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Abstract A new family of explicit integration algo-
rithms is developed based on discrete control theory
for solving the dynamic equations of motion. The pro-
posed algorithms are explicit for both displacement
and velocity and require no factorisation of the damp-
ing matrix and the stiffness matrix. Therefore, for a
system with nonlinear damping and stiffness, the pro-
posed algorithms are more efficient than the common
explicit algorithms that provide only explicit displace-
ment. Accuracy and stability properties of the pro-
posed algorithms are analysed theoretically and ver-
ified numerically. Certain subfamilies are found to be
unconditionally stable for any system state (linear elas-
tic, stiffness softening or stiffness hardening) that may
occur in earthquake engineering of a practical struc-
ture. With dual explicit expression and excellent sta-
bility property, the proposed family of algorithms can
potentially solve complicated nonlinear dynamic prob-
lems.
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1 Introduction

Step-by-step time-integration algorithms are widely
used to solve the equations of motion of structures.
Generally, the integration algorithms can be classi-
fied into two types: explicit and implicit. An integra-
tion algorithm is defined as explicit if the displace-
ments for the next step can be calculated based on
the conditions known at the beginning of the time
step, whereas an implicit integration algorithm exhibits
dependency on the structural response from the next
step.

Both the explicit and implicit algorithms have obvi-
ous advantages and disadvantages [1]. Most implicit
integration algorithms are unconditionally stable, such
as the average acceleration method [2], Wilson-θ
method [3], HHT-α method [4] and WBZ-α method
[5]. However, they have to solve the simultaneous equa-
tions resulting from discretisation of the equations of
motion in spatial and temporal domains. The computa-
tional cost dramatically increases when the degrees-
of- freedom (DOFs) of the structure get large. The
explicit algorithms require no factorisation of the stiff-
ness matrix and have clear advantages for problems
with a large number of DOFs. Conditional stability is
the drawback of the traditional explicit integration algo-
rithms such as the central difference method (CDM)
and the explicit Newmark method [2]. Their time step
limit is inversely proportional to the highest natural fre-
quency of structures. To improve the numerical prop-
erties of integration algorithms, researchers have pro-
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posed subcycling strategies [6] and high-order accurate
approaches [7].

Several unconditionally stable explicit integration
algorithms have been proposed, including the Chang
family of algorithms [8–10] and the CR algorithm [11].
The Chang family of algorithms has excellent stability,
and one of its subfamilies offers unconditional stabil-
ity even for stiffness hardening systems that may occur
in practice. However, similar to the CDM and explicit
Newmark method, the Chang family is explicit only
if the damping matrix is diagonal. Therefore, for sys-
tem equipped with nonlinear dampers [12,13], these
explicit algorithms have no advantage of computa-
tional efficiency as compared to implicit algorithms. To
explicitly solve the equation of motion for system with
nonlinear damping, Chen and Ricles [11] use the pole
mapping method to develop the CR algorithm, which
provides an explicit estimate of velocity as well as dis-
placement. This method is shown to be unconditionally
stable for any linear elastic and stiffness softening sys-
tem and is conditionally stable for a stiffness hardening
system.

The accuracy and stability properties of integration
algorithms are usually investigated in the time domain
by using the amplification matrix and its associated
eigenvalues [14–16]. Researchers have also analysed
the frequency domain properties of integration algo-
rithms by using the discrete transfer function and its
associated poles. A discrete transfer function is used
to represent the relationship between the z transform
of the output and the z transform of the input [17].
Ramirez [18] derived the discrete transfer function for
the Newmark family of algorithms and studied their fre-
quency response characteristics. Magnitude and phase
error characteristics of some popular algorithms are
studied in the frequency domain by Mugan and Hul-
bert [19,20]. Chen and Ricles [21,22] used the root
locus method to analyse the stability of integration
algorithms under stiffness nonlinear structural behav-
iour.

In this paper, a new family of explicit integration
algorithms with second-order accuracy, including the
CR algorithm as a special case, is developed based on
the pole mapping method from the discrete control the-
ory. Both accuracy and stability properties are analyti-
cally studied and numerical examples are examined to
confirm the theoretical analysis results. The proposed
family of algorithms is found to have the same numeri-
cal properties as the Newmark family of algorithms for

linear elastic systems. More significantly, certain sub-
families are unconditionally stable for any system state
(linear elastic, stiffness softening, or stiffness harden-
ing). As an example, comparison of the computational
cost is presented for several integration algorithms in
solving a system with nonlinear damping behaviour.
The comparison demonstrates that the proposed fam-
ily of algorithms offers distinct advantage in computa-
tional efficiency.

