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Abstract Chaos control and synchronization of sec-
ond-order nonautonomous fractional complex chaotic
systems are discussed in this paper. A novel fractional
nonsingular terminal sliding surface which is suitable
for second-order fractional systems is proposed. It is
proved that once the state trajectories of the system
reach to the proposed sliding surface, they will be
converged to the origin within a given finite time.
After establishing the desired terminal sliding surface,
a novel robust single sliding mode control law is intro-
duced to force the system trajectories to reach the termi-
nal sliding surface over a finite time. The stability and
robustness of the proposedmethod are proved using the
latest version of the fractional Lyapunov stability theo-
rem.The proposedmethod is implemented for synchro-
nization of two uncertain different fractional chaotic
systems to confirm the theoretical results. Moreover,
the fractional-order gyro system is stabilized using the
proposed fractional sliding mode control scheme. It
is worth noticing that the proposed fractional sliding
mode approach is still a general control method and
can be applied for control of second- order uncertain
nonautonomous/autonomous fractional systems.
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1 Introduction

In recent years, chaos and chaotic systems have been
identified as very interesting nonlinear dynamical phe-
nomena and have received a flurry of research effort.
Chaotic systems have several special features such
as extraordinary sensitivity on initial conditions and
strange attractors. Second-order chaotic systems are
a broad class of the dynamical systems. There are
many examples of physical and engineering second-
order nonautonomous systems that exhibit chaos. For
instance, it is known that the gyroscope system is a
second- order dynamical system that shows chaotic
behavior [1]. The gyroscope has been found in many
applications in optics, navigation, aeronautics, and
space engineering fields. Another interesting second-
order chaotic dynamical system is the horizontal plat-
formsystem [2]. It is amechanical device that can freely
rotate around the horizontal axis and is widely used in
offshore and earthquake engineering.As another exam-
ple, the Van der Pol oscillator [3] is a second-order
model of electrical oscillator with chaotic behaviors.
In addition, many other second-order nonautonomous
dynamical systems, such as MLC circuit [4], Duffing–
Holmes system [5], extended Rayleigh oscillator [3],
and coronary artery system [6], exhibit complex and
chaotic dynamics. Due to the existence of chaos in real
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practical second-order systems and many useful appli-
cations in physics and engineeringfields, there has been
increasing interest in the subject of control and synchro-
nization of second-order chaotic systems in the past few
years [7–9].

Fractional calculus, with more than 300-years-old
history, generalizes the ordinary differentiation and
integration to arbitrary (noninteger) order. Although
it has a long history, it has been used in physics and
engineering only during the last few years. It has been
known that many fractional-order differential systems,
such as fractional-order Chen system [10], fractional-
order Lu system [11], fractional-order Rossler system
[12], fractional-order Arneodo system [13], fractional-
order Lorenz system [14], fractional-order unified sys-
tem [15], fractional-order Genesio-Tesi system [16],
fractional-order Chua circuit [17], and fractional-order
Duffing system [18], exhibit rich and chaotic dynamics.

In particular, control and synchronization of
fractional-order chaotic systems have attracted the
attention of many scholars and some techniques have
beenused to control/synchronize fractional-order chao-
tic systems. In [19], an adaptive controller has been
designed to synchronize chaotic systems of fractional
orders. Synchronization of two identical fractional-
order chaotic systems using linear error feedback
control has been addressed in [20]. A local stabil-
ity criterion for synchronization of in-commensurate
fractional-order chaotic systems has been derived in
[21]. Lu [22] has proposed a nonlinear observer to syn-
chronize a class of identical fractional-order chaotic
systems. However, most of the works in the liter-
ature toward synchronization/stabilization of chaotic
fractional-order systems have been performed based
on the local stability of the closed-loop system.

The sliding mode control technique is one of the
most attractive robust nonlinear control methods. The
main feature of a sliding mode controller is to switch
the control law to force the state trajectories of the sys-
tem from the initial states onto some prescribed sliding
surface in finite time. Once the state trajectories of the
system reach the sliding surface (i.e., when the slid-
ing motion occurs), the closed-loop system dynamics
is reduced to the sliding surface dynamics which has
desired properties such as good stability and tracking
capability.

In [23], the authors have proposed an active sliding
mode approach to synchronize chaotic fractional-order
systems. They have designed a simple linear sliding

surface and have derived an n-dimensional control sig-
nals for the n-dimensional synchronization error sys-
tem based on the active control theory. Hosseinnia et
al. [24] have reported design of a linear sliding surface
with corresponding switching law for synchronization
of two identical uncertain two-dimensional fractional-
order chaotic systems. However, these works have not
performed the stability discussion of the system on the
basis of the fractional-order Lyapunov stability theory.
Recently, we have used the latest version of the frac-
tional Lyapunov stability theorem to design some suit-
able controllers for chaotic systems [25–27].

