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Abstract An adaptive dynamic surface control algo-
rithm that incorporates adaptive control and fuzzy logic
system into the implementation of dynamic surface
control for regulating problem of MEMS triaxial gyro-
scope subject to external disturbance, uncertainty and
input uncertainty is developed in this work. To relax the
requirement of exact model and obtain fully adaptive
property, a fuzzy logic system is introduced to approx-
imate the uncertainty. With adaptive control structure,
the proposed controller can obtain the properties of fast
dynamic response and high tracking-accuracy, even the
existence of disturbance, uncertainty and control input
nonlinearity. All parameters adjustment rules for the
proposed control scheme are derived from Lyapunov
theory such that the trajectory of tracking-error con-
verges to the small neighborhood of equilibrium point.
Finally, the simulation results demonstrate the effec-
tiveness of the proposed control scheme.

Keywords Dynamic surface control · Adaptive
control · Fuzzy logic system · MEMS triaxial
gyroscope

1 Introduction

In recent years, triaxial gyroscope based on micro elec-
tro mechanical systems (MEMS) technology has been
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receiving increasing attention in automotive naviga-
tion, the attitude measuring of satellite and control
stabilization due to its compact size, cheapness and
much more energy efficient devices than conventional
macro-sized devices [1–5]. However, in practical appli-
cations, the performance of the MEMS gyroscope can
be affected or degraded by electromagnetic interfer-
ence, time-varying parameters and mechanical cou-
pling terms between the axes. And input-signal (cur-
rent/voltage) of gyroscope systems is frequently sub-
ject to nonlinearity as a result of physical limitations.
It has been shown that input nonlinearity, including
saturation and dead-zone, can cause a serious degra-
dation of the system performance, a reduced rate of
response, system failure if the design of controller does
not consider input nonlinearity in practical applica-
tions. Therefore, the MEMS gyroscope system should
be capable and reliable enough to withstand such unde-
sirable conditions and operate in an acceptable manner
even in the presence of disturbances, time-varying para-
meters, and input nonlinearity.

Recently, various control strategies have been pro-
posed. In [6], a novel single-mass adaptively controlled
triaxial angular rate sensor has been presented. In [7], a
new adaptive force-balancing control with a trajectory-
switching algorithm is proposed to drive both axes of
vibration and controls the entire operation of the gyro-
scope. Fei and Zhou [8] present a robust adaptive con-
trol strategy with a fuzzy compensator for the track-
ing control of MEMS triaxial gyroscope. Antonello
et al. [9] introduced extremum-seeking control to
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automatically match the vibration mode in MEMS
vibrating gyroscopes. A new control method is pre-
sented [10] to drive the drive axis of a MEMS gyro-
scope to resonance and to regulate the output amplitude
of the axis to a fixed level. These results provide a basic
tool for stabilization of MEMS triaxial gyroscope. In
[11], a dynamical model of MEMS vibratory gyroscope
with unknown dead-zone is analyzed, and an adaptive
fuzzy control of dead-zone compensation strategy is
proposed. Different form the referenced literature [11],
in this paper, the input nonlinearity includes both input
saturation and unknown dead-zone. Hence, the effec-
tiveness design of the control input signal with satura-
tion and dead-zone is becoming a very challenging task.
And the proposed control algorithm based on adaptive
dynamic surface control strategy is used to eliminate
the effect of input nonlinearity and fuzzy approxima-
tion error.

The backstepping control has been an important tool
for nonlinear system analysis and control owing to
the recursive and systematic controller design proce-
dure for strict-feedback systems. A number of applica-
tions of backstepping method have been addressed over
the past few decades. Although backstepping method
can be applied to a wide range of nonlinear systems,
however, the conventional backstepping method suf-
fers from the problem of explosion of complexity. To
solve this problem, the dynamic surface control strat-
egy [12–17] was proposed by introducing first-order
filter of the synthetic virtual control input at each step
of the conventional backstepping. A adaptive robust
DSC strategy was proposed in [18], where the model
uncertainties can be estimated by a radial basis func-
tion neural network. Furthermore, an observer-based
adaptive robust controller was developed via DSC tech-
niques to achieve high performance servo mechanisms
with unmeasurable states [19].