2 Development of the new family of algorithms

For a multiple-degree-of-freedom (MDOF) nonlinear
structure, the equations of motion can be expressed as

Mẍi+1 + R(ẋi+1) + R(xi+1) = Fi+1, (1)

where M is the mass matrix; R(ẋi+1), R(xi+1) and
Fi+1 are the damping force, restoring force and external
force vectors at the (i + 1) th time step, respectively,
and xi+1, ẋi+1 and ẍi+1 are the displacement, veloc-
ity and acceleration vectors at the (i + 1)th time step,
respectively.

A family of integration algorithms, where the veloc-
ity vector ẋi+1 and displacement vector xi+1 are depen-
dent only on structural response (displacement, veloc-
ity and acceleration) at the i th time step, are assumed
as

ẋi+1 = ẋi + α1 · �t · ẍi (2)

xi+1 = xi + �t · ẋi + α2 · �t2 · ẍi , (3)

where α1 and α2 are two matrices of integration para-
meters to be determined; and �t is the time step size.
Equation (1) can be explicitly integrated with Eqs. (2)
and (3), when α1 and α2 are known.

For simplicity, parameters α1 and α2 are derived
from a single-degree-of-freedom (SDOF) linear elastic
structure in the following. Correspondingly, Eqs. (1),
(2) and (3) are rewritten as

mẍi+1 + cẋi+1 + kxi+1 = Fi+1 (4)

ẋi+1 = ẋi + α1 · �t · ẍi (5)

xi+1 = xi + �t · ẋi + α2 · �t2 · ẍi , (6)

where m, c and k are the mass, viscous damping and
stiffness, respectively; Fi+1 is the external force at the
(i + 1)th time step and xi+1, ẋi+1 and ẍi+1 are the
displacement, velocity and acceleration at the (i +1)th
time step, respectively.
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Next, we will determine the parameters α1 and α2.
The derivation of parameters α1 and α2 for SDOF linear
elastic systems is provided in Sects. 2.1 and 2.2 based
on the pole mapping method and the eigenvalue map-
ping method, respectively. Then the integration process
of the proposed family of algorithms for nonlinear
MDOF systems is briefly described in Sect. 2.3. The
numerical properties of proposed algorithms for both
linear and nonlinear systems are discussed in Sect. 3.

2.1 The pole mapping method

We define Xi (z) and Xi+1(z) as the z transform of a
time function x(t) at the i th and (i + 1)th time step,
respectively. According to the shifting theorem for the z
transform [23], multiplication of Xi+1(z) by z−1 delays
the time function x(t) by the time step

Xi (z) = z−1 · Xi+1(z), (7)

where z is the variable of the z transform.
Thus, the z transform of Eqs. (4), (5) and (6) may

be expressed as

m Ẍi+1(z) + cẊi+1(z) + k Xi+1(z) = Fi+1(z) (8)

Ẋi+1(z) = z−1 · Ẋi+1(z) + α1 · �t · z−1 · Ẍi+1(z)

(9)

Xi+1(z) = z−1 · Xi+1(z) + �t · z−1 · Ẋi+1(z)

+α2 · �t2 · z−1 · Ẍi+1(z), (10)

where Xi+1(z), Ẋi+1(z), Ẍi+1(z) and Fi+1(z) are the
z transform of xi+1, ẋi+1, ẍi+1 and Fi+1, respectively.

Substituting Eqs. (9) and (10) into Eq. (8) leads to
the corresponding discrete transfer function

G(z) = Xi+1(z)

Fi+1(z)
= α2�t2z + (α1 − α2)�t2

mz2 + (α2Ω2 + 2α1Ωξ − 2)mz + ((α1 − α2)Ω2 − 2α1Ωξ + 1)m
, (11)

where Ω = ωn�t, ωn = √
k/m is the natural fre-

quency and ξ is the viscous damping ratio.
Based on Eq. (11), the characteristic equation of the

discrete system is defined as

mz2 + (α2Ω
2 + 2α1Ωξ − 2)mz

+ ((α1 − α2)Ω
2 − 2α1Ωξ + 1)m = 0. (12)

A value of z that solves the characteristic equation
is defined as a ‘pole’ of the discrete transfer function.

