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Abstract This paper is concerned with global expo-
nential synchronization problem for a class of switched
delay networks with interval parameters uncertainty,
different from the most existing results, without con-
structing complex Lyapunov–Krasovskii functions; ω-
matrix measure method is firstly introduced to switched
interval networks, combining Halanay inequality tech-
nique, designing proper intermittent and non-intermitt-
ent control strategy; some easy-to-verify synchroniza-
tion criteria are given to ensure the global exponential
synchronization of switched interval networks under
arbitrary switching rule and for admissible interval
uncertainties. Moreover, as an application, the pro-
posed scheme can be applied to chaotic neural net-
works. Finally, numerical simulations are provided to
illustrate the effectiveness of the theoretical results and
show the obtained results via employingω-measure are
superior to previous results by using 1-measure.
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1 Introduction

Many systems encountered in practice involve a jump
between many continuous or discrete dynamics sys-
tems, which be called switched system [1–3]. As a spe-
cial class of hybrid system, it consists of a finite number
of modes, which may jump from one to another accord-
ing to a switching rule, has become a popular subject,
since it is successfully applied to many real life, e.g., a
valve or a power switch opening and closing, a thermo-
stat turning the heat on and off, and a server switching
between buffers in a queueing network. At the same
time, it has been widely studied to many fields such
as air traffic control, robotics, automotive industry, air-
craft, and power systems. Therefore, the stability and
synchronization problem of switched networks [4] with
control or without control have gained scholars’ atten-
tions. The recent paper [5] considered mode-dependent
impulsive effects to coupled switched neural networks,
the impulsive effects can exist not only at the instants
coinciding with the system switching but also at the
instants when there is no system switching. On the
other hand, due to finite switching speed of amplifies
and communication speed between the neurons, time
delays often exist in the electronic implementations of
neural networks, which may lead to exhibit oscillation
or other unstable behaviors. Taking factors of modeling
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error, external perturbation, and parameter fluctuation
into consideration, robust stability analysis of neural
networks with time delay has been widely studied [6].
However, there are mainly two forms of uncertainties:
interval uncertainty and norm-bounded uncertainty. Up
to now, the dynamical behavior of switched interval
coupled networks with time-varying delay has a few
results, despite its practical importance. Hence, it is of
great importance to study synchronization of switched
delay networks with interval parameters uncertainty.

Generally speaking, large scale networks cannot
synchronize by itself, to reach the synchronization,
Heagy et al. [7] proposed the drive-response concept to
reach the synchronization of coupled chaotic systems,
synchronization control problem of complex networks
attracts more and more researchers’ attentions. So far,
kinds of effective control approaches and techniques
have been proposed for synchronization of complex
systems including linear feedback control [8], switch-
ing control [9], impulsive control [10], Pinning control
[11,12], intermittent control [13–16], and others. As
a special discontinuous feedback control, intermittent
control is activated during some intervals and does not
work over the other intervals, it can reduce the control
time and control cost and has been extensively used in
engineering control. In [15], by using Lyapunov sta-
bility theory and intermittent control technique, the
intermittent controllers and corresponding parameter
updating rules were designed to obtain lag synchro-
nization of coupled systems with parameter mismatch,
and then the error bound of lag synchronization was
estimated in accordance with the parameter mismatch.
Moreover, the error level can be smaller than existing
results. Authors studied the exponential stochastic syn-
chronization problem for coupled neural networks with
stochastic noise perturbations. Based on Lyapunov sta-
bility theory, inequality techniques, the properties of
Weiner process, and added different intermittent con-
trollers, several sufficient conditions were obtained to
ensure exponential stochastic synchronization of cou-
pled neural networks with or without coupling delays
under stochastic perturbations. Moreover, the results
of this letter were applicable to both directed and
undirected weighted networks [16]. A brief review on
previous resulting reveals that what these approaches
focused on the synchronization or stability of switched
neural networks under arbitrary switching rule by using
common Lyapunov function method. As we all know,
Lyapunov function method requires all the subsystems

of the switched system to share a positive definite
common Lyapunov function, this requirement is dif-
ficult to achieve. These motivate us to develop some
procedures to solve the synchronization problem for
switched systems.

Matrix measure approach has been proposed to
deal with synchronization problem for neural net-
works [17–20], without constructing Lyapunov func-
tion, it is an effective method to obtain synchroniza-
tion criteria for switched systems. In [18], authors
investigated matrix measure μ∞ to study exponen-
tial synchronization of chaotic neural networks, nei-
ther symmetry nor negative (positive) definiteness of
the coupling matrix was required, the proposed suffi-
cient conditions for exponential synchronization were
easy to verify.

Motivated by the preceding discussion, the main
purpose is to study the global exponential drive-
response synchronization problem for a class of switc-
hed interval delay networks with intermittent and feed-
back control, different to 1-measure, we will first intro-
duce theω-measure [21] to switched interval networks,
combining Halanay inequality technique, designing the
coupling control gain matrix, several synchronization
criteria are presented for switched interval networks
under the arbitrary switching rule, which are easy
to verify in practice. Furthermore, simulations show
switched systems can be reached to synchronization
when all subsystems are chaotic neural networks [22].
The main contributions of this paper can be highlighted
as follows: (1) consider the interval parameters fluc-
tuation, a new mathematical model of the switched
coupled networks with parameters in interval is estab-
lished, which presents more practical significance of
our current research. (2) Firstly introduce ω-measure
to switched system, proposed results are easy to verify
and generalize the previous results. (3) The obtained
criteria can be applied to chaotic system. (4) More-
over, the switched interval networks change as interval
networks when N = 1, the synchronization criteria for
interval networks can be seen as a special case of our
main results.

