism h into sets and points
of the same type for system (2). The homeomorphism h
also preserves the attractive or repulsive character of
the sliding set.

By considering the signs of the discriminants �± =(
T ±)2 − 4D± of the characteristic equations of 2 ×

2 matrices in (2), we introduce the modal parameters
m{R,L} ∈ {i, 0, 1} defined for each zone by

m =
⎧⎨
⎩

i if T 2 − 4D < 0,

0 if T 2 − 4D = 0,

1 if T 2 − 4D > 0,

(3)

standing the symbol i for the imaginary unit of the
complex plane such that i2 = −1. Also, we normalize
the time in a different way for each zone, to rewrite the
previous Liénard canonical form in a more convenient
form for the subsequent analysis.

Proposition 2 (Normalized canonical form) The
canonical form (2) can be rewritten as

ẋ =
(

2γL −1
γ 2

L − m2
L 0

)
x −

(
0

aL

)
if x ∈ S−,

ẋ =
(

2γR −1
γ 2

R − m2
R 0

)
x −

(−b
aR

)
if x ∈ S+,

(4)

where the modal parameters m{R,L} ∈ {i, 0, 1} are
defined in (3). Accordingly, the new constant terms
a{R,L} and normalized semi-traces γ{R,L} are

a{R,L} = a±

ω{R,L}
, γ{R,L} = T ±

2ω{R,L}
, (5)

being ω{R,L} = 1 for m{R,L} = 0, while

ω{R,L} =
√∣∣∣∣ (T

±)2

4
− D±

∣∣∣∣ if m{R,L} �= 0.

Proof First consider the left zone. If we do in (2) for
x < 0 the change of variables

(x, y, t) →
(

x

ωL
, y,

t

ωL

)
,

then the left system turns out to be

ẋ =
(

T −
ωL

−1
D−
ω2

L
0

)
x −

(
0

a−
ωL

)
.

Taking into account (5) and the relationship 4m2
Lω2

L =
(T −)2 − 4D−, which is always true, we obtain

γ 2
L − m2

L = (T −)2

4ω2
L

− m2
L = D−

ω2
L

,

and the canonical form for the left system given in (4)
follows.

The proof for the right zone is similar and will not
be shown. ��

It should be noticed the meaning of the modal para-
meters regarding the type of dynamics in each zone.
Thus, for m = i we have a focus; for m = 0 we
have a improper node; when m = 1 we have a node
if |γ | ≥ 1 and a saddle if |γ | < 1. We see that the
condition γ 2 − m2 < 0 leads to saddle cases, while
γ 2 −m2 � 0 corresponds to anti-saddle cases. We also
note that γ 2 − m2 = 0 only occurs for the node cases
|γ | = m = 1 and γ = m = 0 which, excepting the
degenerate case a = 0, correspond to a system with no
finite equilibrium points.

The usefulness of the normalized canonical form
will be patent at once. We start from system (4) and look
for crossing periodic orbits with only one equilibrium
in its interior. We study the case having a real unstable
focus in the left zone (mL = i, γL > 0, aL � 0), see
Fig. 1. We will see that it is not difficult to find situ-
ations with one, two, or three crossing periodic orbits
whatever be the kind of dynamics in the right zone.

Obviously, to have a crossing periodic orbit, we need
for some points of the discontinuity line x = 0 to be
transformed by means of the flow of the right zone into
points of the same line. To obtain such a return of the

Fig. 1 Two different configurations for the left zone. Left panel
boundary focus. Right panel a real focus with the orbit leading
to the visible tangency at the origin
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Fig. 2 Three different
configurations for the right
zone when the orbits return
to the left zone. Dashed
lines denote the invisible
tangent trajectory. Left
panel virtual focus. Central
panel virtual node. Right
panel real saddle

flow in the right zone it suffices to consider either an
anti-saddle dynamics (induced by a virtual focus or by a
virtual node, not to have more equilibrium points inside
the periodic orbit) or a saddle dynamics (induced then
by a real saddle to be located outside the periodic orbit),
see Fig 2. From Proposition 3.7 in [8], we can anticipate
that when there is no sliding motion, that is b = 0, the
dynamics in the right zone must be contractive (γR <

0). The above considerations suggest to consider the
family of systems

ẋ =
(

2γL −1
γ 2

L + 1 0

)
x −

(
0

aL

)
if x ∈ S−,

ẋ =
(

2γR −1
γ 2

R − m2
R 0

)
x −

(−b
aR

)
if x ∈ S+,

(6)

with m R ∈ {i, 0, 1}, under the restrictions

γL > 0, aL � 0, γR < 0, aR < 0.