Table 1 Poles of some members of the Newmark family algo-
rithms

Method Poles

Average acceleration
method (γ =1/2,
β =1/4)

z1,2 = 4−Ω2±4Ω
√

ξ2−1
4+Ω2+4Ωξ

Linear acceleration
method (γ =1/2,
β =1/6)

z1,2 = 6−2Ω2±Ω
√

3Ω2+36ξ2−36
6+Ω2+6Ωξ

Explicit Newmark
method
(γ = 1/2, β = 0)

z1,2 = 2−Ω2±Ω
√

Ω2+4ξ2−4
2+2Ωξ

Chen and Ricles [11] showed that the poles of the dis-
crete transfer function are the same as the eigenvalues
of the amplification matrix for the Newmark family of
algorithms. Therefore, in developing a new integration
algorithm, the numerical properties of the integration
algorithm are ensured if proper poles are assigned to
its discrete transfer function.

The poles of several well-known members of the
Newmark family of algorithms with second-order
accuracy are listed in Table 1, where γ and β are
the integration parameters of the Newmark method.
By assigning these poles to the characteristic equa-
tion in Eq. (12), we find that α1 and α2 always have
the same expression. Thus, they can be unified as one
parameter

α1 = α2 = α = λ

λ + λΩξ + Ω2 , (13)

where λ is the positive parameter governing the numer-
ical properties. The subfamily with λ is derived from

the Newmark family with γ = 1/2, β = 1/λ. As a
result, the corresponding algorithms of the two fami-
lies have the same numerical properties.

Comparing Eq. (13) with the integral algorithm
developed by Chen and Ricels [11], we found that
the subfamily with λ = 4 was exactly the same as
the CR algorithm. Therefore, the proposed algorithms
contained the well-known CR algorithm as a special
case.
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2.2 The eigenvalue mapping method

Besides the pole mapping method, a new integration
algorithm may also be developed based on the eigen-
values of the amplification matrix.

Equations (4), (5) and (6) may be written in a recur-
sive matrix form as

Xi+1 = A · Xi + B · Fi , (14)

where Xi and Xi+1 are state vector values at the i th
and (i + 1)th time step, respectively; A is the ampli-
fication matrix and B is related to the external force.
Xi , Xi+1, A and B are defined as

Xi =
[

xi

ẋi

]
, Xi+1 =

[
xi+1

ẋi+1

]
(15)

A =
[

1 − α2ω
2
n�t2 �t − 2α2ξωn�t2

−α1ω
2
n�t 1 − 2α1ξωn�t

]
,

B =
[

α2�t2/m
α1�t/m

]
. (16)

The characteristic equation of the amplification
matrix A can be derived by solving the equation of
|A − φI| = 0 and is found to be

φ2+(α2Ω
2+2α1Ωξ−2)φ+(α1−α2)Ω

2

−2α1Ωξ+1=0, (17)

where φ is the eigenvalue and I is a unit matrix.
Equation (17) is identical to the characteristic equa-

tion of the discrete transfer function Eq. (11). This
verifies the conclusion made by Chen and Ricles [11]
that the poles of the discrete transfer function are the
same as the eigenvalues of the amplification matrix
for the integration algorithm. Therefore, the eigenvalue
mapping method is equivalent to the pole mapping
method.

2.3 Integration process for nonlinear MDOF systems

For an MDOF system, Eq. (13) can be rewritten in terms
of the structural properties and the time step size as

α1 = α2 = α = 2λ · (2λM + λ�tC + 2�t2K)−1 · M.

(18)

If the MDOF system is nonlinear, α is assumed to
be invariant in the entire integration procedure and is

determined from the initial damping matrix C0 and the
initial stiffness matrix K0

α = 2λ · (2λM + λ�tC0 + 2�t2K0)
−1 · M. (19)

Thus, the solution of Eq. (1) using the proposed algo-
rithms may be summarsised as follows: (1) substituting
Eq. (19) into Eqs. (2) and (3) leads to the velocity vector
ẋi+1 and displacement vector xi+1; (2) the nonlinear
damping force R(ẋi+1) and restoring force R(xi+1)

are calculated and (3) the acceleration vector ẍi+1 is
obtained from the equations of motion in Eq. (1).