The rest of this paper is organized as follows. In
Sect. 2, the model description and preliminaries are
given. Section 3 treats of global exponential synchro-
nization problems for switched interval networks with
intermittent control. In Sect. 4, synchronization criteria
for switched interval networks with feedback control
are developed. Two examples are given to demonstrate
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Intermittent control on switched networks 1365

the validity of the proposed results in Sect. 5. Some
conclusions are drawn in Sect. 6.

Notations: Throughout this paper, for any matrix A,
A > 0 ((A < 0)) means that A is positive definite ( neg-
ative definite), AT denotes the transpose of A. λmax(A)
andλmin(A) denote the maximum and minimum eigen-
value of A, respectively. E is the identity matrix. The
norm of piecewise right continuous function η(t) is
denoted by‖η‖τ = supt0−τ≤s≤t0 ‖η(t+s)‖ω. Matrices,
if their dimensions not explicitly stated, are assumed to
have compatible dimensions for algebraic operations.

2 Model description and preliminaries

Consider a general class of interval networks with dis-
crete time-varying delay described by the following

⎧
⎪⎨

⎪⎩

ẋ(t) = −Ax(t)+ B1g1(x(t))+ B2g2(x(t

−τ(t)))+ J,

A ∈ Al , Bk ∈ B(k)l , k = 1, 2,

(1)

where x(t) = (x1(t), . . . , xn(t))T ∈ Rn is the vector
of neuron states; gi (x) = (gi1(x1), . . . , gin(xn))

T :
Rn → Rn, i = 1, 2 are the vector-valued neuron
activation functions; τ(t) is the transmission time-
varying delay; J = (J1, . . . , Jn)

T is a constant
external input vector. A = diag(a1, . . . , an) is an
n × n constant diagonal matrices, ai > 0, i =
1, . . . , n, are the neural self-inhibitions; Bk = (b(k)i j ) ∈
Rn×n, k = 1, 2, are the connection weight matri-
ces, and Al = [A, A] = {A = diag(ai ) : 0 <

ai ≤ ai ≤ ai , i = 1, 2, . . . , n}, B(k)l = [
Bk, Bk

] =
{

Bk = (
b(k)i j

) : b(k)i j ≤ b(k)i j ≤ b
(k)
i j , i, j = 1, 2,

. . . , n
}

with A = diag(a1, a2, . . . , an), A = diag(a1,

a2, . . . , an), Bk = (
b(k)i j

)

n×n, Bk = (
b
(k)
i j

)

n×n .
Throughout this paper, the following assumptions

are made on gi (·), i = 1, 2 and τ(t):
(H1): For any two different s, t ∈ R, there exist

constants li j > 0, i = 1, 2, j = 1, 2, . . . , n, such that

|gi j (s)− gi j (t)| ≤ li j |s − t |, i = 1, 2, j = 1, . . . , n

(H2): Time-varying delay τ(t) satisfies

0 ≤ τ(t) ≤ τ,

where τ is a positive constant.

To reach synchronization of system (1) by periodi-
cally intermittent control, the response (slave) system
can be designed as

⎧
⎪⎨

⎪⎩

ẏ(t) = −Ay(t)+ B1g1(y(t))

+B2g2(y(t − τ(t)))+ J + U (t),

A ∈ Al , Bk ∈ B(k)l , k = 1, 2,

(2)

where y(t) = (y1(t), . . . , yn(t))T is the neuron state
of response system. We choose intermittent strategy as
follows:

U (t) =
{

K (y(t)− x(t)), lT ≤ t ≤ lT + δ;
0, lT + δ ≤ t ≤ (l + 1)T,

where matrix K ∈ Rn×n is the constant intermittent
control gain to be designed, T > 0, δ > 0 are the
control period and the control width, respectively, and
l = 0, 1 , 2 . . ..

Let error state e(t) = y(t)−x(t), then error dynam-
ical system between the states of drive system (1) and
response system (2) can be derived:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ė(t) = −Ae(t)+ B1 f1(e(t))+ B2 f2(e(t − τ(t)))

+K e(t), lT ≤ t ≤ lT + δ,

ė(t) = −Ae(t)+ B1 f1(e(t))+ B2 f2(e(t − τ(t))),

lT + δ ≤ t ≤ (l + 1)T,

A ∈ Al , Bk ∈ B(k)l , k = 1, 2,

(3)

where e(t) = (e1(t), . . . , en(t))T , f1(e(t)) = g1(e(t)
+ x(t))−g1(x(t)), f2(e(t −τ(t))) = g2(e(t −τ(t))+
x(t − τ(t)))− g2(x(t − τ(t))).

Based on some transformations [23], the interval
error system (3) can be equivalently written as

ė(t) = −[A0 + E A�A FA]e(t)+ [B10 + E1�1 F1]
× f1(e(t))+ [B20 + E2�2 F2] f2(e(t − τ(t)))

+ K e(t), lT ≤ t ≤ lT + δ,

ė(t) = −[A0 + E A�A FA]e(t)+ [B10 + E1�1

F1] f1(e(t))+ [B20 + E2�2 F2] f2(e(t − τ(t))),

lT + δ ≤ t ≤ (l + 1)T,
(4)

where �A ∈ �, �k ∈ �, k = 1, 2.

� = {diag[δ11, . . . , δ1n, . . . , δn1, . . . ,
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δnn] ∈ Rn2×n2 : |δi j | ≤ 1, i, j = 1, 2, . . . , n}.
A0 = A + A

2
, HA = [αi j ]n×n = A − A

2
.

Bk0 = Bk + Bk

2
, H (k)

B = [βi j ]n×n = Bk − Bk

2
.