Our first main result is of global character and
concerns the case of the left focus at the boundary
(aL = 0, called boundary focus) and no proper sliding
set (b = 0) but with an invisible tangency or fold on the
right zone, a situation leading to the so called focus-fold
singularity, see [11]. For our discontinuous piecewise
linear systems (6), such a singularity is compatible with
the existence of one non-local crossing periodic orbit
for all possible dynamics in the right zone.

Proposition 3 Assume aL = 0 (boundary focus) and
b = 0, aR < 0 (invisible tangency at the origin), γR <

0 in system (6). Take m R ∈ {i, 0, 1}. Then there exists
γL > 0 such that system (6) has one hyperbolic stable
crossing periodic orbit surrounding the origin.

Our second main result has a local flavor and assures
the existence of at least two crossing periodic orbits

in system (6) for a certain parameter region near the
origin of plane (aL , b). These two crossing periodic
orbits bifurcate from the origin of the phase plane in
passing from the parameter situation aL = b = 0 to a
certain perturbed situation with the focus already in the
left region (aL < 0) and with a small repelling sliding
set (b < 0).

Proposition 4 Assume γL > 0, aR < 0, γR < 0, and
take m R ∈ {i, 0, 1} in system (6). Then there exist
ξ > 0 and two continuous functions η1, η2, satisfy-
ing η1(0) = η2(0) = 0 and η1(ε) < η2(ε) < 0 for
−ξ < ε < 0, such that for the parameter sector defined
by −ξ < aL < 0 and η1(aL) < b < η2(aL) system (6)
has at least two nested crossing periodic orbits.

Both periodic orbits surround the sliding segment
{(0, y) : b � y � 0} and they have opposite stabili-
ties, the bigger one being unstable and including in its
interior the stable one. When (aL , b) → (0, 0) within
the above sector, both periodic orbits decrease in size,
eventually shrinking to the origin.

Both Propositions 3 and 4 are proved in Sect. 3, after
a thorough study of Poincaré half-return maps, see Sect.
2. Our final result, which is a logical consequence of
these two previous ones, assures the existence of at
least three nested crossing periodic orbits in system (6)
when we select adequately the parameter values of the
family.

Theorem 1 Assume aR < 0, γR < 0, and m R ∈
{i, 0, 1} in system (6). Then there exist γL > 0, ξ > 0
and two continuous functions η1, η2, with η1(0) =
η2(0) = 0 and satisfying η1(ε) < η2(ε) < 0 for
−ξ < ε < 0, such that for −ξ < aL < 0 and
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A general mechanism to generate three limit cycles 255

η1(aL) < b < η2(aL) system (6) has at least three
nested crossing periodic orbits.

Proof From Proposition 3, for aL = b = 0 there exists
γL > 0 such that system (6) has one hyperbolic sta-
ble crossing periodic orbit. Once selected such a value
of γL > 0, and according to Proposition 4, by per-
turbing the parameters aL and b under the conditions
−ξ < aL < 0 and η1(aL) < b < η2(aL) system
(6) has two new crossing periodic orbits with oppo-
site stabilities, the bigger being unstable. Since the first
periodic orbit is stable and persists due to its hyperbol-
icity, the perturbed system has at least three crossing
periodic orbits. ��

The rest of the paper is organized as follows. Next,
we give the main properties of Poincaré maps, needed
to show the above results. Finally, in Sect. 3, the proofs
of intermediate results used to show Theorem 1 are
included.

2 Poincaré maps

We start this section by giving the expressions of the
matrix exponential eAt , to be needed at once, where
matrix A has the form indicated in (4), that is

A =
(

2γ −1
γ 2 − m2 0

)

with m ∈ {i, 0, 1}. First, let us introduce the functions

Cm(t) = cosh(mt), Sm(t) =
{ sinh(mt)

m , if m �= 0,

t, if m = 0.

Note that C0(t) ≡ 1 and that for m = i we have

Ci (t) = cosh(i t) = cos t, Si (t) = sinh(i t)

i
= sin t,

and they satisfy Cm(−t) = Cm(t), Sm(−t) = −Sm(t),

C2
m − m2Sm(t) = 1,

with derivatives

C ′
m(t) = m2Sm(t), S′

m(t) = Cm(t),

among some other properties. Then, we have

eAt = eγ t
(

Cm(t) + γ Sm(t) −Sm(t)
(γ 2 − m2)Sm(t) Cm(t) − γ Sm(t)

)
.(7)

Let us consider the system

ẋ =
(

2γ −1
γ 2 − m2 0

)
x − ae2, (8)

where from now on we denote with e1 = (1, 0)T and
e2 = (0, 1)T the canonical vectors.