So far, to the best of authors’ knowledge, it is the first
time in the literature that the nonlinear input including
dead-zone and saturation constraint is considered for
the regulating problem of MEMS gyroscope with exter-
nal disturbance and uncertainty. The study is focused
on developing an on-line adaptive control technique to
possibly resonance and to regulate the output ampli-
tude of the axis to a fixed level in spite of the existence
of uncertainty, external disturbance, and input nonlin-
earity. We employ a fuzzy logic system to approximate
the uncertainty, therefore, it relax the requirement of the
exact model. The proposed control scheme can guar-

Fig. 1 Model of MEMS triaxial gyroscope

antee that the trajectory of tracking-error converges to
the small neighborhood of equilibrium point. Finally,
numerical simulation results demonstrate the effective-
ness of the proposed control scheme (Fig. 1).

2 System description and preliminaries

2.1 Model of MEMS triaxial gyroscope

The MEMS triaxial gyroscope is a highly nonlinear and
strongly coupled system with multi-input and multi-
output. The mathematical model of the triaxial gyro-
scope system is given by [6].

ẍ + λxx ẋ + λxy ẏ + λxz ż + kxx x + kxy y + kxzz

+ 2(Ωy ż −Ωz ẏ) = u1. (1)

ÿ + λxy ẋ + λyy ẏ + λyz ż + kxy x + kyy y + kyzz

+ 2(Ωx ż −Ωz ẏ) = u2. (2)

z̈ + λxz ẋ + λyz ẏ + λzz ż + kxz x + kyz y + kzzz

+ 2(Ωx ż −Ωy ẋ) = u3. (3)

where the λxx , λxy , λxz , λyy , λyz and λzz are damping
term; the kxx , kxy , kxz , kyy , kyz and kzz are stiffness
parameters; Ωx , Ωy and Ωz are angular velocities in
the x−, y− and z− directions, respectively; u1, u2 and
u3 are the control signals in the x-, y- and z-directions,
respectively;

From the practical point of view, the external distur-
bances, parameter uncertainty and the system uncer-
tainty always exist in application. The input signal of
MEMS gyroscope is usually subject to input nonlinear-
ity as a result of physical limitations. In this literarure,
we will consider these problems.

Assumption 1 Control input nonlinearity σi (ui ) (i =
1, 2, 3) (such as saturation and dead-zones) and ui

are all constrained by saturation value (uup > 0 and

123



Adaptive dynamic surface control for MEMS 175

Fig. 2 Control input nonlinearity model

udown > 0) and dead-zone value (unknown right dead-
zone uirdz > 0 and unknown left dead-zone uildz < 0),
expressed by
{

ui − uirdz � uup, for ui � uirdz

ui − uildz � −udown, for ui � uildz
(4)

and

σi (ui )=

⎧⎪⎨
⎪⎩
ιi · (ui − uirdz), for ui � uirdz

ιi · (ui − uildz), for ui � uildz

0, for uildz < ui < uirdz

(5)

where

ιi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uup
ui −uirdz

, for ui − uirdz � uup

1, for uirdz � ui � uup + uirdz

1, for − udown + uildz �ui �uildz
−udown
ui −uildz

, for ui − uildz � −udown

(6)

Considering control input nonlinearity as shown in
Fig. 2. From the Eq. (6), we can easily know that
0 < ιi � 1. According to analysis above, the Eqs.
(1)–(3) can be written as

ẍ+(Δλxx +λxx )ẋ+(Δλxy +λxy)ẏ+(Δλxz + λxz)ż

+(Δkxx + kxx )x + (Δkxy + kxy)y + (Δkxz + kxz)z

+2(Ωy ż −Ωz ẏ)+ d1 = σ1(u1)