E A =
[√
α11e1, . . . ,

√
α1ne1, . . . ,

√
αn1en, . . . ,

√
αnnen

]

n×n2
,

FA =
[√
α11e1, . . . ,

√
α1nen, . . . ,

√
αn1e1, . . . ,

√
αnnen

]T

n2×n
,

Ek =
[√

β
(k)
11 e1, . . . ,

√

β
(k)
1n e1, . . . ,

√

β
(k)
n1 en, . . . ,

√

β
(k)
nn en

]

n×n2
,

Fk =
[√

β
(k)
11 e1, . . . ,

√

β
(k)
1n en, . . . ,

√

β
(k)
n1 e1, . . . ,

√

β
(k)
nn en

]T

n2×n
,

where ei ∈ Rn denotes the column vector with i th
element to be 1 and others to be 0.

System (4) has an equivalent form by the following

ė(t) = − A0e(t)+ B10 f1(e(t))+ B20 f2

(e(t − τ(t)))+ E
(t)+ K e(t),

lT ≤ t ≤ lT + δ,

ė(t) = − A0e(t)+ B10 f1(e(t))

+ B20 f2(e(t − τ(t)))+ E
(t),

lT + δ ≤ t ≤ (l + 1)T,

(5)

where E = [E A, E1, E2],


(t) =
⎡

⎣
−�A FAe(t)
�1 F1 f1(e(t))

�2 F2 f2(e(t − τ(t)))

⎤

⎦

= diag{�A, �1, �2}
⎡

⎣
−FAe(t)

F1 f1(e(t))
F2 f2(e(t − τ(t)))

⎤

⎦ ,

and 
(t) satisfies the following matrix quadratic
inequality:


T (t)
(t) ≤
⎡

⎣
e(t)

f1(e(t))
f2(e(t − τ(t)))

⎤

⎦

T
⎡

⎢
⎣

FT
A

FT
1

FT
2

⎤

⎥
⎦

⎡

⎢
⎣

FT
A

FT
1

FT
2

⎤

⎥
⎦

T ⎡

⎣
e(t)

f1(e(t))
f2(e(t − τ(t)))

⎤

⎦ . (6)

The switched interval networks with time-varying
delay consist of a set of interval networks with discrete
time-varying delay and a switching rule [24]. Each of
the interval networks regarded as an individual sub-
system. The operation mode of the switched networks
is determined by the switching signal. According to
(1), the switched interval networks with discrete time-
varying delay can be represented as follows:

⎧
⎪⎨

⎪⎩

ẋ(t) = −Aσ(t)x(t)+ B1σ(t)g1(x(t))

+B2σ(t)g2(x(t − τ(t)))+ J,

Aσ(t) ∈ Alσ(t) , Bkσ(t) ∈ B(k)lσ(t)
, k = 1, 2,

(7)

where Alσ(t) = [Aσ(t), Aσ(t)] = {Aσ(t) = diag(aiσ(t) ) :
0 < aiσ(t) ≤ aiσ(t) ≤ aiσ(t) , i = 1, 2, . . . , n}, B(k)lσ(t)

=
[

Bkσ(t) , Bkσ(t)

]
= {Bkσ(t) = [b(k)i jσ(t)

] : 0 < b(k)i jσ(t)
≤

b(k)i jσ(t)
≤ b

(k)
i jσ(t) , i, j = 1, 2, . . . , n} with

Aσ(t) = diag(a1σ(t) , a2σ(t) , . . . , anσ(t) ),

Aσ(t) = diag(a1σ(t) , a2σ(t) , . . . , anσ(t) ),

Bkσ(t) = [b(k)i jσ(t)
]n×n, Bkσ(t) = [b(k)i jσ(t)]n×n .

A0σ(t) = Aσ(t) + Aσ(t)
2

, HAσ(t) = [αi jσ(t)]n×n

= Aσ(t) − Aσ(t)
2

.

Bk0σ(t) = Bkσ(t) + Bkσ(t)

2
, H (k)

Bσ(t)

= [βi jσ(t)]n×n = Bkσ(t) − Bkσ(t)

2
.

E Aσ(t) = [√
α11σ(t)e1, . . . ,

√
α1nσ(t)e1, . . . ,

√
αn1σ(t)en, . . . ,

√
αnnσ(t)en

]

n×n2 .

FAσ(t) = [√
α11σ(t)e1, . . . ,

√
α1nσ(t)en, . . . ,

√
αn1σ(t)e1, . . . ,

√
αnnσ(t)en

]T
n2×n .Ekσ(t)

=
[√

β
(k)
11σ(t)

e1, . . . ,
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√

β
(k)
1nσ(t)

e1, . . . ,

√

β
(k)
n1σ(t)

en, . . . ,

√

β
(k)
nnσ(t)en

]

n×n2
.

Fkσ(t) =
[√

β
(k)
11σ(t)

e1, . . . ,

√

β
(k)
1nσ(t)

en, . . . ,

√

β
(k)
n1σ(t)

e1, . . . ,

√

β
(k)
nnσ(t)en

]T

n2×n
.

σ (t) : [0,+∞) → � = {1, 2, . . . , N } is the
switching signal, which is a piecewise constant func-
tion of time. For any i ∈ {1, 2, . . . , N }, Ai =
A0i + E Ai�Ai FAi , Bki = Bk0i + Eki�ki Fki , and
�Ai ∈ �, �ki ∈ �, k = 1, 2. This means
that the matrices (Aσ(t), B1σ(t) , B2σ(t) ) are allowed to
take values, at an arbitrary time, in the finite set
{(A1, B11 , B21), (A2, B12 , B22), . . . , (AN , B1N , B2N )}.
In this paper, it is assumed that the switching rule σ is
not known a priori and its instantaneous value is avail-
able in real time.