Assume the existence of one unstable real focus and
consider the orbits evolving on the left half-plane start-
ing at points (0, y) of the y-axis and eventually coming
back to the quoted axis at a point (0, y1). Due to the
sense of the flow on the line x = 0, we must have
y ≥ 0, y1 ≤ 0. Also, there exists one value ŷ � 0 such
that the solution passing through the origin in a visible
(from the left) tangency point to the y-axis terminates
at the point (0, ŷ), with ŷ < 0, see Fig. 1. In the limit-
ing case of a boundary focus the tangency is invisible
from the left, and we will take ŷ = 0. In any case, the
points ye2 with y > 0 are transformed in points y1e2

with y1 < ŷ. Then, we define the left Poincaré map PL

as y1 = PL(y), also taking PL(0) = ŷ.
Next, we will parameterize the map PL . As the sys-

tem is linear, to compute the Poincaré map is equivalent
to find the smaller positive value of t such that

y1e2 = eAt

⎛
⎝ye2 − a

t∫
0

e−Ase2ds

⎞
⎠

= yeAt e2 − aV (t)e2, (9)

where the matrix function V (t) is the primitive of the
matrix exponential that vanishes for t = 0, defined as

V (t) = eAt

t∫
0

e−Asds =
t∫

0

eA(t−s)ds

=
t∫

0

eAudu. (10)

In the next result, some useful properties of the
matrix function V are shown.

Lemma 1 The matrix function V defined in (10) sat-
isfies V (−t) = −e−At V (t) and its first derivatives are
V (k)(t) = eAt Ak−1 for k ≥ 1. Consequently, the scalar
function

f (t) = eT
1 V (t)e2 (11)

satisfies f (0) = 0 and its first derivatives are

f (k)(t) = eT
1 eAt Ak−1e2, k � 1,

which for t = 0 reduce to

f ′(0)=0, f ′′(0)=−1, f (k)(0)=eT
1 Ak−1e2, k � 3.
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Proof From (10) we have

V (−t) =
−t∫

0

eAudu = −
t∫

0

e−Audu = −e−At V (t).

From (10) we know that the first derivative of the func-
tion V is V ′(t) = eAt . The successive derivatives
directly follow, so that V (k)(0) = Ak−1 and the asser-
tions about the function f are immediate. ��

For the sake of convenience, we resort to the auxil-
iary function

Ψγ,m(t) = 1 − eγ t [
Cm(t) − γ Sm(t)

]
, (12)

whose derivative with respect to t is

Ψ ′
γ,m(t) = (γ 2 − m2)Sm(t)eγ t . (13)

The function Ψγ,m reduces to

Ψγ,m(t) =
⎧⎨
⎩

1 − eγ t (cos t − γ sin t) , if m = i,
1 − eγ t (1 − γ t) , if m = 0,

1 − eγ t (cosh t − γ sinh t) , if m = 1.

Note also the symmetry properties

Ψγ,m(−t) = Ψ−γ,m(t), Ψ ′
γ,m(−t) = −Ψ ′−γ,m(t).

Although we only need the real unstable focus case
in the left part of system (6), we study next a more
general situation for system (8), considering also saddle
and node cases. Thus, we must note first that, for the
non-focal cases, the left Poincaré map needs not to be
defined in the whole semi-axis y � 0. For instance,
if γ 2 − m2 < 0 then we are in a saddle case (in fact,
m = 1 but we keep it not substituted to be more general
in what follows), and such a saddle point is located at(

xe

ye

)
= a

γ 2 − m2

(
1

2γ

)
.

Thus, there will be orbits returning to the y-axis on
the left half-plane only if a > 0, that is, if the sad-
dle is located within such half-plane. Furthermore,
the eigenvectors v± associated to the two eigenvalues
λ± = γ ± m must satisfy the equation(

γ ∓ m −1
γ 2 − m2 −γ ∓ m

)
v± = 0,

so that we can choose

v± =
(

1
γ ∓ m

)
.

The existence of the return map is determined by the
intersections with the y-axis of the linear invariant man-
ifolds of the saddle, to be denoted as y±, which can be
computed by solving for μ in the equation

a

γ 2 − m2

(
1

2γ

)
+ μ

(
1

γ ∓ m

)
=

(
0

y±

)
.

We obtain that

y± = 2aγ

γ 2 − m2 − a(γ ∓ m)

γ 2− m2 =a
γ ± m

γ 2− m2 = a

γ ∓ m
.

(14)

In short, the domain of PL is restricted to 0 < y <

y− = a/(γ + m) and we have y+ = a/(γ − m) <

PL(y) < 0.
For the node cases with γ 2 − m2 > 0 we can take

advantage of the previous computations, and we also
require that a > 0, that is, the node needs to be located
at the right half-plane so that orbits starting at the y-
axis can return to the same axis in the left half-plane.
Now the two intersection ordinates y± have the same
sign. For unstable nodes, we have γ > 0 and 0 <

y− < y+ and the domain of PL is also restricted to
0 < y < y− = a/(γ + m) with PL(y) taking all
negative values. For stable nodes, we have γ < 0 and
now y− < y+ < 0, being PL defined for all y > 0
with y+ = a/(γ − m) < PL(y) < 0.