ÿ+(Δλxy +λxy)ẋ+(Δλyy +λyy)ẏ+(Δλyz + λyz)ż

+ (Δkxy + kxy)x + (Δkyy + kyy)y + (Δkyz + kyz)z

+2(Ωx ż −Ωz ẏ)+ d2 = σ2(u2)

z̈+(Δλxz +λxz)ẋ+(Δλyz +λyz)ẏ+(Δλzz +λzz)ż

+(Δkxz + kxz)x + (Δkyz + kyz)y + (Δkzz + kzz)z

+2(Ωx ẏ −Ωy ẋ)+ d3 = σ3(u3)

where Δλxx , Δλxy , Δλxz , Δλyy , Δλyz , Δλzz , Δkyy

and Δkyz Δkxx , Δkxy , Δkxz ,are uncertainty parame-
ters; di are external disturbance. Note that the gyro-
scope control system can be regarded as three indi-
vidual sub-systems and we can control coordinates
independently. Let � = [x1, x2, x3, x4, x5, x6] =
[x, ẋ, y, ẏ, z, ż], then the MEMS gyroscope with uncer-
tainty parameters and external disturbance is described
as follows:{

ẋ2i−1 = x2i

ẋ2i = fi (�)+ σi (ui )− di
(7)

where i = 1, 2, 3, and
f1 = −(Δλxx +λxx )ẋ − (Δλxy +λxy)ẏ − (Δλxz +

λxz)ż − (Δkxx + kxx )x − (Δkxy + kxy)y −
(Δkxz + kxz)z − 2(Ωy ż −Ωz ẏ),

f2 = −(Δλxy +λxy)ẋ − (Δλyy +λyy)ẏ − (Δλyz +
λyz)ż − (Δkxy + kxy)x − (Δkyy + kyy)y −
(Δkyz + kyz)z − 2(Ωx ż −Ωz ẏ),

f3 = −(Δλxz +λxz)ẋ − (Δλyz +λyz)ẏ − (Δλzz +
λzz)ż − (Δkxz + kxz)x − (Δkyz + kyz)y −
(Δkzz + kzz)z −2(Ωx ẏ −Ωy ẋ) are unknown

nonlinear function.
Without loss of generality, the technical assumptions

are made to pose the problem in a tractable manner.

Assumption 2 The desired command signal and their
first and second time derivatives are bounded.

Assumption 3 There exist a positive constant u∗
idz

such that the max{uirdz, |uildz|} � u∗
idz.

2.2 Fuzzy logic system

A fuzzy logic system (FLS) consists of four parts:
the knowledge base, the fuzzifier, the fuzzy inference
engine working on fuzzy rules, and the defuzzifier.
The knowledge base for FLS comprised a collection
of fuzzy If-then rules of the following form:

y(x) =
∑N

i=1Φi	
n
j=1μFi

j
(x j )∑N

i=1	
n
j=1μFi

j
(x j )

where x = [x1, x2, . . . , xn]T ∈ Rn , μFi
j
(x j ) is the

membership of Fi
j and Φi = maxμBi (y). Let

ξi (x) =
	N

j=1μFi
j
(x j )∑N

i=1	
n
j=1μFi

j
(x j )
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Fig. 3 Block diagram of
control system

Then, the fuzzy logic system can be rewritten as
yi (x) = Φξi (x) = [Φi1, Φi2, . . . , Φin][ξi1, ξi2, . . . ,

ξin]T . To begin with the design procedure of the pro-
posed control strategy, we define α∗

i = ‖Φi‖2(i =
1, 2, . . . , n).

The purpose of this paper is to present a design
methodology of adaptive dynamic surface control to
regulate and track the output amplitude of the axis to a
fixed level so that the trajectory of tracking-error con-
verges to the small neighborhood of equilibrium point.
The adaptive dynamic surface control strategy is shown
in Fig. 3, and the design procedure will be described
step by step as follows

3 Design of adaptive dynamic surface control
strategy

3.1 Controller design

Step 1: We define the tracking-error

ei1 = x2i−1 − x(2i−1)d (8)

where x(2i−1)d is a desired command signal (fixed
level). Taking the derivative of Eq. (8), it yield

ėi1 = ẋ2i−1 − ẋ(2i−1)d = x2i − ẋ(2i−1)d (9)

A virtual control term ϕ̄i is selected to stabilize the
surface ei1:

ϕ̄i = − ki1ei1 + ẋ(2i−1)d (10)

where ki1 > 1 is design parameter.
Conventional backstepping algorithm has a draw-

back called the explosion of complexity which is
caused by the repeated differentiations of virtual con-
trollers. In order to solve this drawback, a auxiliary filter
term is introduced to simplify the process of controller

design. The auxiliary filter term is built according to
the following:

ϕ̇i = −ϕi − ϕi

τi
− κi (ϕi − ϕi )

|ϕi − ϕi | + δi
(11)

where 0 < τi < 2, δi > 0, κi = θ · γ̂i with θ > 1, and
γ̂i is updated by Eq. (30).