Analogously, slave (response) system [25] of
switched interval networks should be defined as

⎧
⎪⎨

⎪⎩

ẏ(t) = −Aσ(t)y(t)+ B1σ(t)g1(y(t))

+ B2σ(t)g2(y(t − τ(t)))+ J + U (t),

Aσ(t) ∈ Alσ(t) , Bkσ(t) ∈ B(k)lσ(t)
, k = 1, 2,

(8)

From Eq. (5), we have the switched interval drive-
response error dynamical system as follows:

ė(t) = − A0σ(t)e(t)+ B10σ(t) f1(e(t))

+ B20σ(t) f2(e(t − τ(t)))+ Eσ(t)
σ(t)(t)

+ Kσ(t)e(t), lT ≤ t ≤ lT + δ,

ė(t) = − A0σ(t)e(t)+ B10σ(t) f1(e(t))

+ B20σ(t) f2(e(t − τ(t)))+ Eσ(t)
σ(t)(t),

lT + δ ≤ t ≤ (l + 1)T,

(9)

where Eσ (t) = [E Aσ (t), E1σ (t), E2σ (t)], and
σ (t) sat-
isfies the following quadratic inequality:


T
σ (t)
σ (t)

≤
⎡

⎣
e(t)

f1(e(t))
f2(e(t − τ(t)))

⎤

⎦

T
⎡

⎢
⎣

FT
Aσ (t)

FT
1σ (t)

FT
2σ (t)

⎤

⎥
⎦

⎡

⎢
⎣

FT
Aσ (t)

FT
1σ (t)

FT
2σ (t)

⎤

⎥
⎦

T

×
⎡

⎣
e(t)

f1(e(t))
f2(e(t − τ(t)))

⎤

⎦ . (10)

Define the indicator function ξ(t) = [ξ1(t), ξ2(t), . . . ,
ξN (t)]T , where

ξi (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, when the switched system is described

by the i th mode

A0i , Bk0i , k = 1, 2, Ei , Ki

0, otherwise.

where i = 1, 2, . . . , N . Therefore, the switched inter-
val error system (9) can also be represented as

ė(t) =
N∑

i=1

ξi (t){−A0i e(t)+ B10i f1(e(t))

+B20i f2(e(t − τ(t)))

+Ei
i (t)+ Ki e(t)}, lT ≤ t ≤ lT + δ,

ė(t) =
N∑

i=1

ξi (t){−A0i e(t)+ B10i f1(e(t))

+ B20i f2(e(t − τ(t)))

+ Ei
i (t)}, lT + δ ≤ t ≤ (l + 1)T, (11)

where
∑N

i=1 ξi (t) = 1 is satisfied under any switching
rules, and the initial value associated with the switched
interval error network is assumed to be e(s) = ϕ(s),
ϕ(s) ∈ C([t0 − τ, t0]; Rn).

To obtain the main results of this paper, the following
definitions and lemmas are introduced.

Definition 1 For the switched error-state system (11)
is said to be globally exponentially stable if there exist
positive scalars α > 0 and β > 0 such that

‖e(t)‖ω ≤ α‖ϕ‖−β(t−t0)
τ , t ≥ t0.

Definition 2 ([21]) The matrix ω−measure of a real
square matrix W = (wi j )n×n is denoted as follows:

μω(W ) = lim
ε−→0+

‖En + εW‖ω − 1

ε
,

where ‖W‖ω = max j
∑n

i=1
ωi
ω j

|wi j | is induced ω−
norm of matrix W , and the corresponding ω−measure
is

μω(W ) = max
j

⎧
⎨

⎩
w j j +

n∑

i=1,i 	= j

ωi

ω j
|wi j |

⎫
⎬

⎭
.
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Remark 1 It should be noted that several results have
been given by using matrix measure with μ1(W )

(μ1(W ) = max j {w j j + ∑n
i=1,i 	= j |wi j |}). However,

there is few result in ω−measure, and μ1(W ) can be a
special case of our results, sinceμω(W ) is degenerated
as μ1(W ) when ωi = const (1, 2, . . . , n).

Lemma 1 The matrix measureμω(·) has the following
basic properties:
(i) −‖A‖ω ≤ μω(A) ≤ ‖A‖ω, ∀A ∈ Rn×n;

(i i) μω(αA) = αμω(A), ∀α > 0, A ∈ Rn×n;

(i i i) μω(A+ B) ≤ μω(A)+μω(B), ∀A, B ∈ Rn×n .

Lemma 2 (Halanay inequality [26]) Let s(t) : [t0 −
τ,∞) → [0,∞) be a continuous function, and for all
t ≥ t0, we have

D+s(t) ≤ −as(t)+ b sup
t−τ≤θ≤t

s(θ),

If a > b > 0, then

s(t) ≤ sup
t0−τ≤θ≤t0

s(θ)e−λ(t−t0), t ≥ t0,

where λ > 0 is the unique positive solution of the equa-
tion λ− a + beλτ = 0.

Lemma 3 Let s(t) : [t0 − τ,∞) → [0,∞) be a con-
tinuous function, and for all t ≥ t0, we have

D+s(t) ≤ as(t)+ b sup
t−τ≤θ≤t

s(θ),

If a > 0, b > 0, then

s(t) ≤ sup
t−τ≤θ≤t

s(θ) ≤ sup
t0−τ≤θ≤t0

s(θ)e(a+b)(t−t0),

t ≥ t0.

3 Synchronization criteria for switched interval
networks with intermittent control

In this section, we will consider the global exponential
synchronization of switched interval networks (7) by
using intermittent control technique, without construct-
ing Lyapunov-Krasovskii functional, by using matrix
measure and Halanay inequality, designing suitable
intermittent control gain matrix Ki , global exponential

stability criteria for switched interval drive-response
error system (11) under any arbitrary switched rule are
derived , that is to say, the switched interval networks
(7) synchronize with the response system (8).