With these considerations in mind, we state a gen-
eral result for the left Poincaré map, including all the
possible configurations. For sake of brevity, we do not
give the range of admissible values for t in each case,
as it is not needed for the subsequent analysis.

Proposition 5 Consider the restriction of system (8)
to the region x � 0. The following statements hold.

(a) If a = 0, the left Poincaré map only exists when the
dynamics of the system is of focus type and then we
have PL(y) = −eγπ y for all y � 0.

(b) If both a �= 0 and γ 2−m2 �= 0, and we additionally
assume a > 0 for the non-focal cases (m �= i ), then
the left Poincaré map is given in its domain by

y = a
Ψγ,m(t)

Ψ ′
γ,m(t)

= a
1 − eγ t

[
Cm(t) − γ Sm(t)

]
(γ 2 − m2)Sm(t)eγ t

,

PL (y) = a
Ψγ,m(−t)

Ψ ′
γ,m(−t)

= −a
1 − e−γ t

[
Cm(t) + γ Sm(t)

]
(γ 2 − m2)Sm(t)e−γ t

,

(15)
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A general mechanism to generate three limit cycles 257

(c) If |γ | = m = 1 and a > 0 then the left Poincaré
map is given by

y =a
e2γ t −1−2γ t

2γ (e2γ t − 1)
, PL(y)=a

e−2γ t − 1+2γ t

2γ (e−2γ t − 1)
,

(16)

(d) If γ = 0 and we additionally assume a > 0 for the
non-focal cases (m �= i ), then we have PL(y) =
−y in its domain.

(e) The first derivative of the Poincaré map is given by

P ′
L(y) = y

PL(y)
e2γ t < 0, (17)

and when aγ �= 0, the second derivative satisfies
γ P ′′

L (y) < 0.

Proof We start by resorting to Lemma 1. Multiplying
(9) from the left by eT

1 and eT
1 e−At , respectively, we

get

y1eT
1 e2 = 0 = yeT

1 eAt e2 − aeT
1 V (t)e2, (18)

and

y1eT
1 e−At e2 = yeT

1 e−At eAt e2 − aeT
1 e−At V (t)e2,

so that, using again eT
1 e2 = 0, we obtain

y1eT
1 e−At e2 = −aeT

1 V (−t)e2. (19)

When a = 0 is very easy to see that the Poincaré map
only exists when the equilibrium is a focus. Otherwise,
the linear invariant manifolds associated to the origin
preclude the existence of the return map. Taking m = i,
from (7) and (18) we deduce

eT
1 eAt e2 = −eγ t Si (t) = −eγ t sin t = 0,

and so t = π . Then from (9) we achieve

y1 = PL(y) = −eγπ y.

When a �= 0 the origin is a visible (invisible) left
tangency point for a < 0 (a > 0). As commented
before, we need a > 0 for the node cases to guarantee
the existence of the half-return map. Then, from (18)
and (19), by using the unknown flight time t , we obtain
a parametrization of y and PL(y) as follows,

y = a
eT

1 V (t)e2

eT
1 eAt e2

, PL(y) = −a
eT

1 V (−t)e2

eT
1 e−At e2

, (20)

as long as eT
1 eAt e2 = −eγ t Sm(t) �= 0. Taking into

account Lemma 1 and by using the function f defined
in (11), we write expressions (20) as

y = a
f (t)

f ′(t)
, PL(y) = a

f (−t)

f ′(−t)
. (21)

From (10) and (13), we obtain

f (t) = eT
1 V (t)e2 = −

t∫
0

Sm(u)eγ udu,

and thus,

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− Ψγ,m(t)

γ 2 − m2 , if γ 2 �= m2,

−e2γ t − 1 − 2γ t

4
, if |γ | = m = 1,

− t2

2
, if γ = m = 0,

and f ′(t) = eT
1 eAt e2 = −eγ t Sm(t), so that expres-

sions (15) and (16) follow. Statements (b) and (c) are
shown.

When γ = 0 and m �= 0 it is easy to see from
statements (a) and (b) that P(y) = −y. The case m = 0
comes from (21) and the corresponding values for f (t)
and f ′(t). Statement (d) follows.

To show statement (e) when a �= 0 and γ 2−m2 �= 0,
we see from (15) through direct computations that

dy

dt
= a

1 − e−γ t
[
Cm(t) + γ Sm(t)

]
(γ 2 − m2)S2

m(t)
= − PL(y)

Sm(t)
e−γ t ,

and

d PL(y)

dt
=−a

1−eγ t
[
Cm(t)−γ Sm(t)

]
(γ 2 − m2)S2

m(t)
=− y

Sm(t)
eγ t ,

so that (17), the first derivative of map PL follows.
The case a = 0 comes from statement (a) and the

cases with γ 2 − m2 = 0 easily come from direct com-
putations.