On the other hand, an important problem in the sta-
bilization or synchronization of chaotic systems is how
to realize the control or synchronization of chaotic sys-
tems by designing a single controller, which is particu-
larly significant both for theoretical research and prac-
tical applications. In practical situations, the problem
of multi-input control schemes is a very critical issue.
Indeed, from a practical engineering standpoint, it is
more valuable to stabilize or synchronize the chaotic
systemwith a single control input. However, to our best
knowledge, most of the previous works in the litera-
tures,whichhavebeenproposed to stabilize or synchro-
nize fractional nonautonomous chaotic systems, either
have not considered the effects of unknown nonlinear
terms, model uncertainties, and external disturbances
or are sometimes specific and multi-input.

Motivated by the above discussions, this paper pro-
poses a novel nonsingular terminal fractional-order
sliding mode controller for robust stabilization/synchr-
onization of second-order fractional nonautonomous
chaotic systems in the presence of both model uncer-
tainties and external disturbances. After introducing
a novel terminal fractional-order sliding surface, its
finite-time stability is proven. Then, on the basis of
fractional-order Lyapunov stability theory, a robust
sliding control law is derived to guarantee the occur-
rence of the sliding motion in a given finite time. The
proposed control law is single and practical in real
world applications. Finally, two illustrative examples
are given to demonstrate the applicability and robust-
ness of the proposed control technique and to validate
the theoretical results of the paper.

The rest of this paper is organized as follows. In
Sect. 2, some preliminaries of fractional calculus are
restated. The system description and problem formula-
tion are given in Sect. 3. In Sect. 4, the design procedure
of the proposed terminal fractional-order sliding mode
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approach is included. Section 5 presents two illustrative
examples. Finally, conclusions are included in Sect. 6.

2 Preliminaries of fractional calculus

The main definition of fractional integration is as fol-
lows [28].

Definition 1 The αth-order fractional integration of
function f (t) is given by

t0 I
α
t f (t) = 1

�(α)

t∫

t0

f (τ )

(t − τ)1−α
dτ, (1)

where �(.) is the Gamma function.
Two important and commonly used definitions of

fractional derivatives are listed below [28].

Definition 2 Let m − 1 < α ≤ m,m ∈ N , the
Riemann–Liouville fractional derivative of order α of
function f (t) is defined as follows:

RL
t0 Dα

t f (t) = dα f (t)

dtα

= 1

�(m − α)

dm

dtm

t∫

t0

f (τ )

(t − τ)α−m+1 dτ (2)

Definition 3 The Caputo fractional derivative of order
α of function f (t) is defined as follows:

C
t0D

α
t f (t)=

⎧⎨
⎩

1
�(m−α)

∫ t
t0

f (m)(τ )

(t−τ)α−m+1 dτ, m−1<α<m

dm
dtm f (t), α=m

(3)

where m is the smallest integer number, larger than α.

Property 1 For the Caputo derivative, we have [28]

C
t0D

1−α
t

(
C
t0D

α
t f (t)

)
= C

t0D
1
t f (t) = ḟ (t) (4)

Property 2 For the Caputo derivative, the following
equality holds [28].

C
t0D

α
t

(
C
t0D

−β
t f (t)

)
= C

t0D
α−β
t f (t), (5)

where α ≥ β ≥ 0.

Property 3 The following equality holds for the
Caputo derivative [28].

C
t0D

α
t

(
C
t0D

m
t f (t)

)
= C

t0D
α+m
t f (t), (6)

where m = 0, 1, 2, . . . ; n − 1 < α < n.

In the rest of this paper, the notation Dα indicates
the Caputo fractional derivative.

The following theorem is the latest version of the
fractional Lyapunov stability theorem [29].

Theorem 1 Let x = 0 be an equilibrium point for the
Caputo fractional nonautonomous system

Dαx(t) = f (x, t), (7)

where f (x, t) satisfies the Lipschitz condition with Lip-
schitz constant l > 0 and α ∈ (0, 1). Assume that there
exists a Lyapunov function V (t, x(t)) satisfying

α1‖x‖a ≤ V (t, x) ≤ α2‖x‖ (8)

V̇ (t, x) ≤ −α3‖x‖, (9)

where α1, α2, α3, and a are positive constants and ‖ · ‖
denotes an arbitrary norm. Then the equilibrium point
of the system (7) is Mittag-Leffler stable.