3 Numerical properties

3.1 Accuracy analysis

Since the numerical properties of an integration algo-
rithm are determined by the poles of the algorithm [11]
and the proposed algorithm family has the same poles
as those of the Newmark family of algorithms, the pro-
posed family of algorithms is second-order accurate,
which is the same as most commonly used algorithms.
Herein, the amplitude decay (AD) and period elonga-
tion (PE) [24] are introduced to further analyse the com-
putational error of these algorithms. Following Refs.
[5,8,11,24,25], we consider the linear free vibration
problem

mẍ(t) + kx(t) = 0 (20)

with the initial conditions x(0) = 1 and ẋ(0) = 0. The
AD and PE are defined as

AD = 1 − x(T̄n) (21)

PE = (T̄n − Tn)/Tn, (22)

where Tn and T̄n represent the true and calculated nat-
ural period, respectively.

When the equation for an integration algorithm is
known, the poles for its corresponding discrete transfer
function G(z) can be expressed in an exponential form
as

z1,2 = σ ± εi = exp

[
Ω̄

(
−ξ̄ ± i

√
1 − ξ̄2

)]
, (23)
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Fig. 1 Amplitude decay for proposed family of algorithms, and
comparison with Newmark and Chang families of algorithms
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Fig. 2 Period elongation for proposed family of algorithms, and
comparison with Newmark and Chang families of algorithms

where i = √−1, and the algorithmic damping ratio ξ̄

and the apparent frequency Ω̄ may be computed by

ξ̄ = − ln(σ 2 + ε2)/(2Ω̄) (24)

Ω̄ = tan−1(ε/σ )
/√

1 − ξ̄2. (25)

Because of the zero inherent damping of the system,
the AD completely depends on the algorithmic damp-
ing ratio ξ̄ . Meanwhile, substituting T̄n = 2π�t/Ω̄
into Eq. (22) results in

PE = Ω/Ω̄ − 1. (26)

Figures 1 and 2 show the variation of AD and PE
with �t/Tn, respectively, for several members of the
proposed family of algorithms, as well as the New-
mark and Chang families of algorithms. The algorithms
that have the same poles exhibit exactly the same AD
and PE. As shown in Fig. 1, all of these algorithms
predict no decay of displacement amplitude because

Re

Im
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-1.0

1.0-1.0

Unstable
region

Stable 
region

0

Unit
circle

Fig. 3 Stable and unstable regions for pole locations in the z
plane

their algorithmic damping ratios ξ̄ = 0. Figure 2 indi-
cates that the absolute value of PE increases as �t/Tn

increases for a given λ. Meanwhile, the PE decreases
as λ increases from 0 to infinity for a given �t/Tn.
The period distortion of the subfamily with λ =11.5 is
approximately the least for any �t/Tn. As a result, λ

should be chosen as close to 11.5 as possible to obtain
the least period error.

3.2 Stability

According to the discrete control theory [23], the sta-
bility of a discrete transfer function is determined by
the poles. Figure 3 illustrates the stable and unstable
regions for pole locations in the z plane. If all the poles
lie within or on the unit circle, the system is stable. Any
pole outside the unit circle makes the system unsta-
ble. Therefore, the stability condition of the proposed
family of algorithms is determined in this section by
analysing the poles of their discrete transfer functions.
The linear and nonlinear systems are considered.

3.2.1 Linear elastic system

For a linear elastic system, the discrete transfer function
G(z) and its characteristic equation are presented in
Eqs. (11) and (12), respectively, for the proposed family
of algorithms. The characteristic equation in Eq. (12)
can be revised as

f (z) = A1z2 + A2z + A3 = 0, (27)

where A1 = Ω2 + λ + λΩξ, A2 = λΩ2 − 2Ω2 − 2λ

and A3 = Ω2 + λ − λΩξ .
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According to Eq. (27), the poles of G(z) can be
expressed as

z1,2 = −A2 ± √
(A2)2 − 4A1 A3

2A1
(28)

(1) If (A2)
2 − 4A1 A3 < 0 in Eq. (28), z1,2 is complex

numbers. The modulus of z1,2 is

∣∣z1,2
∣∣ =

√√√√(
− A2

2A1

)2

+
(√

4A1 A3 − (A2)2

2A1

)2

=
√

A3

A1
. (29)