The second derivative turns out to be

P ′′
L (y) =

⎧⎪⎪⎨
⎪⎪⎩

2a2 sinh(γ t) − γ Sm(t)

(γ 2 − m2)P3
L (y)

e3γ t , if γ 2 �= m2,

a2γ
t cosh(t) − sinh(t)

P3
L (y)

e3γ t , if |γ | = m = 1,

(22)

and for aγ �= 0 it is direct to show that γ P ′′
L (y) < 0.

The proof is completed. ��
A dual result can be stated for the right half-return

map that will not be written for sake of brevity, since
one has only to reverse the inequalities concerning the
sign of a.

Next we give more specific properties for the Poin-
caré maps of system (6) in the case of having a left
dynamics governed by one real or boundary unstable
focus in the left zone, that is γL > 0, aL ≤ 0, and one
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258 E. Freire et al.

invisible tangency point in the right zone, that is aR < 0
with m R ∈ {i, 0, 1}. For the sake of convenience, we
consider a particular instance of function Ψγ,m defined
in (12) when m = i , namely,

ϕγ (t) = Ψγ,i (t) = 1 − eγ t (cos t − γ sin t) ,

first introduced in [1], see also [7]. We recall for the
function ϕγ the symmetry properties

ϕγ (−t) = ϕ−γ (t), ϕ−γ (−t) = ϕγ (t), ϕ′
γ (−t)

= −ϕ′
γ (t),

and the existence for γ > 0 of a value t̂ with π < t̂ <

2π such that ϕγ (t̂) = 0. We start by analyzing the left
half-return map.

Proposition 6 (The left Poincaré map in the unstable
focus case) For system (6) the following statements
hold.

(a) When aL = 0 the left Poincaré map is defined for
y � 0 as

PL(y) = −eγLπ y.

(b) Assuming aL < 0 and γL > 0, the left Poincaré
map PL is well defined for y � 0 and is given by
the expressions

y = aL
ϕγL (t)

ϕ′
γL

(t)
= aL

1 − eγL t (cos t − γL sin t)

(γ 2
L + 1)eγL t sin t

,

PL (y)=aL
ϕγL (−t)

ϕ′
γL

(−t)
=−aL

1 − e−γL t (cos t+γL sin t)

(γ 2
L + 1)e−γL t sin t

,

where π < t � t̂ , being t̂ the only value in (π, 2π)

such that ϕγL (t̂) = 0.

In particular, we have PL(0) = aLα0, where

α0 = cos t̂ + γL sin t̂ − eγL t̂

(γ 2
L + 1) sin t̂

= −eγL t̂ sin t̂ > 0.

Furthermore, the first two derivatives of map PL satisfy

P ′
L(0)=0, P ′′

L (0)= e2γL t̂

aLα0
, and lim

y→∞P ′
L(y)=−eγLπ .

(23)

Proof Statement (a) and all the expressions given for
PL in statement (b) directly follow from Proposition 5.
The great simplification for α0 arises after multiplying
both terms of the fraction by

cos t̂ − γL sin t̂ = e−γL t̂ .

It remains to show the properties concerning the deriv-
atives of the map.

From (17) we obtain P ′
L(0) = 0. Writing (17) as

PL(y)P ′
L(y) = ye2γL t , we get

P ′
L(y)P ′

L(y) + PL(y)P ′′
L (y) = e2γL t + 2γL ye2γL t dt

dy
,

and taking y = 0 we achieve the expression of P ′′
L (0)

given in (23). Finally, from (17) we obtain

lim
y→∞P ′

L(y) = lim
t→π

ϕγL (t)

ϕγL (−t)
= −eγLπ .

The proposition is shown. ��
Remark 1 A key observation concerning the return
map associated to the focus is its abrupt qualitative
change when the parameter aL passes through zero.
Effectively, from statements (a) and (b) above, the
derivative at the origin P ′

L(0) passes from the value
−eγLπ when aL = 0 to suddenly vanish for any value
aL < 0. Moreover, from (15)–(17) in Proposition 5,
we have P ′

L(0) = −1 for all aL > 0. Such disconti-
nuity in the derivative is associated to the passing from
an invisible tangency to a visible one, so that the flight
time passes from t = 0 for aL > 0 to the value t = t̂
for aL < 0, being t = π when aL = 0. This jump
encompassing such a boundary equilibrium bifurcation
is crucial for the result given in Proposition 4.