Remark 1 Mittag-Leffler stability implies asymptotic
stability [29].

3 System description and problem statement

Consider the following second-order uncertain nonau-
tonomous fractional-order chaotic system.
{
Dαx1 = x2
Dαx2 = f (X, t) + � f (X) + dx (t) + u(t)

(10)

where α ∈ (0, 1) is the fractional order of the sys-
tem, X (t) = [x1, x2]T ∈ R2 is the state vector of the
system, f (X, t) ∈ R is a given nonlinear function of
X and t , � f (X) ∈ R represents an unknown model
uncertainty term, dx (t) ∈ R is an external disturbance
of the system, and u(t) ∈ R is the single control input
to be designed later.

We define the chaos synchronization problem as fol-
lows: design an appropriate controller for the response
system (10) such that its state trajectories track the state
trajectories of the following drive chaotic system.
{
Dα y1 = y2
Dα y2 = g (Y, t) + �g(Y ) + dy(t),

(11)

where Y (t) = [y1, y2]T ∈ R2 is the state vector of the
system, g(Y, t) ∈ R is a given nonlinear function of Y
and t,�g(Y ) ∈ R is an unknown model uncertainty
term, and dy(t) ∈ R is an external disturbance.
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1734 M. P. Aghababa

Assumption 1 Theuncertainty terms� f (X) and�g(Y )

are assumed to be bounded by∣∣∣D1−α (� f (X) − �g(Y ))

∣∣∣ ≤ γ1, (12)

where γ1 is a known positive constant.

Assumption 2 The external disturbances dx (t) and
dy(t) are assumed to be bounded by∣∣∣D1−α

(
dy(t) − dx (t)

)∣∣∣ ≤ γ2, (13)

where γ2 is a given positive constant.
Defining the synchronization error as E(t) = Y (t)−

X (t), one can obtain

E(t)=Y (t)−X (t)= [y1, y2]
T−[x1, x2, ]

T

= [e1, e2]
T . (14)

Consequently, the synchronization error dynamics is
obtained as follows:⎧⎨
⎩

Dαe1 = e2
Dαe2 = g(Y, t) + �g(Y ) + dy(t) − f (X, t)

−� f (X) − dx (t) − u(t)
(15)

Definition 4 Consider the error system described by
Eq. (15). If there exists a constant T = T (E(0)) > 0,
such that limt→T ‖E(t)‖ = 0 and ‖E(t)‖ ≡ 0, if t ≥
T , then states of the error system (15) will converge to
zero in the finite time T .

The control goal of this paper is to design a suitable
robust nonsingular terminal fractional sliding mode
controller for stabilization of the resulting error sys-
tem around zero in the sense of Definition 4.

Remark 2 It is obvious that if Y (t) = 0, then the syn-
chronization problem is transformed to the stabiliza-
tion problem of the fractional-order uncertain chaotic
system (10).

4 Design of robust nonsingular terminal fractional
sliding mode controller

In this section, first a novel fractional terminal sliding
surface is introduced. Then, proper sliding mode con-
trol laws are proposed to ensure the existence of the
sliding motion in finite time.

In general, the sliding mode control approach is
composed of an equivalent control part that describes
the behavior of the system when the trajectories stay
over the sliding surface and a variable structure control

part that enforces the trajectories to reach the sliding
surface and remain on it evermore. In other words, a
sliding mode controller includes two major steps. The
first step is to select a suitable terminal sliding surface.
In this paper, we propose a novel fractional-order ter-
minal sliding surface as follows:

s(t) = e2 + Dα−1 (
k1e1 + k2sign(e1)|e1|ρ

)
, (16)

where ei , i = 1, 2 are the systemerror states,ρ ∈ (0, 1)
is a constant, and k1 and k2 are positive scalars.

Once the system operates in the sliding mode, it sat-
isfies the following equation [30].

s(t) = 0 (17)

Therefore, using Eqs. (16) and (17), the following slid-
ing mode dynamics is obtained.

e2 + Dα−1 (
k1e1 + k2sign(e1)|e1|ρ

) = 0 (18)

Using the first equation of (15), one obtains

Dαe1 + Dα−1 (
k1e1 + k2sign(e1)|e1|ρ

) = 0 (19)

Dαe1 = −Dα−1 (
k1e1 + k2sign(e1)|e1|ρ

)
(20)

In the following theorem, we prove the finite-time sta-
bility of the sliding mode dynamics (20).

Theorem 2 The sliding mode dynamics (20) is stable
and its state trajectories converge to the equilibrium
e1(t) = 0 in a finite time.