Theorem 1 Under Assumptions (H1) and (H2), and
suppose τ ≤ δ, T − τ ≥ δ, the switched interval net-
works (7) will globally exponentially synchronize with
the response system (8) under arbitrary switched rule,
if intermittent control gain matrices Ki satisfy

(a)− μω(−A0i + Ki )

−l‖B10i ‖ω − l‖Ei‖ω‖FAi ‖ω − l‖Ei‖ω‖F1i ‖ω
≥ l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω > 0

(b)− μω(−A0i )+ l‖B10i ‖ω
+ l‖Ei‖ω‖FAi ‖ω + l‖Ei‖ω‖F1i ‖ω > 0

(c)ρ = r1(δ − τ)− r2(T − δ) > 0 (12)

where i = 1, 2, . . . N, l = max
1≤ j≤n

{lk j }, k = 1, 2.

Proof Calculating the time derivative of ‖e(t)‖ω along
the solution of the system (11), it can follow that when
lT ≤ t ≤ lT + δ, l = 0, 1, . . .,

lim
h→0+

‖e(t + h)‖ω − ‖e(t)‖ω
h

= lim
h→0+

‖e(t)+ hė(t)+ o(h)‖ω − ‖e(t)‖ω
h

= lim
h→0+

1

h

{

‖e(t)+ h

(
N∑

i=1

ξi (t)[−A0i e(t)

+ B10i f1(e(t))+ B20i f2(e(t − τ(t)))

+ Ei
i (t)+ Ki e(t)]
)

+ o(h)‖ω − ‖e(t)‖ω
}

≤ lim
h→0+

N∑

i=1

ξi (t)

{‖I + h(−A0i + Ki )‖ω − 1

h

‖e(t)‖ω + ‖B10i ‖ω‖ f1(e(t))‖ω
+‖B20i ‖ω‖ f2(e(t − τ(t)))‖ω
+‖Ei‖ω‖
i (t)‖ω

}

(13)

Using Assumption (H1), we have

‖ f1(e(t))‖ω ≤ l‖e(t)‖ω,
‖ f2(e(t − τ(t)))‖ω ≤ l‖e(t − τ(t)))‖ω
‖
i (t)‖ω ≤ ‖FAi ‖ω‖e(t)‖ω

+‖F1i ‖ω‖ f1(e(t))‖ω + ‖F2i ‖ω‖ f2(e(t − τ(t)))‖ω
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≤ ‖FAi ‖ω‖e(t)‖ω + l‖F1i ‖ω‖e(t)‖ω
+ l‖F2i ‖ω‖e(t − τ(t))‖ω (14)

In the light of (13)–(14), for any i = 1, 2, . . . , N , we
obtain that

lim
h→0+

‖e(t + h)‖ω − ‖e(t)‖ω
h

≤ lim
h→0+

N∑

i=1

ξi (t)

{‖I + h(−A0i + Ki )‖ω − 1

h

‖e(t)‖ω + ‖B10i ‖ω‖ f1(e(t))‖ω
+‖B20i ‖ω‖ f2(e(t − τ(t)))‖ω + ‖Ei‖ω‖
i (t)‖ω

}

≤
N∑

i=1

ξi (t){μω(−A0i + Ki )‖e(t)‖ω

+ l‖B10i ‖ω‖e(t)‖ω + l‖B20i ‖ω‖e(t − τ(t)))‖ω
+ ‖Ei‖ω‖FAi ‖ω‖e(t)‖ω + l‖Ei‖ω‖F1i ‖ω‖e(t)‖ω
+ l‖Ei‖ω‖F2i ‖ω‖e(t − τ(t))‖ω}

≤
N∑

i=1

ξi (t){(μω(−A0i + Ki )

+ l‖B10i ‖ω + ‖Ei‖ω‖FAi ‖ω
+ l‖Ei‖ω‖F1i ‖ω)‖e(t)‖ω
+ (l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω)‖e(t − τ(t))‖ω}

≤ (μω(−A0i + Ki )+ l‖B10i ‖ω + ‖Ei‖ω‖FAi ‖ω
+ l‖Ei‖ω‖F1i ‖ω)‖e(t)‖ω
+ (l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω)‖e(t − τ(t))‖ω

According to definition of upper-right Dini derivative,
we yield

D+‖e(t)‖ω ≤ (μω(−A0i + Ki )+ l‖B10i ‖ω
+‖Ei‖ω‖FAi ‖ω + l‖Ei‖ω‖F1i ‖ω)‖e(t)‖ω
+(l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω) sup

t−τ≤s≤t
‖e(s)‖ω

Let a = −μω(−A0i +Ki )−l‖B10i ‖ω−‖Ei‖ω‖FAi ‖ω
− l‖Ei‖ω‖F1i ‖ω and b = l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω
from condition (12) and Lemma 2.2, one can obtain

‖e(t)‖ω ≤ sup
lT −τ≤s≤lT

‖e(s)‖ωe−r1(t−lT ), (15)

where r1 > 0 is the unique positive solution of the
equation r1 − a + ber1τ = 0.

Similarly, when lT + δ ≤ t ≤ (l + 1)T, l = 0, 1, . . .,
we get

D+‖e(t)‖ω ≤ (μω(−A0i )+ l‖B10i ‖ω
+‖Ei‖ω‖FAi ‖ω + l‖Ei‖ω‖F1i ‖ω)‖e(t)‖ω
+(l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω) sup

t−τ≤s≤t
‖e(s)‖ω

Let a′ = μω(−A0i ) + l‖B10i ‖ω + ‖Ei‖ω‖FAi ‖ω +
l‖Ei‖ω‖F1i ‖ω from condition (12) and Lemma 2.3,
one has

‖e(t)‖ω ≤ sup
lT +δ−τ≤s≤lT +δ

‖e(s)‖ωe−r2(t−lT −δ), (16)

where r2 = a′ + b > 0.
In the following, we will estimate ‖e(t)‖ω by (15)

and (16),

‖e(t)‖ω ≤ ‖e(0)‖τ e−r1t 0 ≤ t ≤ δ,

For δ ≤ t ≤ T ,

‖e(t)‖ω ≤ ‖e(δ)‖τ er2(t−δ)

= sup
δ−τ≤t≤δ

‖e(t)‖ωer2(t−δ)

≤ ‖e(0)‖τ e−r1(δ−τ)er2(t−δ),

Since T − τ ≥ δ, then

‖e(ω)‖τ = sup
T −τ≤t≤T

‖e(t)‖ω
≤ sup

T −τ≤t≤T
{‖e(0)‖τ e−r1(δ−τ)er2(t−δ)}

= ‖e(0)‖τ e−r1(δ−τ)er2(T −δ)

= ‖e(0)‖τ e−ρ.