Regarding the flow in the right part for aR < 0, inte-
grating the system in the zone S+ from the point (0, z)
with z � b, after a time t we arrive at the point (0, z1),

with z1 � b. So we can define the right Poincaré map
z1 = PR(z) with PR(b) = b. Since aR < 0, the
point (0, b) is an invisible tangency point and we will
not have a boundary equilibrium for the right system.
We can repeat the procedure done before for the left
Poincaré map, step by step, taking into account that the
tangency is not at the origin. Then, to compute the para-
metric representation of the right Poincaré map, from
(21) and subsequent definitions, we just write

z − b = aR

Sm R (t)eγRt

t∫
0

Sm R (u)eγRudu,

PR(z) − b = aR

Sm R (−t)e−γRt

−t∫
0

Sm R (u)eγRudu. (24)

With these expressions, it is now immediate to obtain
the properties of the right Poincaré map under the
assumptions aR < 0 (invisible tangency) and γR < 0
(opposite divergence with respect to the left zone). We
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A general mechanism to generate three limit cycles 259

remark that in the non-focal cases (m R �= i), recall
(14), the linear invariant manifolds intersect the y-axis
at the points (0, z−) and (0, z+), where

z− = b + aR

γR + m R
, z+ = b + aR

γR − m R
, (25)

excepting the saddle-node-at-infinity case m R = −γR

= 1, where z− does not exist. We give first a result
concerning its global properties, and next a useful result
on local properties around the point (0, b).

Proposition 7 (Global properties of the right half-
return map) For aR < 0 and γR < 0 in system (6)
the map PR satisfies the following statements.

(a) If we are in the focus case (m R = i), then the map
PR is defined for all z � b with PR(z) � b, and
its parametric expressions are

z = b + aR
1 − eγRt (cos t − γR sin t)

(γ 2
R + 1) sin t

e−γRt ,

PR(z) = b − aR
1 − e−γRt (cos t + γR sin t)

(γ 2
R + 1) sin t

eγRt ,

where t ∈ (0, π). Its first derivative satisfies

lim
z→−∞P ′

R(z) = eγRπ .

(b) If m R ∈ {0, 1} and γ 2
R − m2

R �= 0, then the map
PR is defined for all z � b in the nodal cases, that
is γR < −m R, and only for z− < z � b in the
saddle cases (m R = 1,−1 < γR < 0). The map
is always bounded, so that b � PR(z) < z+, see
Fig. 3. Its parametric expressions are

z = b + aR
e−γRt − Cm R (t) + γR Sm R (t)

(γ 2
R − m2

R)Sm R (t)
,

PR(z) = b − aR
eγRt − Cm R (t) − γR Sm R (t)

(γ 2
R − m2

R)Sm R (t)
,

where t ∈ (0,∞). The first derivative satisfies

lim
z→z−

P ′
R(z) = 0

in the saddle cases, and lim
z→−∞P ′

R(z) = 0, other-

wise.
(c) If m R = −γR = 1, then the map PR is defined for

all z � b and is bounded, so that b � PR(z) < z+.

Its parametric expressions are

z = b − aR
e−2t − 1 + 2t

2(e−2t − 1)
,

PR(z) = b − aR
e2t − 1 − 2t

2(e2t − 1)
,

where t ∈ (0,∞). The first derivative satisfies

lim
z→−∞P ′

R(z) = 0.

In all the cases, for all z where the map is defined,
the second derivative satisfies P ′′

R(z) < 0.

Proof Since statements (a), (b), and (c) are easily
deduced from Proposition 5, we only concern about
the second derivative properties. From (22) we obtain

P ′′
R(z) = 2a2

Re3γ t

(PR(z) − b)3

sinh(γRt) − γR Sm R (t)

γ 2
R − m2

R

, (26)

and it is easy to see that the first factor is positive while
the second factor is negative, so we have P ′′

R(z) < 0. ��
Proposition 8 (Local properties of the right Poincaré
map) Assuming aR < 0 and γR < 0 in system (6) there
exists ε > 0 such that the right Poincaré map PR given
in (24) is well defined for z ∈ (b − ε, b]; in particular
we have PR(b) = b. Its first four derivatives at the
point y = b are

P ′
R(b) = −1, P ′′

R(b)=−8γR

3aR
, P ′′′

R (b)=−32γ 2
R

3a2
R

,

P I V
R (b) = −32γR

79γ 2
R + 9m2

R

45a3
R

. (27)

Proof To alleviate the notation, we introduce the aux-
iliary variables u = z − b and v = PR(z) − b. From
(20) and Lemma 1 we have

u

aR
= t

2
+ γR

6
t2 + γ 2

R − m2
R

24
t3 − γR(7m2

R − 3γ 2
R)

360
t4

+ O(t5) (28)

and
v

aR
= − t

2
+ γR

6
t2 − γ 2

R − m2
R

24
t3

−γR(7m2
R − 3γ 2

R)

360
t4 + O(t5). (29)

By inverting series (28) we obtain

t

2
= u

aR
+ 2γR

3a2
R

u2 + 3m2
R + 5γ 2

R

9a3
R

u3 +

+4γR(27m2
R + 17γ 2

R)