Proof Choose the following positive definite function
as a Lyapunov function candidate.

V1(t) = |e1(t)| (21)

Taking the time derivative of V1(t), we have

V̇1(t) = sign(e1)ėi (t) (22)

Based on Property 1 and Eq. (4), one has

V̇1(t) = sign(e1)
(
D1−α(Dαe1)

)
(23)

Substituting Dαe1 from (20) into the above equation,
one obtains

V̇1(t) = −sign(e1)(
D1−α

(
Dα−1 (

k1e1 + k2 sign(e1)|e1|ρ
)))

(24)

Using Property 2 and Eq. (5), we have

V̇1(t) = − (
k1|e1| + k2|e1|ρ

)
(25)
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Defining k = min {k1, k2}, one has
V̇1(t) ≤ −k

(|e1| + |e1|ρ
) ≤ −k|e1| (26)

Therefore, based on Theorem 1, the error e1 will con-
verge to zero asymptotically. In the following, we show
the convergence to zero occurs in finite time.

From the inequality (26), one has

V̇1(t) = d|e1|
dt

≤ −k
(|e1| + |e1|ρ

)
(27)

After simple calculations, we have

dt ≤ − d|e1|
k

(|e1| + |e1|ρ1
) = − |e1|−ρ

1 d|e1|
k

(
|e1|1−ρ

1 + 1
)

= − 1

k (1 − ρ)

d|e1|1−ρ
1(

|e1|1−ρ
1 + 1

) (28)

Taking integral of both sides of (28) from tr to ts and
knowing e1(ts) = 0, we have

ts − tr ≤ − 1

k(1 − ρ)

X (ts )∫

X (tr )

d|e1|1−ρ
1

|e1|1−ρ
1 + 1

= − 1

k(1 − ρ)
ln

(
|e1|1−ρ

1 + 1
) ∣∣∣∣ e1(ts)e1(tr )

= 1

k(1 − ρ)
ln

(
|e1|1−ρ

1 + 1
)

. (29)

Therefore, the error e1 will converge to zero in the finite

time T1 ≤ 1
k(1−ρ)

ln
(
|e1|1−ρ

1 + 1
)
+tr . Thus, the proof

is achieved completely. �	
Remark 3 In the works [31,32] integer-order terminal
slidingmodemanifolds s = ė+βeq/p and s = ė+αe+
βeq/p have been designed, respectively, where α, β >

0, p > q > 0 are odd integers. Since the control laws in
these works contain the term e(q/p)−1, one can see that
for e < 0, the fractional power (q/p)−1may lead to the
term e(q/p)−1 /∈ R, which leads to ė /∈ R and u(t) /∈ R.
This singularity restricts the practical implementation
of the controllers in [31,32]. On the other hand, our
proposed fractional nonsingular terminal sliding mode
in (16) overcomes this singularity.

Having established the suitable nonsingular termi-
nal sliding surface, the next step is to determine an input
signal u(t) to guarantee that the error system trajecto-
ries reach to the sliding surface s(t) = 0 and stay on
it forever. In general, the sliding mode control law is

composed of two parts: (1) an equivalent control that
expresses the behavior of the systemwhen the state tra-
jectories stay over the slidingmanifold; and (2) a reach-
ing control that enforces the state trajectories to attain
the sliding manifold. When the closed-loop system is
moving on the sliding surface, it satisfies ṡ(t) = 0 [30]
and then the equivalent control law ueq(t) can be com-
puted as follows:

ṡ(t) = 0 (30)

Replacing s(t) from Eq. (16) into Eq. (30), it yields

ṡ(t) = d

dt

(
e2 + Dα−1 (

k1e1 + k2sign(e1)|e1|ρ
))

= 0 (31)

On the basis of Property 3 and Eq. (6), we have

ṡ(t) = ė2 + Dα
(
k1e1 + k2sign(e1)|e1|ρ

) = 0 (32)

Using Property 1 and Eq. (4), one obtains

ṡ(t) = D1−α
(
Dαe2

) + Dα
(
k1e1 + k2sign(e1)|e1|ρ

)
= 0 (33)

From the error system dynamics (15), one has

ṡ(t) = D1−α
(
g(Y, t) + �g(Y ) + dy(t) − f (X, t)

−� f (X) − dx (t) − ueq(t)
)

+Dα
(
k1e1 + k2sign(e1)|e1|ρ

) = 0 (34)

Therefore, the equivalent control ueq(t) is obtained as
follows:

ueq(t) = g(Y, t) + �g(Y ) + dy(t) − f (X, t)

−� f (X) − dx (t)

+D2α−1 (
k1e1 + k2sign(e1)|e1|ρ

)
. (35)

Here, the reaching law is selected as follows:

ur (t) = Dα−1 (
ζ1s + ζ2|s|δsign(s)

)
, (36)

where ζ1, ζ2 > 0 are the switching gains and constant
scalars and δ ∈ (0, 1) is a constant.