By mathematical induction, we can prove, for any pos-
itive integer l,

‖e(lT )‖τ ≤ ‖e(0)‖τ e−lρ, (17)

Suppose inequality (17) holds when l ≤ k. Now, we
prove (17) is true when l = k + 1.

Firstly, we have

‖e(kT )‖τ ≤ ‖e(0)‖τ e−kρ,

For kT ≤ t ≤ kT + δ,
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‖e(t)‖ω ≤ ‖e(kT )‖τ e−r1(t−kT )

≤ ‖e(0)‖τ e−kρe−r1(t−kT ), (18)

For kT + δ ≤ t ≤ (k + 1)T ,

‖e(t)‖ω ≤ ‖e(kT + δ)‖τ er2(t−kT −δ)

= sup
kT +δ−τ≤t≤kT +δ

‖e(t)‖ωer2(t−kT −δ)

≤ sup
kT +δ−τ≤t≤kT +δ

‖e(0)‖

τ e−kρe−r1(t−kT )er2(t−kT −δ)

≤ ‖e(0)‖τ e−kρe−r1(δ−τ)er2(t−kT −δ) (19)

Based on (18) and (19), it is easy to see when l = k +1,

‖e((k + 1)T )‖τ = sup
(k+1)T −τ≤t≤(k+1)T

‖e(t)‖ω
≤ sup
(k+1)T −τ≤t≤(k+1)T

{‖e(0)‖

τ e−kρe−r1(δ−τ)er2(t−kT −δ)}
= ‖e(0)‖τ e−kρe−r1(δ−τ)er2(T −δ)

= ‖e(0)‖τ e−(k+1)ρ (20)

Thus, it is clear that (17) holds for all positive integers l.
For any t > 0, there exists a constant n0 > 0, such

that n0T ≤ t ≤ (n0 + 1)T . From the above inequality,
we have the following:

‖e(t)‖ω ≤ ‖e(n0T )‖τ er2(t−n0T )

≤ ‖e(0)‖τ e−n0ρer2T

≤ ‖e(0)‖τ er2T +ρe− ρ
T t , (21)

From Definition 2.1, the error state e(t) converges
exponentially to zero, it implies that every trajectory
yi (t) of (8) will globally exponentially synchronize
with the xi (t) under arbitrary switched rule, this com-
pletes the proof.

4 Synchronization criteria for switched interval
networks with coupling feedback control

In this section, we will consider switched interval net-
works with coupling feedback control, when control
width δ equals the control period T , then the controller
is activated at any time, intermittent controller in (2)
is changed as coupling feedback controller U (t) =
K (y(t)− x(t)), ∀t ≥ 0, where K ∈ Rn×n is the feed-
back control gain matrix, therefore, switched interval
error system (11) changed as

ė(t) =
N∑

i=1

ξi (t){−A0i e(t)+ B10i f1(e(t))

+ B20i f2(e(t − τ(t)))

+ Ei
i (t)+ Ki e(t)}, (22)

where
∑N

i=1 ξi (t) = 1 is satisfied under any switching
rules, and the initial value associated with the switched
interval error network is assumed to be e(s) = ϕ(s),
ϕ(s) ∈ C([t0 − τ, t0]; Rn).

Theorem 2 Under the Assumptions (H1) and (H2),
the switched interval networks (7) will globally expo-
nentially synchronize with the response system (8) by
using coupling controller under arbitrary switched
rule, if coupling control gain matrix Ki satisfies

−μω(−A0i + Ki )− l‖B10i ‖ω
− l‖Ei‖ω‖FAi ‖ω − l‖Ei‖ω‖F1i ‖ω
≥ l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω > 0 (23)

where i = 1, 2, . . . N, l = max
1≤ j≤n

{lk j }, k = 1, 2.

Proof Calculating the time derivative of ‖e(t)‖ω along
the solution of the system (22), it can follow that

lim
h→0+

‖e(t + h)‖ω − ‖e(t)‖ω
h

= lim
h→0+

‖e(t)+ hė(t)+ o(h)‖ω − ‖e(t)‖ω
h

= lim
h→0+

1

h

{

‖e(t)+ h

(
N∑

i=1

ξi (t)[−A0i e(t)

+ B10i f1(e(t))+ B20i f2(e(t − τ(t)))

+ Ei
i (t)+ Ki e(t)]
)

+ o(h)‖ω − ‖e(t)‖ω
}

≤ lim
h→0+

N∑

i=1

ξi (t)

{‖I + h(−A0i + Ki )‖ω − 1

h

‖e(t)‖ω + ‖B10i ‖ω‖ f1(e(t))‖ω
+‖B20i ‖ω‖ f2(e(t − τ(t)))‖ω
+‖Ei‖ω‖
i (t)‖ω

}

(24)

Using Assumption (H1), we yield

‖ f1(e(t))‖ω ≤ l‖e(t)‖ω,
‖ f2(e(t − τ(t)))‖ω ≤ l‖e(t − τ(t)))‖ω
‖
i (t)‖ω ≤ ‖FAi ‖ω‖e(t)‖ω + ‖F1i ‖ω‖ f1(e(t))‖ω

+‖F2i ‖ω‖ f2(e(t − τ(t)))‖ω
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≤ ‖FAi ‖ω‖e(t)‖ω + l‖F1i ‖ω‖e(t)‖ω
+ l‖F2i ‖ω‖e(t − τ(t))‖ω (25)

