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Abstract In this paper, by Darboux transformation
and symbolic computation we investigate the coupled
cubic–quintic nonlinear Schrödinger equations with
variable coefficients, which come from twin-core non-
linear optical fibers and waveguides, describing the
effects of quintic nonlinearity on the ultrashort optical
pulse propagation in the non-Kerr media. Lax pair of
the equations is obtained, and the corresponding Dar-
boux transformation is constructed. One-soliton solu-
tions are derived; some physical quantities such as the
amplitude, velocity, width, initial phases, and energy
are, respectively, analyzed; and finally an infinite num-
ber of conservation laws are also derived. These results
might be of some value for the ultrashort optical pulse
propagation in the non-Kerr media.
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1 Introduction

Optical solitons have the potential to become carri-
ers in the telecommunication systems because of the
capability of propagating long distances with high
intensity and without attenuation [1–12]. Dynamics of
light pulses are described by the nonlinear Schrödinger
(NLS)-typed equations with cubic nonlinear terms
[8,13], and the non-Kerr nonlinearity effect comes into
play [9] when the intensity of the incident light field
becomes stronger, which is described by the NLS-typed
equations with higher-order nonlinear terms [10]. The
NLS equation is a vital model to describe certain phe-
nomena from Physics and Engineering to Biochemistry
[14]. Certain interest has been focused on the NLS-
typed equations since the experimental observation of
the multi-stability of solitons in non-Kerr fibers [1,9,
15–27].

In this paper, the coupled cubic–quintic nonlin-
ear NLS equations with variable coefficients [2,22]
describing the effects of quintic nonlinearity on the
ultrashort optical pulse propagation in the non-Kerr
media are investigated [28],
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where the components q1 and q2 of the electromagnetic
fields propagate along the coordinate z in the two cores
of an optical waveguide, t is the local time [28,29], r(z)
and y(z) represent the group velocity dispersions, m(z)
and k(z) are the nonlinearity parameters, n(z) andw(z)
are the saturation of the nonlinear refractive indexes,
p(z) and a(z) are the self-steepening, and s(z) and b(z)
are the delayed nonlinear response effects [30]. With a
reduction of q1 = q and q2 = 0 (or q1 = 0 and q2 = q),
Eq. (1) turns to the integrable Kundu–Eckhaus equa-
tion [1,22] with variable coefficients, which possesses
the applications in the nonlinear optics [27], quantum
field theory [25], and weakly nonlinear dispersive mat-
ter waves [26]. Equation (1) with constant coefficients
has been investigated in several respects [1]. But as
far as we know, the Lax pair, Darboux transformation
(DT), and conservation laws of Eq. (1) have not been
presented as yet.

The outline of this paper is organized as follows: In
Sect. 2, a Lax pair of Eq. (1) is presented and the corre-
sponding DT constructed. In Sect. 3, one-soliton solu-
tions of Eq. (1) is obtained and some physical quantities
such as the amplitude, velocity, width, initial phases,
and energy are, respectively, analyzed. In Sect. 4, an
infinite number of conservation laws of Eq. (1) are
derived by symbolic computation [2,31–37]. Section 5
contains our conclusions.

2 Lax pair and DT of Eq. (1)

In this section, we present a Lax pair of Eq. (1) [38].
Linear eigenvalue problem for Eq. (1) can be given as
[1]

Ψt = UΨ, Ψz = VΨ, (2)

where Ψ = [ψ1(z, t), ψ2(z, t), ψ3(z, t)]T , T denotes
the transpose of the vector, while U and V are respec-
tively given by

U =⎛
⎝

i Lθt (z, t)−iλ q1ρ1(z) q2ρ2(z)
−q∗

1ρ
∗
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∗
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⎠ ,
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where L is a constant and
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+a22(z)+ i Lθz(z, t),

h2(z, t) = h22(z)+ 1

4
|q2|2ρ∗

2 (z)

× [a1(z)− d1(z)] ρ2(z)− i Lθz(z, t),

d2(z, t) = d2(z)+ 1

4
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1 (z)
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[
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]
q1,

�2 = 2Lρ2(z)|q2|2q2 + 2L|q1|2ρ2(z)q2,

the asterisk is the complex conjugate and λ denotes the
spectral parameter. Equation (1) can be achieved from
the compatibility condition

Uz − Vt + [ U, V ] = 0, (4)

where [ U, V ] = U V − V U . Thus, the Lax pair of
Eq. (1) has been derived.