Therefore, the overall control u(t) in the proposed
control scheme is determined by

u(t) = ueq(t) + ur (t) = g(Y, t) + �g(Y ) + dy(t)

− f (X, t) − � f (X) − dx (t)

+D2α−1 (
k1e1 + k2sign(e1)|e1|ρ

)
+Dα−1 (

ζ1s + ζ2|s|δsign(s)
)
. (37)

However, since in practical applications, the system
uncertainty terms �g(Y ) and � f (X) and external dis-
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turbances dy(t) and dx (t) are unknown, the proposed
control input is modified as follows:

u(t) = g(Y, t) − f (X, t) + Dα−1 [
(γ1 + γ2) sign(s)

]
+D2α−1 (

k1e1 + k2sign(e1)|e1|ρ
)

+Dα−1 (
ζ1s + ζ2|s|δsign(s)

)
(38)

To guarantee the existence of the sliding motion (i.e.,
to ensure that the error trajectories ei (t) converge to
the sliding surface s(t) = 0), the following theorem is
proposed and proved.

Theorem 3 Consider the error system (15). If this sys-
tem is controlled by the control signal (38), then the
system trajectories will converge to the sliding surface
s(t) = 0 in a finite time.

Proof Selecting a Lyapunov function in the form of
V2(t) = |s(t)| and taking its time derivative, one has

V̇2(t) = sign(s)ṡ(t) (39)

Inserting ṡ(t) from (34) into (39), we have

V̇2(t) = sign(s)
(
D1−α

(
g(Y, t) + �g(Y ) + dy(t)

− f (X, t) − � f (X) − dx (t) − u(t)
)

+Dα
(
k1e1 + k2sign(e1)|e1|ρ

))
(40)

It is clear that

V̇2(t) ≤
∣∣∣D1−α (�g(Y ) − � f (X))

∣∣∣
+

∣∣∣D1−α
(
dy(t) − dx (t)

)∣∣∣
+ sign(s)

(
D1−α (g(Y, t) − f (X, t) − u(t))

+Dα
(
k1e1 + k2sign(e1)|e1|ρ

))
(41)

Based on Assumptions 1 and 2 and inequalities (12)
and (13), one has

V̇2(t)≤γ1+γ2+sign(s)
(
D1−α (g(Y, t)

−f (X, t)−u(t))+Dα
(
k1e1+k2sign(e1)|e1|ρ

))
(42)

Introducing the control law (38) into the right-hand side
of the above inequality, one obtains

V̇2(t) ≤ γ1 + γ2 + sign(s)
(
D1−α (g(Y, t) − f (X, t)

−(
g(Y, t)− f (X, t)+Dα−1 [

(γ1 + γ2) sign(s)
]

+D2α−1 (
k1e1 + k2sign(e1)|e1|ρ

)

+Dα−1 (
ζ1s + ζ2|s|δsign(s)

)))
+Dα

(
k1e1 + k2sign(e1)|e1|ρ

))
(43)

After some simple manipulations and based on Prop-
erties 1 and 3 and Eqs. (4) and (6), one can obtain

V̇2(t) ≤ −sign(s)
(
ζ1s + ζ2|s|δsign(s)

)
(44)

Based on sign(s)s = |s| and sign2(s) = 1, one has

V̇2(t) ≤ − (
ζ1s + ζ2|s|δ

) ≤ −ζ |s|, (45)

where ζ = min {ζi (i = 1, 2)}.
Therefore, according to Theorem 1, the state trajec-

tories of the error system (15) will converge to s(t) = 0
asymptotically. In order to show that the slidingmotion
occurs in finite time, we can obtain the reaching time
as follows.