135a4
R

u4 + O(u5),

and so, substituting in (29), we get

v = −u − 4γR

3aR
u2 − 16γ 2

R

9a2
R

u3

−4γR(9m2
R + 79γ 2

R)

135a3
R

u4 + O(u5),

so that
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PR(z) = b − (z − b) − 4γR

3aR
(z − b)2 − 16γ 2

R

9a2
R

(z − b)3 −

−4γR(9m2
R + 79γ 2

R)

135a3
R

(z − b)4 + O(z − b)5,

and the first four derivatives of map PR given in (27)
follow. ��

3 Proofs of the main results

We start by giving the proof of Proposition 3.

Proof (Proof of Proposition 3) To prove this proposi-
tion we consider the full Poincaré map P = PR ◦ PL

and study its fixed points. From Proposition 6 (a) we
know that the left Poincaré map is a linear function
given by PL(y) = −eγLπ y, so that P ′′

L (y) = 0 for all
y. Therefore, from the last statement of Proposition 7,
we deduce that

P ′′(y) = P ′′
R(PL(y))(P ′

L(y))2 < 0,

and taking into account that P(0) = 0, the map P has
at most one nontrivial fixed point, that is there exists at
most one crossing limit cycle.

Before studying the different cases, we note that the
derivative of the Poincaré map at the origin is

P ′(0) = P ′
R(PL(0))P ′

L(0) = eγLπ > 1.

If the dynamics in the right zone is of stable focus
type, that is m R = i along with γR < 0, the Poincaré
map is defined for y ∈ (0,∞) and we have that

lim
y→∞P ′(y) = e(γL+γR)π .

If we select γL > 0 in such a way that γL + γR < 0,

then there exists y f > 0 such that the graph of P(y)

has a slope P ′(y) < 1 for all y > y f . Thus, the graph
of P(y) eventually crosses the diagonal, the map has a
fixed point and the system has a unique crossing limit
cycle.

If the dynamics in the right zone is of stable node
type, then we have either m R = 1 along with γR � −1
or m R = 0. Using Proposition 7(b)–(c), the Poincaré
map is defined for y ∈ (0,∞) and bounded; further-
more,

lim
y→∞P ′(y) = 0.

Reasoning as before, we can now conclude that for
every value γL > 0 the system has a unique crossing
limit cycle.

Fig. 3 Typical graphs of the Poincaré map PR(y) when b = 0
and γR < 0 for the node case (in blue), the saddle (in red) and the
focus (in brown). Under hypotheses of Proposition 3, the graph
of PL (y) is a straight line in the fourth quadrant and, selecting
adequately γL , the intersection of the graphs of P−1

L (y) (the
dashed oblique line) and PR(y) is always possible

If the dynamics in the right zone is of saddle type,
that is m R = 1 along with −1 < γR < 0, then the
linear invariant manifolds of the saddle intersect the
y-axis, recall (25), at

z+ = aR

γR − 1
> 0, and z− = aR

γR + 1
< 0,

so that the Poincaré map is defined for

0 � y < P−1
L (z−) = −e−γLπ aR

γR + 1
,

and its graph is bounded, so that it has its endpoint at
(PL(z−), z+). Then, since P ′(0) > 1 when γL > 0,
we have a fixed point and so a crossing periodic orbit,
whenever such a final point is under the diagonal, that is

aR

γR − 1
< −e−γLπ aR

γR + 1

or equivalently when

0 < γL <
1

π
ln

1 − γR

1 + γR
.

Since the fixed points of Poincaré map satisfy
P(y) = PL(PR(y)) = y or equivalently PR(y) =
P−1

L (y), we find in all the cases an explicit range of
admissible values of γL for which we have a periodic
orbit. Furthermore, since it is obvious that at the fixed
point y∗ > 0 where P(y∗) = y∗ we have P ′(y∗) < 1,
the periodic orbit is a hyperbolic stable limit cycle and
the proposition is shown. A geometrical idea of the
proof is given in Fig. 3. ��

To finish, we give the proof of Proposition 4.
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Proof (Proof of Proposition 4) We start by defining for
y > 0, in the parameter region with aL < 0 and b < 0,
the function

Q(y) = PL(y) − P−1
R (y),

whose zeros correspond with crossing periodic orbits.
Thus, by emphasizing the bifurcation parameters, we
study the equation

Q(y; aL , b) = PL(y; aL) − P−1
R (y; b) = 0, (30)

for which only solutions with y > 0 are meaningful.
From Proposition 8, the derivatives of the right Poin-

caré map PR satisfies the following relations,

PR(b) = b, P ′
R(b) = −1, P ′′

R(b) = −8γR

3aR
= −2β2,

where we have defined the constant β2 > 0, and using
the involutive character of PR , see [11], we have

P−1
R (y; b)=b − (y − b)−β2(y − b)2+O(y − b)3.