As DT is composed of the eigenfunction and poten-
tial transformation, it can be used to construct a series of
explicit solutions for the nonlinear evolution equations
(NLEEs) from the initial ones in a recursive manner
[39,40], and the procedure of the DT can be achieved
by symbolic computation [41,42]. DT has been used to
investigate many NLEEs [39,40] as a straightforward
algorithm. Eigenfunction transformation for Lax Pair
(2) can be taken as

Ψ̂ = DΨ =
⎛
⎝

An(z, t) 0 0
0 Bn(z, t) 0
0 0 Cn(z, t)

⎞
⎠ (λI −S)Ψ,

(5)

where n = 1, 2, 3, and An(z, t), Bn(z, t), and Cn(z, t)
are the functions of z and t to be determined, I is the 3×
3 identity matrix, S is a 3 × 3 matrix to be determined,
and Ψ̂ is required to satisfy

Ψ̂t = Û Ψ̂ , Ψ̂z = V̂ Ψ̂ , (6)

that is,

Dt + DU − Û D = 0, (7)

Dz + DV − V̂ D = 0, (8)

with
Û =⎛
⎝

i L θ̂t (z, t)− iλ q̂1ρ1(z) q̂2ρ2(z)
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1ρ
∗
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⎠ ,

(9)

and
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[
d1(z)−a1(z)
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×[|q̂1|2|ρ1(z)|2 + |q̂2|2|ρ2(z)|2
]

+ a22(z)+ i L θ̂z(z, t),

ĥ2(z, t) = 1

4
|q̂2|2ρ∗

2 (z)
[
a1(z)− d1(z)

]
ρ2(z)z(z, t)

+h22(z)− i L θ̂ ,

d̂2(z, t) = 1

4
|q̂1|2ρ∗

1 (z)
[
a1(z)− d1(z)

]
ρ1(z)

−i L θ̂z(z, t)+ d2(z),

�̂1 = [
2L|q̂2|2ρ1(z)+ iρ1t (z, t)

]
q̂1,

�̂2 = 2Lρ2(z)|q̂2|2q̂2 + 2L|q̂1|2ρ2(z)q̂2,

Then, the matrix S can be constructed as

S = H Λ H−1, (10)

with
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H =
⎛
⎝
ψ1 (λ1) ψ∗

2 (λ1) ψ∗
3 (λ1)

ψ2 (λ1) −ψ∗
1 (λ1) 0

ψ3 (λ1) 0 −ψ∗
1 (λ1)

⎞
⎠ ,

Λ =
⎛
⎝
λ1 0 0
0 λ∗

1 0
0 0 λ∗

1

⎞
⎠ , (11)

and

A(z, t) = α1(z) exp
[

−
∫
�3 dt

]
,

B(z, t) = α2(z) exp
[∫

�3 dt
]
,

C(z, t) = α3(z) exp
[∫

�3 dt
]
,

�3 =
4i L

(
λ1 − λ∗

1

)2 |ψ1|2
(|ρ2(z)|2|ψ2|2+|ρ1(z)|2|ψ3|2

)

|ρ1(z)|2|ρ2(z)|2
(|ψ1|2+|ψ2|2+|ψ3|2

)2 ,

(12)

where [ψ1(λ1), ψ2(λ1), ψ3(λ1)]T is the solution of Lax
Pair (2) with λ = λ1, α1(z) α2(z) and α3(z) are func-
tions of z. Transformations between the new potentials
q̂1, q̂2 and the old ones q1, q2 can be presented as

q̂1 = A(z, t)B(z, t)−1ρ1(z)
−1

×
(

q1ρ1(z)+ 4 Im (λ1) ψ1ψ
∗
2

|ψ1|2 + |ψ2|2 + |ψ3|2
)
,

q̂2 = A(z, t)C(z, t)−1ρ2(z)
−1

×
(

q2ρ2(z)+ 4 Im (λ1) ψ1ψ
∗
3

|ψ1|2 + |ψ2|2 + |ψ3|2
)
. (13)

3 One-soliton solutions of Eq. (1)

In this section, we will construct the one-soliton solu-
tions of Eq. (1). Taking q1 = q2 = 0 as the seed
solutions of Eq. (1), Lax Pair (2) with λ = λ1 can be
solved as

ψ1 (λ) = c1eξ , ψ2 (λ) = c2e−ξ , ψ3 (λ) = c3e−ξ ,
(14)

where c1, c2 and c3 are arbitrary constants and ξ =∫ [
a1(z)λ2

1 + a22(z)
]

dz − i tλ1.

Substituting Eq. (14) into Eq. (13), we can get one-
soliton solutions of Eq. (1) as follows:

|q1| = 4|Im (λ1) c2|
|ρ1(z)|

√|c2|2 + |c3|2
sech

[
ξ + ξ∗ + ln�4

]
,

(15)

|q2| = 4|Im (λ1) c3|
|ρ2(z)|

√|c2|2 + |c3|2
sech

[
ξ + ξ∗ + ln�4

]
,

(16)

�4 = |c1|√|c2|2 + |c3|2
.

Some physical quantities such as the amplitude A,
velocity v, width W , initial phases Ip, and energy E
are given to characterize the features of propagating
solitons:

A1 = 4 |Im (λ1) c2|
|ρ1(z)|

√|c2|2+|c3|2
, A2 = 4 |Im (λ1) c3|

|ρ2(z)|
√|c2|2+|c3|2

,

W1 = W2 = 1

2 Im (λ1)
, Ip1 = Ip2 = 1

2 Im (λ1)
ln4,

v1 = v2 = Re
[
a1(z)λ2

1 + a22(z)
]

−Im (λ1)
,

E = 32 |Im (λ1) |2
|ρ1(z)|2 .