In this case, both A1 and A3 are positive, and A3

is not more than A1. This observation means that the
stability condition of

∣∣z1,2
∣∣ ≤ 1 is always satisfied if

(A2)
2 − 4A1 A3 < 0. Thus, the stability condition can

be derived from (A2)
2 − 4A1 A3 < 0 as

λ�2 − 4�2 − 4λ < −4λξ2 (30)

(2) If (A2)
2 − 4A1 A3 ≥ 0, then z1,2 is real numbers.

Because Eq. (27) represents a parabolic curve opening
upward, the stability condition of

∣∣z1,2
∣∣ ≤ 1 leads to

the following inequalities:

f (1) ≥ 0, f (−1) ≥ 0 , −1 ≤ − A2
2A1

≤ 1. (31)

From the inequalities in Eq. (31) and (A2)
2 −

4A1 A3 ≥ 0, the stability condition can be derived as

−4λξ2 ≤ λ�2 − 4�2 − 4λ ≤ 0. (32)

Combining Eqs. (30) and (32) leads to the following
stability condition of the proposed family of algorithms
for the linear elastic system:

(λ − 4)�2 − 4λ ≤ 0. (33)

Equation (33) provides the stability limit of � for
the proposed family of algorithms

(1) If λ ≤ 4,� ≤ ∞;
(2) If λ > 4,� ≤ √

4λ/(λ − 4).

Therefore, the subfamilies with λ ≤ 4 are uncon-
ditionally stable for any linear elastic structure; the
subfamilies with λ > 4 can become unstable when

� >
√

4λ/(λ − 4). These results verify that the sub-
family with λ has the same stability condition as the
Newmark family with γ =1/2, β = 1/λ for the linear
elastic system [24].

3.2.2 System with nonlinear stiffness

For an SDOF structure with nonlinear stiffness, the
equations of motion in Eq. (4) have to be expressed as

mẍi+1 + cẋi+1 + r(xi+1) = Fi+1, (34)

where r(xi+1) is the restoring force at the (i +1)th time
step.

For a small time step size, Eq. (34) can be approxi-
mated in an incremental form

m�ẍi + c�ẋi + kt�xi = �Fi , (35)

where kt is the tangent stiffness for the i th time step;
�ẍi ,�ẋi ,�xi and �Fi are the increments of accelera-
tion, velocity, displacement and external force defined
as �ẍi = ẍi+1− ẍi ,�ẋi = ẋi+1− ẋi ,�xi = xi+1−xi

and �Fi = Fi+1 − Fi .
In Eq. (35), the tangent stiffness kt varies with the

displacement xi+1. Therefore, Eq. (35) corresponds to
a closed-loop system [21]. The discrete transform func-
tion may be expressed in a closed-loop form as

Gcl(z) = G ′(z)
1 + G ′(z)H(z)

, (36)

where H(z) is the feedback transfer function, and
G ′(z)H(z) is the open-loop transfer function of the
closed-loop system.

When the proposed family of algorithms is used to
solve Eq. (35), the corresponding closed-loop transfer
function Gcl(z) relating �Fi and �xi can be illustrated
by the closed-loop block diagram shown in Fig. 4. The
feedback transfer function H(z) and the transfer func-
tion G ′(z) of Gcl(z) can be derived as

H(z) = kt (37)

G ′(z) = α�t2z

mz2 + (αc�t − 2m)z + m − αc�t
. (38)

Based on Eqs. (37) and (38), the characteristic equa-
tion of the closed-loop system in Eq. (35) is

1 + kt
α�t2z

mz2 + (αc�t − 2m)z + m − αc�t
= 0. (39)
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Fig. 4 Closed-loop block diagram for system with nonlinear
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Fig. 5 Root locus for system with nonlinear stiffness

For the linear elastic system, the tangent stiffness kt

is equal to the initial stiffness k0, and Eq. (39) reduces
to the characteristic equation in Eq. (12).

The root locus method [17] is used to investigate
the stability condition for the closed-loop system. This
method involves plotting the root trajectories of the
characteristic equation in the z plane as the feedback
gain parameter kt varies from zero to positive infinity.
In this study, MATLAB [26] is used to plot the root
locus.