In the light of (24)–(25), for any i = 1, 2, . . . , N , we
obtain

lim
h→0+

‖e(t + h)‖ω − ‖e(t)‖ω
h

≤ lim
h→0+

N∑

i=1

ξi (t)

{‖I + h(−A0i + Ki )‖ω − 1

h

‖e(t)‖ω + ‖B10i ‖ω‖ f1(e(t))‖ω
+‖B20i ‖ω‖ f2(e(t − τ(t)))‖ω
+‖Ei‖ω‖
i (t)‖ω

}

≤
N∑

i=1

ξi (t){μω(−A0i + Ki )‖e(t)‖ω
+l‖B10i ‖ω‖e(t)‖ω + l‖B20i ‖ω‖e(t − τ(t)))‖ω
+‖Ei‖ω‖FAi ‖ω‖e(t)‖ω + l‖Ei‖ω‖F1i ‖ω‖e(t)‖ω
+l‖Ei‖ω‖F2i ‖ω‖e(t − τ(t))‖ω}

≤
N∑

i=1

ξi (t){(μω(−A0i + Ki )+ l‖B10i ‖ω
+‖Ei‖ω‖FAi ‖ω + l‖Ei‖ω‖F1i ‖ω)‖e(t)‖ω
+(l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω)‖e(t − τ(t))‖ω}

≤ (μω(−A0i + Ki )+ l‖B10i ‖ω + ‖Ei‖ω‖FAi ‖ω
+ l‖Ei‖ω‖F1i ‖ω)‖e(t)‖ω
+ (l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω)‖e(t − τ(t))‖ω

(26)

According to Definition of upper-right Dini derivative,
we have

D+‖e(t)‖ω ≤ (μω(−A0i + Ki )+ l‖B10i ‖ω
+‖Ei‖ω‖FAi ‖ω + l‖Ei‖ω‖F1i ‖ω)‖e(t)‖ω
+ (l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω)

sup
t−τ≤s≤t

‖e(s)‖ω (27)

Let a = −μω(−A0i +Ki )−l‖B10i ‖ω−‖Ei‖ω‖FAi ‖ω
− l‖Ei‖ω‖F1i ‖ω and b = l‖B20i ‖ω + l‖Ei‖ω‖F2i ‖ω,
from condition (23) and Lemma 2.2, one can obtain

‖e(t)‖ω ≤ sup
t0−τ≤s≤t0

‖e(s)‖ωe−r1(t−t0), t ≥ t0

(28)

where r1 > 0 is the unique positive solution of the
equation r1 − a + ber1τ = 0.

Therefore, e(t) converges exponentially to zero with
a convergence rate of r1, this completes the proof of
theorem 2.

Remark 2 Without constructing complex Lyapunov
function, matrix measure method [27] is a very useful
tool to deal with the stability and synchronization prob-
lems of networks; the derived results by using matrix
measure and Halanay inequality are very easy to ver-
ify and more general, since matrix measure can have
positive values as well as negative values.

Remark 3 Most of existing results deal with synchro-
nization problem of complex networks via adopting
p-measure (p = 1, 2,∞), it is easy to see that ω-
measure is replaced by p-measure in proposed criteria
are always true, and 1-measure is a special case of ω-
measure, hence, synchronization criteria in this paper
are different from the previous criteria and improve the
existing results.

5 Numerical simulations

In this section, two examples are presented to illustrate
the effectiveness of our results obtained in Theorems 1
and 2. It is interesting that Example 2 shows that the
switched networks can be reached to synchronization
by using obtained synchronization criteria even when
each subsystem is chaotic neural networks.

Example 1 Consider the second-order switched inter-
val networks with discrete delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = −aiσ(t)xi (t)+∑2
j=1 b(1)i jσ(t)

g1 j (x j (t))

+∑2
j=1 b(2)i jσ(t)

g2 j (x j (t − τ(t))

aiσ(t) ∈ [aiσ(t) , aiσ(t)], b(k)i jσ(t)
∈ [b(k)i jσ(t)

, b
(k)
i jσ(t)],

k = 1, 2

xi (t) = ψi (t), t ∈ [−τ, 0], i, j = 1, 2.

σ (t) : [0,+∞) → � = {1, 2}, gi (x) = tanh(x), i =
1, 2, τ(t) = 1. Obviously, Assumptions H1 are satis-
fied with l = 1. The networks system parameters are
defined as

A1 =
(

0.99 −0.01
−0.01 0.99

)

, A1 =
(

1.01 0.01
0.01 1.01

)

,

B11 =
(−2.01 0.99

0.99 −1.51

)

,
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B11 =
(−1.99 1.01

1.01 −1.49

)

, B21 =
(−1.01 1.99

0.49 −1.01

)

,

B21 =
(−0.99 2.01

0.51 −0.99

)

,

A2 =
(

0.99 −0.01
−0.01 0.99

)

, A2 =
(

1.01 0.01
0.01 1.01

)

,

B12 =
(

0.99 2.99
−0.51 −2.51

)

,

B12 =
(

1.01 3.01
−0.49 −2.49

)

, B22 =
(−2.01 −4.04

0.99 2.99

)

,

B22 =
(−1.99 −3.99

1.01 3.01

)

,

We choose intermittent strategy as follows:

U (t) =
{

Ki (e(t)), lT ≤ t ≤ lT + δ;
0, lT + δ ≤ t ≤ (l + 1)T,

where the control period T = 3, control width δ = 1.8,
and intermittent feedback control gain matrices Ki (i =
1, 2) defined as the following:

K1 =
(−8 −1

0.5 −7

)

, K2 =
(−10 1

−0.5 −11

)

.