From inequality (45), we have

V̇2(t) = d|s|
dt

≤ −ζ
(|s| + |s|δ) (46)

It is clear that

dt ≤ − d|s|
ζ

(|s| + |s|δ) = − |s|−δd|s|
ζ

(|s|1−δ + 1
)

= − 1

ζ (1 − δ)

d|s|1−δ(|s|1−δ + 1
) (47)

Taking integral of both sides of (47) from 0 to tr and
setting s(tr ) = 0, we have

tr ≤ − 1

ζ(1 − δ)

s(tr )∫

s(0)

d|s|1−δ

|s|1−δ + 1

= − 1

ζ(1 − δ)
ln

(
|s|1−δ + 1

) ∣∣∣∣ s(tr )s(0)

= 1

ζ(1 − δ)
ln

(
|s(0)|1−δ + 1

)
(48)

Therefore, the state trajectories of the error system (15)
will converge to s(t) = 0 in the finite time T2 ≤

1
ζ(1−δ)

ln
(|s(0)|1−δ + 1

)
. This completes the proof. �	

Remark 4 The proposed fractional sliding mode con-
troller of Eqs. (16) and (38) is applicable for syn-
chronization of two identical uncertain fractional-order
chaotic systems with different initial conditions, if the
systems (10) and (11) satisfy f (·) = g(·).
Theorem 4 Consider the fractional-order chaotic sys-
tem (10). If this system is controlled by the sin-
gle control signal (49), then the system trajectories
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will converge to the sliding surface s(t) = x2 +
Dα−1 (k1x1 + k2sign(x1)|x1|ρ) = 0 in a finite time.

u(t) = −
(
f (X, t) + Dα−1 [

(σ1 + σ2) sign(s)
]

+D2α−1 (
k1x1 + k2sign(x1)|x1|ρ

)
+Dα−1 (

ξ1s + ξ2|s|μsign(s)
))

, (49)

where
∣∣D1−α� f (X)

∣∣ ≤ σ1,
∣∣D1−αdx (t)

∣∣ ≤ σ2, σ1
and σ2 are given positive constants, μ ∈ (0, 1) is a
constant, and ξ1 and ξ2 are two positive gains.

Proof Choosing a Lyapunov function in the form of
V3(t) = |s(t)| and taking its time derivative, one has

V̇3(t) = sign(s)ṡ(t) (50)

Knowing ṡ(t) = ẋ2+Dα (k1x1 + k2sign(x1)|x1|ρ) and
based on Property 3 and Eq. (6), we have

V̇3(t)=sign(s)
(
ẋ2+Dα

(
k1x1+k2sign(x1)|x1|ρ

))
(51)

Using Property 1 and Eq. (4), one obtains

V̇3(t) = sign(s)
(
D1−α

(
Dαx2

)
+Dα

(
k1x1 + k2sign(x1)|x1|ρ

))
(52)

Using the system dynamics (10), one can obtain

V̇3(t)= sign(s)
(
D1−α ( f (X, t)+� f (X)

+dx (t)+u(t)
)+Dα

(
k1x1+k2sign(x1)|x1|ρ

))
(53)

It is obvious that

V̇3(t) ≤
∣∣∣D1−α� f (X)

∣∣∣ +
∣∣∣D1−αdx (t)

∣∣∣
+ sign(s)

(
D1−α ( f (X, t) + u(t))

+Dα
(
k1x1 + k2sign(x1)|x1|ρ

))
(54)

Introducing control law (49) into the right-hand side
of (54), we get

V̇3(t) ≤ σ1 + σ2 + sign(s)
(
D1−α ( f (X, t)

−
((

f (X, t) + Dα−1 [
(σ1 + σ2) sign(s)

]
+D2α−1 (

k1x1 + k2sign(x1)|x1|ρ
)

+Dα−1 (
ξ1s + ξ2|s|μsign(s)

))))

+Dα
(
k1x1 + k2sign(x1)|x1|ρ

))
(55)

From some simple mathematical manipulations and on
the basis of Properties 2 and 3 and Eqs. (5) and (6), we
have

V̇3(t) ≤ − (
ξ1s + ξ2|s|μ

) ≤ −ξ |s|, (56)

where ξ = min{ξ1, ξ2}.
Therefore, from Theorem 1, the state trajectories

of the chaotic system (10) will converge to s(t) = 0
asymptotically. Moreover, based on the inequality (56)
and using a similar approach in Eqs. (46)–(48), one can
easily prove that the slidingmotion happens in the finite
time T3 ≤ 1

ξ(1−μ)
ln

(|s(0)|1−μ + 1
)
. Thus the proof is

completed.

Remark 5 It should be noticed that as mentioned
in [30], the nonsmooth Lyapunov functions such as
V (t) = |e(t)| and V (t) = |s(t)| are usual to show
the finite-time stability of a system.

Remark 6 It is noted that due to the existence of chaos
in real world systems and many useful applications
in engineering, synchronization and stabilization of
chaotic fractional/integer-order systems have attracted
significant interests in the recent years [33–48].