The root locus for the case of ξ = 0.02, ωn =
2π rad/s, �t = 0.5s and λ = 1 is shown in Fig. 5. One
branch of the locus crosses the unit circle at z = −1,
which means that the proposed algorithms are stable
only for a finite range of kt . By substituting z = −1
into Eq. (39), the stability condition can be obtained as

ktα�t2 ≤ 4m − 2αc�t (40)

which can be rewritten as

λ(Ω2
t − 4) ≤ 4Ω2

0 , (41)

where Ω0 = ω0�t , and ω0 = √
k0/m is the initial

natural frequency; Ωt = ωt�t , and ωt = √
kt/m is the

instantaneous natural frequency for the i th time step.

The stability condition in Eq. (41) reduces to that in
Eq. (33) for a linear elastic system when Ωt = Ω0.

Equation (41) gives the stability range of λ

(1) If Ωt ≤ 2, λ ≤ ∞;
(2) If Ωt > 2, λ ≤ 4Ω2

0 /(Ω2
t − 4).

Thus, for stiffness softening systems, the subfami-
lies with λ ≤ 4 are unconditionally stable; for stiffness
hardening system, the unconditional stability range of
λ reduces to λ ≤ 4ω2

0/ω
2
t .

3.3 Discussion of numerical properties

Sections 3.1 and 3.2 indicate that the accuracy of the
proposed family of algorithms improves as λ increases
from 0 to 11.5, the stability condition of Ω decreases
as λ increases from 4 to infinity for the linear elastic
system and the stability condition of Ωt decreases as λ

increases from 4ω2
0/ω

2
t to infinity for the system with

nonlinear stiffness. Therefore, the accuracy and stabil-
ity are contradictory properties of the proposed family
of algorithms.

Based on the theoretical analysis results, the sub-
family with λ = 4 offers the highest accuracy within
the unconditional stability range (λ ≤ 4) for the linear
elastic and stiffness softening systems. The subfam-
ily with λ = 4ω2

0/ω
2
t (for instance, λ = 2.77, when

ωt = 1.2ω0) offers the highest accuracy within the
unconditional stability range (λ ≤ 4ω2

0/ω
2
t ) for the

stiffness hardening system.

4 Numerical examples

4.1 Dynamic response for MDOF linear elastic
structure

An example is intentionally designed to confirm the
stability limit and accuracy of the proposed family of
algorithms for the linear system. As shown in Fig. 6, a
two-storey shear-beam-type structure with c1 = c2 =
0, k1 = 2 × 106 N/m, k2 = 105 N/m, m1 = 103

kg, m2 = 4 × 103 kg is considered in this example.
The structure is excited by a ground acceleration of
20sin(t) at its base, and the time step �t = 0.05s.
The natural frequencies of the structure are 4.88 and
45.84 rad/s; thus, the values of Ω(1) (Ω for the first
mode) and Ω(2) (Ω for the second mode) are 0.24 and
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Fig. 6 Schematic of the
two-storey shear-beam-type
structure

2m

1m

2 2,c k

1 1,c k

ga

2.29, respectively. Applying Eq. (33) leads to the upper
stability limit λ

(2)
lim = 16.77.

The displacement response of the top storey is plot-
ted in Fig. 7 for λ = 2, 4, 11.5, 17 and ∞, respectively.
And the result obtained from the explicit Newmark
method (�t = 0.05s and 0.0001s) and average accel-
eration method (�t = 0.05s) are also shown in the
same figure for comparison. Among them, the result
from the explicit Newmark method with a time step
of �t = 0.0001s is seen as the ‘exact’ solution. As
expected, the displacement responses of the subfamily
with λ = 4 and the average acceleration method match
each other very well; meanwhile, the subfamily with
λ = ∞ and the explicit Newmark method get identical
results. These solutions verify the conclusion in Sect. 3
that the subfamily of the proposed algorithm family
has the same numerical properties as its correspond-
ing subfamily in the Newmark family of algorithms
for linear elastic systems. Because of the stability limit
λ ≤ 16.77, the solutions are unstable for the subfami-
lies with λ = 17 and ∞, whereas the subfamilies with
λ = 2, 4 and 11.5 obtain reliable solutions. In addition,
the subfamily with λ = 11.5 provides almost the same
solution as the exact solution, whereas the subfamilies
with λ =2 and 4 exhibit obvious period elongation in
the condition of �t/T (1)

n = 0.039. This observation is

in good agreement with the accuracy analysis results
presented in Fig. 2, where the subfamily with λ = 11.5
possesses the least period distortion for any value of
�t/Tn.