Let ω1 = 1, ω2 = 2, by calculating, we have
−μω(−A01 + K1) − l‖B101‖ω − l‖E1‖ω‖FA1‖ω −
l‖E1‖ω‖F11‖ω = 2.98≥ l‖B201‖ω+l‖E1‖ω‖F21‖ω=
2.01, −μω(−A02+K2)−l‖B102‖ω−l‖E2‖ω‖FA2‖ω−
l‖E2‖ω‖F12‖ω = 5.98 ≥ l‖B202‖ω + l‖E2‖ω‖F22‖ω
= 5.01, and all conditions in Theorem 1 hold; therefore,
switched interval system in this example synchronizes
exponentially toward with corresponding its response
system under any switching rules. However, in view of
1-measure, it is easy to see that −μ1(−A01 + K1) −
l‖B101‖1 − l‖E1‖1‖FA1‖1 − l‖E1‖1‖F11‖1 = 2.98 <
l‖B201‖1+l‖E1‖1‖F21‖1 = 3.01, −μ1(−A02 +K2)−
l‖B102‖1 − l‖E2‖1‖FA2‖1 − l‖E2‖1‖F12‖1 = 4.98 <
l‖B202‖1 + l‖E2‖1‖F22‖1 = 7.01; hence, ω-measure
is more general than 1-measure, the proposed results
are less restrictive.

For numerical simulations, let A1 = A1, B11 =
B11, B21 = B21, and A2 = A2, B12 = B12, B22 =
B22. Assume that the two subsystems are switched
every one second, and the switching rule is shown in
Fig. 1. Figure 2 shows the state trajectories of e1(t)
and e2(t) from random constant initial states in the set
[−1, 1] × [−1, 1] with step h = 0.01, it reveals that
the trajectory of the switched interval error-state system

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

t

σ(
t)

Fig. 1 The switching signal

global exponentially converges to a unique equilibrium
e∗ = (0, 0)T . This is in accordance with the conclusion
of Theorem 1.

Example 2 Consider the following switched interval
networks with discrete delay as a drive system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = −aiσ(t)xi (t)+∑2
j=1 b(1)i jσ(t)

g1 j (x j (t))

+∑2
j=1 b(2)i jσ(t)

g2 j (x j (t − τ(t))

aiσ(t) ∈ [aiσ(t) , aiσ(t)], b(k)i jσ(t)
∈ [b(k)i jσ(t)

, b
(k)
i jσ(t)],

k = 1, 2

xi (t) = ϕi (t), t ∈ [−τ, 0], i, j = 1, 2.

σ (t) : [0,+∞) → � = {1, 2}, gi (x) = tanh(x), i =
1, 2, τ(t) = 1. Choose networks system parameters as

A1 =
(

1.00 0.00
0.00 1.00

)

, A1 =
(

1.02 0.00
0.00 1.02

)

,

B11 =
(

2.00 −0.10
−5.00 4.50

)

,

B11 =
(

2.02 −0.98
−4.98 4.52

)

,

B21 =
(−1.50 −0.10

−0.20 −4.00

)

,

B21 =
(−1.48 −0.98

−0.18 −3.98

)

,

A2 =
(

1.00 0.00
0.00 1.00

)

, A2 =
(

1.02 0.00
0.00 1.02

)

,

B12 =
(

3.00 5.00
0.10 2.00

)

,
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Fig. 2 The state trajectories of state variables e1 and e2 of switched error-state system
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Fig. 3 Chaotic attractors of two subsystems of switched networks

B12 =
(

3.02 5.02
0.12 2.02

)

, B22 =
(−2.50 0.20

0.10 −1.50

)

,

In the following, we will design intermittent control
gain matrices Ki (i = 1, 2) for the switched interval
networks in this example, choose as

K1 =
(−12 4

4 −20

)

, K2 =
(−14 6

6 −26

)

.

Let ω1 = ω2 = 1, by calculating, we have −μω(−A01

+K1)−l‖B101‖ω−l‖E1‖ω‖FA1‖ω−l‖E1‖ω‖F11‖ω =
4.3132 ≥ l‖B201‖ω + l‖E1‖ω‖F21‖ω = 4.0694,
−μω(−A02 + K2) − l‖B102‖ω − l‖E2‖ω‖FA2‖ω −
l‖E2‖ω‖F12‖ω = 6.2811 ≥ l‖B202‖ω + l‖E2‖ω‖F22

‖ω = 5.0638. All the assumptions of Theorem 2
hold; therefore, switched drive system synchronizes

exponentially toward with response system under any
switching rules.

For numerical simulations, let A1 = A1, B11 =
B11, B21 = B21, and A2 = A2, B12 = B12, B22 =
B22. In this case, the two subsystems are all chaotic
neural networks [28]. Assume that the two subsys-
tems are switched every one second, switching sig-
nal is shown in Figs. 1, 3 displays two chaotic attrac-
tors with the initial conditions (x11(t), x12(t))T =
(0.1, 0.1)T , (x21(t), x22(t)))T = (2.3, 0.3)T , respec-
tively; Fig. 4 depicts the time responses of state vari-
ables e1(t) and e2(t) from random constant initial states
in the set [−1, 1] × [−1, 1] with step h = 0.01, it
reveals that the trajectory of the switched interval error-
state system global exponentially converges to a unique
equilibrium e∗ = (0, 0)T .
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Fig. 4 Time responses of state variables e1 and e2 of switched error-state system

6 Conclusion

In this paper, a new matrix measure theory has been
proposed to deal with synchronization problem of
switched interval delayed networks under the arbitrary
switching rule, the intermittent and feedback control
gain matrices Ki have been designed, and the proposed
synchronization criteria are easy to test. Moreover, the
obtained results are more general, it can be promoted to
the traditional p-measure (p = 1, 2,∞)directly, fur-
thermore, the final examples have shown that the ω-
measure is superior to 1-measure, which can be seen a
special case of ω-measure.
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