5 Numerical simulations

In this section, two illustrative examples are presented
to illustrate the effectiveness and applicability of the
proposed fractional sliding mode scheme and to verify
the theoretical results of the paper. Numerical simu-
lations are performed using MATLAB software. The
numerical approach described in the following subsec-
tion with a step time of 0.001 is applied to solve the
fractional-order equations.

5.1 Numerical method for solving fractional
differential equations

Diethelm et al. [49] have proposed a reliable approx-
imate numerical technique for numerical solving of
fractional-order differential equations, which is a gen-
eralization of the Adams–Bashforth–Moulton algo-
rithm for ordinary differential equations. This method
works on the basis of a predictor–corrector scheme
using the Caputo definition of the fractional-order
differential equations. The main procedure of this
approach is as follows.

Consider the following fractional-order differential
equation.
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Dα y(t) = f (y, t), 0 ≤ t ≤ T

y(k)(0) = y(k)
0 , k = 0, 1, . . . ,m − 1(m = 
α�) (57)

which is equivalent to the following Volterra integral
equation.

y(t)=
m−1∑
k=0

y(k)
0

tk

k! +
1

�(α)

t∫

0

(t − s)α−1 f (y(s), s)d

(58)

Setting h = T
N , tn = nh, n = 0, 1, 2, . . . , N , the above

equation becomes

yh(tn+1) =
m−1∑
k=0

ck
tkn+1

k! + hα

�(α + 2)
f (y ph (tn+1), tn+1)

+ hα

�(α + 2)

n∑
j=0

a j,n+1 f (yh(t j ), t j ) (59)

where

a j,n+1=

⎧⎪⎪⎨
⎪⎪⎩

nα+1−(n−α)(n+1)α if j =0
(n− j+2)α+1+(n− j)α+1

−2(n− j−1)α+1 if1 ≤ j ≤ n
1 if j =n+1

y ph (tn+1)=
m−1∑
k=0

ck
tkn+1

k! + 1

�(α)

n∑
j=0

b j,n+1 f (yh(t j ), t j )

b j,n+1= hα

α

(
(n+1− j)α−(n− j)α

)
(60)

The estimation error of this technique is

e=max
∣∣y(t j )−yh(t j )

∣∣=O(h p), j =1, 2, . . . , N ,

(61)

where p = min(2, 1 + α).

5.2 Example 1: Synchronization of fractional-order
Duffing–Holmes and Van der Pol systems

This example illustrates the effectiveness of the pro-
posed fractional terminal sliding mode controller in
solving the problem of chaos synchronization between
two different fractional-order chaotic systems. Con-
sider the following fractional-order uncertain Duffing–
Holmes system [24] as the slave system and the
fractional-order uncertain Van der Pol system [50] as
the master system.

Duffing–Holmes system:

⎧⎪⎪⎨
⎪⎪⎩

Dαx1= x2
Dαx2= x1−0.25x2−x31
+ 0.3 cos(t)+� f (X)

+ dx (t)+u(t)

(62)

Van der Pol system:

⎧⎪⎪⎨
⎪⎪⎩

Dα y1= y2
Dα y2=−y1−

(
1−y21

)
(
1.2−3y21

)
y2+sin(0.4t)

+�g(Y )+dy(t)

(63)

The uncertainty terms of the drive and response sys-
tems are selected as follows:

� f (X) + dx (t) = 0.15 cos(3t)x2 − 0.1 sin(t) (64)

�g(Y ) + dy(t) = 0.1 sin(2t)y2 + 0.15 cos(5t) (65)

Initial conditions of the slave and master systems are
selected as x1(0) = 0.2, x2(0) = −0.2 and y1(0) =
−0.1, y2(0) = 0.3, respectively. The control parame-
ters for the controller (38) are chosen as k1 = k2 =
1, ρ = δ = 0.9, ζ1 = ζ2 = 2, and γ1 = γ2 = 0.75.
The fractional-order α is also set to 0.9 to ensure the
existence of chaos for the Duffing–Holmes and Van der
Pol systems [24,50].