4.2 Dynamic response for MDOF structures with
nonlinear stiffness

The numerical examples in Ref. [10] are employed
in this study to confirm the stability property of the
proposed family of algorithms for systems with non-
linear stiffness. In this example, a two-storey shear-
beam-type structure, as shown in Fig. 6, with c1 =
c2 = 0, k1 = 107 N/m, k2 = 105 N/m, m1 = 103 kg,
m2 = 6 × 103 kg is considered. The tangent stiffness
for each storey is assumed to be in the form of

kt = k0[1 + 1.5θ
√|�u|], (42)

where �u is the interstorey displacement, and θ is
the coefficient for simulating the two systems with
different stiffness types. For the softening system,
the coefficients of the bottom and top storeys are
θ1 = −0.1, θ2 = −0.2, and for the hardening sys-
tem, θ1 = 1, θ2 = 2. The structure is excited by a
ground acceleration of 20sin(t) at its base, and the time
step �t = 0.05s. The initial natural frequencies of the
structure are 4.06 and 100.50 rad/s. For each system,
the numerical result obtained from the explicit New-
mark method with �t = 0.0001s is considered as the
‘exact’ solution.

Figure 8 displays the displacement responses of
the softening system for λ = 2, 4, 4.7, 4.8 and 11.5,
respectively. The response time histories of instanta-
neous natural frequency for both modes are plotted in
Fig. 9. The upper stability limit for the second mode

Fig. 7 Displacement
response of the top storey
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Fig. 8 Displacement
response of the stiffness
softening system.
a Displacement response
of the top storey.
b Displacement response
of the bottom storey
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Fig. 9 Instantaneous
natural frequencies of the
stiffness softening system.
a Instantaneous natural
frequency for first mode.
b Instantaneous natural
frequency for second mode
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Fig. 10 Upper stability
limit for second mode of the
stiffness softening system
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is plotted in Fig. 10 (the stability condition Ωt ≤ 2
is always satisfied for the first mode). Figure 8 reveals
that the subfamilies with λ = 2 and 4 behave in a sta-
ble state for the value of Ω

(2)
0 as large as 5.02. This

finding is due to their unconditional stability for the
softening system in which the instantaneous natural
frequencies never exceed the initial natural frequen-
cies as shown in Fig. 9. Besides, the response of the
subfamily with λ = 4.7 is accurate, while numerical
instability occurs for the subfamilies with λ = 4.9
and 11.5 because the least value of the upper stabil-
ity limit is 4.75, as shown in Fig. 10. The bottom
storey response of the subfamily with λ = 4.8 indi-

cates high frequency fluctuation. The reason is that
the upper stability limit is only transitorily violated,
whereas the stability condition is satisfied most of the
time as the stiffness softens, as shown in Figs. 9b
and 10.

The numerical solutions of the hardening system for
λ = 1.2, 3.7, 3.9, 4 and 11.5 are shown in Fig. 11.
The response time histories of instantaneous natural
frequency for both modes are presented in Fig. 12. The
upper stability limit for the second mode is plotted in
Fig. 13 (the stability condition Ωt ≤ 2 is always sat-
isfied for the first mode). Figure 11 indicates that the
subfamily with λ = 4 becomes conditionally stable as

Fig. 11 Displacement
response of the stiffness
hardening system.
a Displacement response
of the top storey.
b Displacement response
of the bottom storey
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Fig. 12 Instantaneous
natural frequencies of the
stiffness hardening system.
a Instantaneous natural
frequency for first mode.
b Instantaneous natural
frequency for second mode
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Fig. 13 Upper stability
limit for second mode of the
stiffness hardening system
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ωt > ω0 shown in Fig. 12. Meanwhile, the subfam-
ily with λ = 1.2 < 4(ω

(1)
0 /ω

(1)
t )2, which is uncon-

ditionally stable for this system, offers an acceptable
solution. Figures 12b and 13 reveal that the upper sta-
bility limit decreases as the instantaneous natural fre-
quency increases, and the least upper stability limit
is 3.79 during the entire time history. As a result,
stable computations are responsible for the subfam-
ilies with λ =1.2 and 3.7, whereas numerical insta-
bility occurs for the subfamilies with λ = 3.9, 4 and
11.5.