Remark 1 In fact, Eq. (11) can be written as

ϕ̇i = −

⎛
⎜⎜⎜⎝

1/T︷ ︸︸ ︷
1

τi
+ κi

|ϕi − ϕi | + δi

⎞
⎟⎟⎟⎠ · (ϕi − ϕi ),

obviously, the auxiliary filter term is also a classical
integral filter; it should be pointed out that the auxiliary
term will be analytically studied during the stability
analysis.

Step 2: The second dynamic surface is defined as
follows:

ei2 = x2i − ϕi (12)

Then the derivative of ei2 can be obtained as

ėi2 = ẋ2i − ϕ̇i = fi (x)+ di − ϕ̇i + σi (ui ) (13)

We introduce a auxiliary term�i = fi (x)−ϕ̇i +(ki2 +
1/2)ei2 with ki2 is design parameter, then the Eq. (13)
can be rewritten as

ėi2 = �i − (ki2 + 1/2)ei2 + di + σi (ui ) (14)

Obviously, the �i contain the uncertainty nonlinear
part fi , and it is difficult to design controller. Thus,
we utilize fuzzy logic system to approximate �i such
that�i = Φiξi +εi , where εi is approximate error. And
then, the following relationship can be established
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Adaptive dynamic surface control for MEMS 177

ei2(Φiξi + εi ) �
e2

i2α
∗
i ‖ξi‖2

2υ2 + υ2

2
+ ei2εi (15)

where υ is positive design parameter.

Assumption 4 There exist unknown positive con-
stants ψ∗

i such that |di + εi | � ψ∗
i .

For the convenience of analysis, define ψ∗
i

2 = β∗
i .

Then, we can obtain

ei2(di + εi ) � 1

2υ2 e2
i2β

∗
i + υ2

2
(16)

Combining (14), (15) with (16), yielding

ei2ėi2 � e2
i2α

∗
i ‖ξi ‖2

2υ2 + 1
2υ2 e2

i2β
∗
i + υ2

− (ki2 + 1/2)e2
i2 + ei2σi (ui ) (17)

In order to achieve control objectives, the proposed con-
trol scheme is designed as

ui =

⎧⎪⎨
⎪⎩

−1
2υ2 (α̂i‖ξi‖2+β̂i )ei2+ûidz, if ei2<0

0, if ei2 = 0
−1
2υ2 (α̂i‖ξi‖2+β̂i )ei2−ûidz, if ei2>0

(18)

where ûidz is the estimate of the u∗
idz, and the ũidz =

u∗
idz − ûidz is defined as estimate error. The correspond-

ing adaption laws are chosen as

˙̂αi =
{

ai1
2υ2 e2

i2‖ξi‖2 − ai1νi α̂i , if |ei1| > ς

0, if |ei1| � ς
(19)

˙̂
βi =

{
ai2
2υ2 e2

i2 − ai2νi β̂i , if |ei1| > ς

0, if |ei1| � ς
(20)

˙̂uidz =
{

ai4|ei2| − ai4cûidz, if |ei1| > ς

0, if |ei1| � ς
(21)

where α̂i (0) > 0, β̂i (0) > 0, ûidz(0) > 0, and ς is a
small positive constant. Note that the adaptation speed
of α̂i , β̂i and ûidz can be turned by ai1 > 0, ai2 > 0,
ai4 > 0, νi > 0 and c > 0. Choosing a suitable adapta-
tion parameters can also effectively avoid high control
activity. Next, lemma1 will be presented to develop the
adaptive dynamic surface control design.