We use Eq. (16) and design the following sliding
surface.

s(t) = e2 + D−0.1
(
e1 + sign(e1)|e1|0.9

)
(66)

Subsequently, according to Eq. (33), the proper control
input is designed as follows:

u(t) = − y1 − (1−y21 )(1.2−3y21 )y2 + sin(0.4t) − x1

+ 0.25x2 + x31−0.3 cos(t) + 1.5D−0.1sign(s)

+ D0.8
(
e1 + sign(e1)|e1|0.9

)

+ D−0.1
(
2s + 2|s|0.9sign(s)

)
(67)

The synchronization errors between the fractional-
order uncertain Duffing–Holmes system and Van der
Pol system are shown in Fig. 1. It can be seen that the
synchronization errors converge to zero, which indi-
cates that the fractional-orderDuffing–Holmes andVan
der Pol systems are indeed synchronized, as illustrated
in Figs. 2 and 3. The time response of the sliding sur-
face (66) is plotted in Fig. 4. It is clear that the sliding
surface converges to zero in finite time. The time his-
tory of the applied control input (67) is depicted in
Fig. 5. Obviously, the control input is feasible in prac-
tical applications.
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Fig. 1 State trajectories of
the synchronization error
system
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Fig. 2 State trajectories of
the master and slave
systems (x1 − y1)
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5.3 Example 2: chaos control of fractional-order
nonautonomous gyro

The usefulness and applicability of the proposed
method are validated in this example via chaos control
of a fractional-order gyro. The mathematical equations
of an uncertain fractional-order gyro with control input
are represented as follows [26]:

Gyro system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαx1 = x2

Dαx2 = −100(1−cos x1)2

sin3 x1

−0.5x2 − 0.05x32 + sin x1

+35.5 sin 25t sin x1
+� f (X) + dx (t) + u(t)

(68)
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Fig. 3 State trajectories of
the master and slave
systems (x2 − y2)
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Fig. 4 Time response of the
applied sliding surface for
the synchronization error
system
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where x1 denotes the rotation angle, x2 represents
the rotation angle velocity, and � f (X) + dx (t) =
0.1 cos(2t)x2 − 0.15 sin(t). For α = 0.97, the max-
imal Lyapunov exponent of this system is equal to
λmax = 0.2703, which indicates that the fractional-
order gyro system possesses chaotic behavior.

In order to suppress the chaotic behavior of the
fractional-order gyro (68), we apply the proposed slid-

ing mode controller (49) with k1 = k2 = 2, ξ1 = ξ1 =
0.5, μ = ρ = 0.9, σ1 = 0.45, and σ2 = 0.5. Initial
conditions of the gyro system are selected as x1(0) = 1
and x2(0) = −1.

Based on Theorem 4, the following terminal sliding
surface is applied.

s(t) = x2 + D−0.03
(
2x1 + 2sign(x1)|x1|0.9

)
(69)
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Fig. 5 Time history of the
applied control input for the
synchronization error
system
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Fig. 6 State trajectories of
the controlled fractional
gyro system
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Accordingly, usingEq. (49), the following control input
is designed.

u(t) = −
(
−100 (1−cos x1)2

sin3 x1
−0.5x2−0.05x32+sin x1

+ 35.5 sin 25t sin x1+0.95D−0.03sign(s)

+ D0.94 (
2x1+2sign(x1)|x1|0.9

)
+ D−0.03 (

0.5s+0.5|s|0.9sign(s))) (70)

Figure 6 shows the state trajectories of the controlled
fractional-order gyro system (68). It is seen that the
chaotic behavior of the system is suppressed and, there-
fore, there is no strange attractor anymore. The time
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Fig. 7 Time response of the
applied sliding surface for
controlling the fractional
gyro system
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Fig. 8 Time history of the
applied control input for
controlling the fractional
gyro system

0 1 2 3 4 5
-10

-5

0

5

10

15

20

25

30

t (s)

u(
t)

u(t)

response of the sliding surface (69) is revealed in Fig. 7.
One can see that the sliding surface approaches to the
origin over a finite time. Moreover, the time history of
the applied control input (70) is plotted in Fig. 8. It is
seen that the control input is practical.

6 Conclusions

This paper concerns the problem of stabilization/sync-
hronization of second-order uncertain nonautonomous
fractional chaotic systems.Weproposed anewfractional
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terminal sliding surface which has the finite-time sta-
bility characteristics. Then, based on the sliding mode
control theory and fractional Lyapunov stability the-
ory, a robust switching sliding mode control law is
designed to ensure the occurrence of the slidingmotion
in a finite time. Simulation results show that the pro-
posed controller can effectively synchronize two differ-
ent uncertain fractional second-order chaotic systems.
Moreover, an illustrative example illustrates the effec-
tiveness of the proposed scheme in chaos control of an
uncertain fractional gyro system. The main advantages
of the proposed fractional sliding mode are as follows:
(1) It is robust against system uncertainties and external
disturbances; (2) It guarantees that the closed-loop sys-
tem is stable in a given finite time rather than merely
asymptotic stability; and (3) It has only one control
input. Therefore, it is simple and easy to implement.
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