From above, we can see that the width and initial phases
are both dependent on the imaginary part of λ1, while
the amplitude, velocity, and energy are determined by
the imaginary part of λ1 and variable coefficients.

Multi-soliton solutions can be achieved by the iter-
ative algorithm. The dynamic features of the obtained
soliton solutions are depicted in Fig. 1 using Eqs. (15)−
(16).

4 An infinite number of conservation laws

In this section, according to Refs. [43,44] we present
infinitely many independent conservation laws as a fur-
ther support of the integrability for Eq. (1).

We will introduce two new variables,

Γ1 = ψ2

ψ1
, Γ2 = ψ3

ψ1
, (17)

and take derivative of Γ j ( j = 1, 2) with respect to t by
the use of Eq. (2) to obtain the following two Riccati-
type equations:
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Fig. 1 The stable propagation of one-soliton solutions (15)–
(16). Parameters are given as follows: a1(z) = z, a22(z) = 1 +
i, c1 = c2 = 1, c3 = 1 + i, ρ1(z) = 3 + 2i, ρ2(z) = 2 − 3i
and λ1 = 1 + 2i

Γ1,t =− q∗
1ρ

∗
1 (z)+2

[
iλ1−i Lθt (z, t)

]
Γ1 − Γ 2

1 q1ρ1(z)

− q2ρ2(z)Γ1Γ2, (18)

Γ2,t =− q∗
2ρ

∗
2 (z)+2

[
iλ1−i Lθt (z, t)

]
Γ2 − Γ1Γ2q1ρ1(z)

− q2ρ2(z)Γ
2

2 , (19)

then multiply Eqs. (18) and (19), respectively, by q1

and q2, and expand q1Γ1 and q2Γ2 in power series of
1/λ,

q1Γ1 =
∞∑

m=1

λ−mΓ1m(z, t), q2Γ2 =
∞∑

m=1

λ−mΓ2m(z, t),

(20)

Γ1m and Γ2m (m = 1, 2, . . .) are determined by

Γ11 = − i

2
|q1|2 (ρ1)

∗ (z), Γ21 = − i

2
|q2|2 (ρ2)

∗ (z),

Γ12 = −1

4
q1 q∗

1t (ρ1)
∗ (z)− i

2
|q1|2 (ρ1)

∗ (z)Lθt (z, t),

Γ22 = −1

4
q2 q∗

2t (ρ2)
∗ (z)− i

2
|q2|2 (ρ2)

∗ (z)Lθt (z, t),

Γ1m+1 = − i

2

[
ρ1(z)

m−1∑
k=1

Γ1m−1−kΓ1k + ρ2(z)
m−1∑
k=1

Γ1m−kΓ2k +
(
Γ1m

q1

)

t
q1+2i Lθt (z, t) Γ1m

]
(m>2),

Γ2m+1 = − i

2

[
ρ2(z)

m−1∑
k=1

Γ2m−1−kΓ2k + ρ1(z)
m−1∑
k=1

Γ1m−kΓ2k + |!
(
Γ2m

q2

)

t
q2+2i Lθt (z, t) Γ2m

]
(m>2).

By the compatibility condition (logψ1)zt = (logψ1)t z
yields the following equation in the form of conserva-
tion law:{[−iλ1 + i Lθt (z, t)

]+q1 Γ1ρ1(z)+q2 Γ2ρ2(z)
}

t

=
{

a1(z)λ
2 + a2(z, t)+ [

λb1(z, t)+ b2(z, t)
]
Γ1

+[
λ f1(z, t)+ f2(z, t)

}
z
. (21)

By substituting Eq. (20) into Eq. (21) and equating the
terms with the same power of 1/λ, we can obtain a suf-
ficiently large number of conservation laws: i ∂ρk

∂t =
∂ Jk
∂z (k = 1, 2, . . .), where ρk and Jk (k = 1, 2, . . .) are

the conserved densities and associated fluxes, respec-
tively.

5 Conclusions

Twin-core nonlinear fibers and waveguides, i.e., cou-
plers, have become a current interest in nonlinear optics
[28]. In this paper, by virtue of DT (5) and symbolic
computation, Eq. (1) describing the effects of quintic
nonlinearity on the ultrashort optical pulse propagation
in non-Kerr media has been investigated. Lax Pair (2) of
Eq. (1) has been presented, and the corresponding DT
(5) has been constructed. Moreover, one-soliton solu-
tions, i.e., Solutions (15)–(16), have been obtained and
an infinite number of conservation laws, i.e., Expres-
sions (20)–(21), have also been derived. Using Solu-
tions (15)–(16), the dynamic features of the soliton
solutions have been displayed in Figure 1. Some phys-
ical quantities such as the amplitude, velocity, width,
initial, phases, and energy are also, respectively, ana-
lyzed. These results might be of some value for the
ultrashort optical pulse propagation in the non-Kerr
media.
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