Lemma 1 For all the input nonlinearities σi (ui ) satis-
fying Assumption 1, the following relationship can be
established.

ei2σi (ui ) � −η(α̂i‖ξi‖2 + β̂i )

2υ2 e2
i2 + η|ei2|ũidz (22)

where 0 < η � ιi � 1

Proof According to (18), for ui > ûirdz � uirdz or ui >

uirdz � ûirdz, it implies that ei2 < 0. Thus, yielding

−(α̂i‖ξi‖2 + β̂i )

2υ2 ei2σi (ui )

� −η(α̂i‖ξi‖2 + β̂i )

2υ2 ei2η

·(ui − ûidz + ûidz − u∗
idz + u∗

idz − uirdz)

� −η(α̂i‖ξi‖2 + β̂i )

2υ2 ei2η ·

(ui − ûidz + ûidz − u∗
idz) = η

{
(α̂i‖ξi‖2 + β̂i )

2υ2

}2

e2
i2

+ (α̂i‖ξi‖2 + β̂i )ηei2

2υ2 ũidz, i.e.

ei2σi (ui ) � −η(α̂i‖ξi‖2 + β̂i )

2υ2 e2
i2 − ηei2ũidz

= −η(α̂i‖ξi‖2 + β̂i )

2υ2 e2
i2 + η|ei2|ũidz (23)

Where as for ui < −ûildz � uildz or ui < uildz � ûildz,
it implies that ei2 > 0, we can obtain

−(α̂i‖ξi‖2 + β̂i )

2υ2 ei2σi (ui )

� −η(α̂i‖ξi‖2 + β̂i )

2υ2 ei2

·(ui + ûidz − ûidz − u∗
idz + u∗

idz − uildz)

= η

{
(α̂i‖ξi‖2 + β̂i )

2υ2

}2

e2
i2

− (α̂i‖ξi‖2 + β̂i )ηei2

2υ2 · (ũidz − uildz − u∗
idz), i.e.

ei2σi (ui ) � −η(α̂i‖ξi‖2 + β̂i )

2υ2 e2
i2

+ηei2(ũidz − uildz − u∗
idz)

� −η(α̂i‖ξi‖2 + β̂i )

2υ2 e2
i2 + η|ei2|ũidz (24)

From (23) and (24), the conclusion is held.

3.2 Stability analysis

In this subsection, we will testify the feasibility of the
control strategy. First, define the boundary layer error
as.

zi = ϕi − ϕ̄i (25)
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Then, we describe the derivative of the surface errors
to represent the closed-loop system as follows:

ėi1 = x2i − ẋ(2i−1)d = ei2 + ϕi − ẋ(2i−1)d

= ei2 + zi + ϕ̄i − ẋ(2i−1)d

= ei2 + zi − ki1ei1 (26)

Therefore, we obtain

ei1ėi1 = − ki1e2
i1 + ei1ei2 + zi ei1

� − ki1e2
i1 + |ei1||ei2| + |zi ||ei1|

� − ki1e2
i1 + e2

i1 + e2
i2/2 + z2

i /2 (27)

Considering the derivative of Eq. (25), yielding

żi = − zi

τi
− κi zi

|zi | + δi
− ˙̄ϕi (28)

And then, we have

zi żi = − z2
i

τi
− zi

(
κi zi

|zi | + δi
+ ˙̄ϕi

)
(29)

In this study, we assume that the ˙̄ϕi is bounded with a
large enough unknown positive number γ ∗

i , i.e. ,| ˙̄ϕi | �
γ ∗

i , and γ̂i is used to estimate γ ∗
i where γ̃i = γ̂i − γ ∗

i
is estimation error. The corresponding adaption law is
chosen as

˙̂γi = ai3|zi |
(

θ |zi |
|zi | + δi

)
+ ai3νi γ̂i (30)

where θ > 1 is a design parameter. The stability of
the closed-loop system will be stated in the following
theorem.

Theorem 1 Suppose that the system (7) with uncer-
tainties, external disturbance, and input nonlinearity
is controlled by the proposed control scheme (18) with
update laws in (19), (20), (21) and (30). In addition, if
the proposed control system satisfies Assumptions 1–3.
Then, whenever the tracking-error starts from any ini-
tial point, it can asymptotically reach the small neigh-
borhood of equilibrium point.