To study the solutions of (30), we make the blow-up

aL = −ε, y = εY, b = εB.

Note that from Proposition 6 (b) we get

PL(εY ;−ε) = εPL(Y ;−1).

Thus, after such blow-up, Eq. (30) becomes

ε [F(Y ; B) + εG(Y, ε; B)] = 0, (31)

where

F(Y ; B) = PL(Y ;−1) + Y − 2B

captures all the first order terms in ε of (31), and the
analytical function G(Y, ε; B) comes from the second
and higher order terms in ε of P−1

R , with

G(Y, 0; B) = β2(Y − B)2.

Note that for ε �= 0 the bifurcation equation (31) leads
to

F(Y ; B) + εG(Y, ε; B) = 0, (32)

so that if we know a zero Y of F then, under adequate
hypotheses, we can apply the implicit function theorem
to deduce the existence of a solution branch Y (ε; B) of
(32), and so of (31), with Y (0; B) = Y .

To determine the zeros of F , we define for Y ≥ 0
the function

H(Y ) = PL(Y ;−1) + Y,

which from Proposition 5 (e) satisfies H ′′(Y ) < 0 in
its domain, and from Proposition 6 we know that

H(0) = −α0 < 0, H ′(0) = 1,

and

lim
Y→∞ H ′(Y ) = 1 − eγLπ < 0.

Therefore, the function H is unimodal, starting with
a negative value, next increasing up to a maximum,
and then decreasing to −∞ when Y → ∞. In fact,
we can compute the maximum value of H as follows.
We look for the unique value Y such that H ′(Y ) = 0,
that is P ′

L(Y ;−1) = −1. From (17) we easily get the
equivalent condition

PL(Y ;−1) = −Y e2γL t ,

where t stands for the corresponding return time and
then, from statement (b) of Proposition 6, we conclude
that

ϕγL (t) = ϕγL (−t).

This last condition leads after standard manipulations
to the equation

tanh(γL t) = γL tan t,

whose only solution in (π, 2π) is a value tM < 3π/2.
Substituting this value in the parametric expressions of
PL , we get after simplifications

max
Y≥0

H(Y ) = 2γL

γ 2
L + 1

(
sinh(γL tM )

γL sin(tM )
− 1

)
< 0.

Since F(Y ; B) = H(Y ) − 2B,if we define

B0 = −α0

2
, BM = γL

γ 2
L + 1

(
sinh(γL tM )

γL sin(tM )
− 1

)
,

then we can assure that for B ∈ (B0, BM ) the function
F has exactly two zeros 0 < Y1 < Y2 with

0 < H ′(Y1) < 1

and

1 − eγLπ < H ′(Y2) < 0.

Note that

∂ F

∂Y
(Yi ; B) = H ′(Yi ) �= 0, i = 1, 2.

Thus, once selected B in such interval, we can apply
the implicit function theorem to Eq. (32) at both values
Yi and ε = 0, to conclude the existence of two smooth
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Fig. 4 Local sketch for graphs of the half-return maps PR(y) and
P−1

L (y). The dashed line stands for the diagonal of the first quad-
rant. Left panel Under hypotheses of Proposition 3, both graphs
start at the origin and have a intersection point far on the left (not
shown). Right panel The perturbation considered in Proposition

4 of the above situation, adding two intersections points, to get
three crossing periodic orbits in total. Note that the new graph of
PR(y) is a mere translation of the original one, starting now at
the point (b, b) with b < 0, while the graph of P−1

L (y) starts at
the point (PL (0), 0)

functions Yi (ε; B) with Yi (0; B) = Yi , i = 1, 2, and
defining solution branches of (31) and (32).

In short, by undoing the blow-up, we conclude that
the number of positive solutions of (30) changes at two
different values of b, namely at b = ηi (aL), i = 1, 2,

where

η1(aL) = −B0aL + O(a2
L), η2(aL)

= −BM aL + O(a2
L).

Consequently, the Poincaré map P has two fixed points
in the open parameter sector of the statement, which up
to first order in aL = −ε < 0 are y1 = −aL Y1 and
y2 = −aL Y2.

Finally, an easy argument shows that if Q′(y) > 0
(Q′(y) < 0) at one solution of (30), then for the full
Poincaré map we have P ′(y) < 1 (P ′(y) > 1), so
that the periodic orbit is stable (unstable). Thus, the
stability of the predicted periodic orbits comes from
the sign of computed derivatives H ′(Yi ), i = 1, 2, and
the proposition is proved. ��

In Fig. 4, we use the graphs of half-return maps PR

and P−1
L to visualize the effect of passing from the

case aL = b = 0 to the interior of the parameter sector
analyzed in Proposition 4.
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