Proof In the case of ei2 �= 0. Define the following
Lyapunov candidate function:

Vg = e2
i1+e2

i2+z2
i

2
+ α̃2

i

2ηai1
+ β̃2

i

2ηai2
+ γ̃ 2

i

2ai3
+η ũ2

idz

2ai4

(31)

where α̃i = α∗
i −ηα̂i , β̃i = β∗

i −ηβ̂i and γ̃i = γ ∗
i − γ̂i .

From (17), (22), (27) and (29), the derivative of Vg can
be obtained as

V̇g � − (ki1 − 1)e2
i1 − ki2e2

i2 − (2 − τi )z2
i

2τi
+ α∗

i ‖ξi‖2e2
i2

2υ2

+ β∗
i e2

i2

2υ2 − zi

(
κi zi

|zi | + δi
+ ˙̄ϕi

)
− η

(α̂i‖ξi‖2 + β̂i )e2
i2

2υ2

+ η|ei2|ũidz + υ2 − α̃i
˙̂αi

ai1
− β̃i

˙̂
βi

ai2
− γ̃i

˙̂γi

ai3
− ηũidz

˙̂uidz

ai4

� − (ki1 − 1)e2
i1 − ki2e2

i2 − (2 − τi )z2
i

2τi
+ α̃i‖ξi‖2e2

i2

2υ2

+ β̃i e2
i2

2υ2 − |zi |
(
κi |zi |

|zi | + δi
− γ ∗

i

)
+ η|ei2|ũidz + υ2

− α̃i
˙̂αi

ai1
− β̃i

˙̂
βi

ai2
− γ̃i

˙̂γi

ai3
− ηũidz

˙̂uidz

ai4
(32)

Substitute adaptive laws ˙̂αi ,
˙̂
βi , ˙̂γi , ˙̂uidz, and κi = θγ̂i

into Eq. (32), we obtain

V̇g � − (ki1 − 1)e2
i1 − ki2e2

i2 − (2 − τi )z2
i

2τi

− θ |zi |2
|zi | + δi

γ̃i − |zi |
(
θγ̂i |zi |
|zi | + δi

− γ ∗
i

)
+ νi α̃i α̂i

+ νi β̃i β̂i + νi γ̃i γ̂i + cηũidzûidz + υ2 (33)

Due to α̃i = α∗
i −ηα̂i , β̃i = β∗

i −ηβ̂i , γ̃i = γ ∗
i −γ̂i and

ũidz = u∗
idz−ûidz, we can get the following relationship

−|zi |
(
θγ̂i |zi |
|zi |+δi

− γ ∗
i

)
− θ |zi |2|zi |+δi

γ̃i

= −|zi |γ ∗
i

(
θ |zi ||zi |+δi

− 1
)

(34)

and

νi α̃i α̂i = −νi

η
(α∗

i − ηα̂i )(α
∗
i − ηα̂i − α∗

i )

� νi

η

(
−(α∗

i −ηα̂i )
2+ (α

∗
i −ηα̂i )

2

2
+ (α

∗
i )

2

2

)

= −νi (α
∗
i − ηα̂i )

2

2η
+ νi (α

∗
i )

2

2η
(35)

Similarly to (35), we can get

νi β̃i β̂i � −νi (β
∗
i − ηβ̂i )

2

2η
+ νi (β

∗
i )

2

2η
(36)

νi γ̃i γ̂i � −νi (γ
∗
i − γ̂i )

2

2
+ νi (γ

∗
i )

2

2
(37)

cηũidzûidz � −cη(u∗
idz − ûidz)

2

2
+ cη(u∗

idz)
2

2
(38)

By noticing Eq. (34), if |zi | > δi
θ−1 , then−|zi |γ ∗

i

(
θ |zi ||zi |+δi

− 1
)
< 0. If |zi | � δi

θ−1 , then −|zi |γ ∗
i

(
θ |zi ||zi |+δi

− 1
)

�
δiγ

∗
i

θ−1 . Thus, relationship −|zi |γ ∗
i

(
θ |zi ||zi |+δi

− 1
)

� δiγ
∗
i

θ−1
can be established.
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With the knowledge above, Eq. (33) is expressed as
follows:

V̇g � −(ki1 − 1)e2
i1 − ki2e2

i2 − (2 − τi )z2
i

2τi
− |zi |γ ∗

i

·
(

θ |zi |
|zi | + δi

− 1

)
− νi (α

∗
i − ηα̂i )

2

2η
+ νi (α

∗
i )

2

2η

−νi (β
∗
i − ηβ̂i )

2

2η
+ νi (β

∗
i )

2

2η
− νi (γ

∗
i − γ̂i )

2

2

+νi (γ
∗
i )

2

2
− cη(u∗

idz − ûidz)
2

2
+ cη(u∗

idz)
2

2
+ υ2

� −μ1Vg + δiγ
∗
i

θ − 1
+ νi

2η

[
(α∗

i )
2 + (β∗

i )
2 + η(γ ∗

i )
2

+ ηc(u∗
idz)

2]+ υ2 = −μ1Vg +Δ1 (39)

where μ1 = min
{
2(ki1 − 1), 2ki2,

2−τi
τi
, νi ai1, νi ai2,

νi ai3, cai4
}
,Δ1 = δiγ

∗
i

θ−1 + νi
2η

[
(α∗

i )
2+(β∗

i )
2+η(γ ∗

i )
2+

cη(u∗
idz)

2
]+ υ2. Furthermore, we can obtain

V̇g � −ζμ1Vg − (1 − ζ )μ1Vg +Δ1 (40)

where 0 < ζ < 1. Obviously, if Vg >
Δ1

(1−ζ )μ1
, then

(40) can be written as V̇g < −ζμ1Vg. The decrease
of Vg enforce the trajectories of the closed loop sys-
tem into Vg � Δ1

(1−ζ )μ1
. Thus, the trajectories of the

closed loop system is bounded, i.e. lim
t→T

ei1 ∈ (|ei1| �√
2Δ1

(1−ζ )μ1

)
.

In the case of ei2 = 0, the derivative of Vg satisfies

V̇g � −(ki1 − 1)e2
i1 − (2 − τi )z2

i

2τi
− θ |zi |2

|zi | + δi
γ̃i

− |zi |
(
θγ̂i |zi |
|zi | + δi

− γ ∗
i

)
+ νi α̃i α̂i + νi β̃i β̂i

+ νi γ̃i γ̂i + cηũidzûidz (41)

Similar to the process of (33), we can also obtain
Vg �−μ2Vg+Δ2, where μ2 =min

{
2(ki1 − 1), 2−τi

τi
,

νi ai1, νi ai2, νi ai3, cai4
}
, Δ2 = δiγ

∗
i

θ−1 + νi
2η

[
(α∗

i )
2

+ (β∗
i )

2 + η(γ ∗
i )

2 + cη(u∗
idz)

2
]
, and the error trajec-

tories is bounded, i.e. lim
t→T

ei1 ∈ (|ei1| �
√

2Δ2
(1−ζ )μ2

)
.

Therefore, we can conclude from case ei2 �= 0 and
ei2 = 0 that all the closed-loop errors are bounded.

Remark 2 Practically, in (30), the |zi | cannot become
exactly zero and thus the adaptive parameter γ̂ may
increase boundlessly. In order to avoid the issue, we

modify the update law as

˙̂γi =
{

ai3|zi |
(
θ |zi ||zi |+δi

)
+ ai3νi γ̂i , if |ei1| > ς

0, if |ei1| � ς

(42)

where γ̂i (0)>0, and ai3 is a positive design parameter

Remark 3 From the proof of the Theorem 1, it implies
that the α̂i , β̂i , γ̂i , ûidz, and ei2 are all bounded over
t ∈ [0,∞) . For the right-hand side of (18) is also
bounded, therefore we conclude that ui is bounded for
all t ∈ [0,∞).

Remark 4 The proposed controller (18) can be applied
without any prior knowledge of MEMS triaxial gyro-
scope such as exact model, external disturbance, and
unknown dead zone. On the other hand, the control
scheme (18) not only compensates for external distur-
bance and uncertainties, but also trajectory of tracking-
error converges to the small neighborhood of equilib-
rium point, even in the presence of nonlinear input.
Accordingly, it is indeed an adaptive control.

4 Numerical simulations

In this section, the numerical simulation demonstrates
the effectiveness of the proposed control scheme. The
desired trajectory are given as x1d = 0.1sin(π t),
x2d = 0.1cos(π t) and x3d = 0.1sin(π t) · cos(t).
The sampling time/interval Ttime is 0.001s. Note that
the tracking signals can be obtained by signal catch-
ing devices in practice. In the simulation, the parame-
ters of the control law are selected as k11 = k21 =
k31 = 5.2, a11 = a21 = a31 = 8, a12 = a22 = 3.4,
a41 = 6.5, a13 = a23 = a33 = 4, a24 = a42 =
a43 = 1.5, θ = 2.2, υ = 0.05, δi = 1, νi = 0.02,
c = 0.01, ς = 0.03. The α̂i (0) = 0.01, β̂i (0) =
0.01, ûidz(0) = 0.01. The nonlinearities input σi (ui )

is taken as saturation, the saturated value and dead-
band value are 1.7 and (uildz = −0.3, uirdz = 0.7),
respectively. The disturbance is d1 = d2 = d3 =
0.8sin(π t)cos(2π t). To implement the fuzzy logic
system, membership functions are given as:μF1

i
(xi ) =

exp
[− ( (xi +π/6)

(π/24)

)2], μF2
i
(xi ) = exp

[− ( (xi +π/12)
(π/24)

)2],
μF3

i
(xi ) = exp

[ − ( xi
(π/24)

)2], μF4
i
(xi ) = exp

[ −( (xi −π/12)
(π/24)

)2],μF5
i
(xi ) = exp

[−( (xi −π/6)
(π/24)

)2]. In addi-
tion, the parameters of MEMS gyroscope system are
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Fig. 4 Tracking (x1 − x1d)
by using proposed controller
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Fig. 5 Tracking (x2 − x2d)
by using proposed controller
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randomly selected within 20 % of their nominal values
in all the simulations.

The response curves of the tracking trajectories are
illustrated in Figs. 4, 5 and 6. As indicated in Figs. 4, 5
and 6, as expected, the proposed control scheme could
guarantee the achieved system states track the desired
signals effectively, even in the presence of the uncer-
tainties and input uncertainty. Moreover, the tracking-
error achieves its maximum at the beginning of the
engagement, and stays at a small neighborhood of equi-
librium point at the rest. It can be concluded that the
MEMS gyroscope can maintain the proof mass to oscil-
late in the x-, y-, and z-directions at a given frequency
and amplitude with the adaptive mechanism, and the

control objective is well accomplished because the pro-
posed controller has a strong ability to compensate
both the system nonlinearities and disturbance. From
Fig. 7, we can see that the control inputs are saturated in
the initialization transient phase. The dead-zone para-
meters are provided in Fig. 8. As can be seen, adap-
tive compensators for dead-zone in the closed-loop are
bounded. Moreover, the adaptive parameters can esti-
mate the upper bound value of the dead zone. And the
adaptive compensators ûidz and adaptive control term
−ei2(α̂i‖ξi‖2 + β̂i )/2υ work in a cooperative man-
ner. That is, if one works more, the other one works
less, and vice versa. The advantage of the idea is that
we need not a perfect dead-zone compensator. These
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Fig. 6 Tracking (x3 − x3d)
by using proposed controller
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Fig. 7 Control input signal
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simulation results show that good tracking performance
can be obtained under the proposed adaptive control.

5 Conclusion

In this paper, a novel adaptive dynamic surface con-
troller is presented for MEMS gyroscope system with
disturbance, uncertainty, and input nonlinearity. The
proposed control scheme can guarantee that the trajec-
tory of tracking-error converges to the small neighbor-
hood of equilibrium point. The controller with adaptive
mechanism does not depend on accurate mathematical
models. Moreover, it has been demonstrated good per-
formance and still holds robustness and stability in the
presence environmental disturbance, uncertainties and
input nonlinearity. Numerical simulations are included
to support the above analysis, and the results demon-
strate that the proposed control strategy has good track-
ing performance and robustness for uncertainties.
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