4.3 Computational times for MDOF structures with
nonlinear damping

As shown in Fig. 14, an MDOF linear mass (mi )–spring
(ki )–damping (ci ) system with nonlinear absolute
damper (cai ) is employed to compare the computa-
tional efficiency of three well-known algorithms and
three proposed subfamilies. The parameters mi = 150
kg, ki = 2.5 × 105 N/m, ci = 10 Ns/m and �t =
0.02 s are selected in these examples. Meanwhile, the
absolute damping is provided by the magnetorheologi-

123



1168 Y. Gui et al.

Fig. 14 Schematic of the
mass–spring–damping
system with nonlinear
damper
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Fig. 15 Force–velocity behaviour of the nonlinear biviscous
model

cal damper (MRD). The nonlinear biviscous model [27]
with ca0 = 180 Ns/m, cay = 90 Ns/m and vy = 1/3
m/s is used to describe the force–velocity behaviour of
the MRD, as shown in Fig. 15. The external input is a
sine wave of 0.1-m amplitude and 1-Hz frequency.

The calculation procedures for all six algorithms
with the number of DOFs ranging from 500 to 5,000
are implemented by a PC with Intel Core i7 3.4 GHz
CPU and 8 GB internal memory. The average com-
putational times for each task, which are measured by
MATLAB [26], are presented in Table 2 and Fig. 16.
The computational times for the average acceleration
method, Chang2002 algorithm, and explicit Newmark

method are broadly similar; they increase dramatically
as the number of DOFs increases. Meanwhile, the rela-
tionships between the computational times for the sub-
families with λ = 2, 4 and 11.5 and the number of
DOFs are all approximately linear. The computational
time ratios of the first three algorithms to the pro-
posed subfamilies grow significantly as the number of
DOFs increases. The probable reason is that the explicit
Newmark method and Chang2002 algorithm can pro-
vide only an explicit displacement and require factoris-
ing the damping matrix, and they both transform into
‘implicit algorithms’ when the damping matrix is non-
diagonal, whereas the subfamilies being explicit for
both displacement and velocity remain ‘explicit algo-
rithms’.

5 Conclusions

A discrete transfer function approach is used to develop
a novel family of explicit algorithms for structural
dynamics. This family of algorithms is based on expres-
sions for displacement and velocity that are both
explicit. The stability limit of the proposed family of
algorithms is investigated based on control theory. The
stability and accuracy characteristics of various sub-
families are confirmed by numerical examples for both
linear elastic and stiffness nonlinear systems. The com-

Table 2 Comparison of the
computational times for
various structure sizes

DOFs Computational times of each time step (ms)

Average acceleration Chang2002 Explicit Newmark λ = 2 λ = 4 λ = 11.5

500 5.6 7.2 6.5 0.7 0.9 0.9

1,000 30.1 36.8 34.6 4.3 3.9 3.5

1,500 85.8 100.0 95.4 8.2 7.5 6.9

2,000 177.4 201.9 195.6 12.6 12.0 11.4

2,500 310.1 346.4 338.6 18.2 17.5 17.0

3,000 498.3 553.5 538.3 25.3 24.4 23.9

4,000 1,058.0 1,149.6 1,128.7 43.4 42.4 41.9

5,000 1,871.2 2,018.8 1,992.0 65.5 64.8 64.3

123



Development of a family of explicit algorithms 1169

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

co
m

pu
ta

tio
na

l t
im

e 
(m

s)

number of DOFs

Average Acceleration
Chang2002   
Explicit Newmark
λ=2   
λ=4   
λ=11.5

Fig. 16 Graphical view of computational times for various struc-
ture sizes

putational efficiency of the new family for solving the
system with nonlinear damping is compared with that
of some well-known algorithms. The following con-
clusions are drawn:

(1) The proposed algorithm family requires no factori-
sation of the damping matrix and remains ‘explicit
algorithms’ even though the damping matrix is
non-diagonal; thus, it offers the obvious advantage
of speed for the system with nonlinear damping.

(2) Each subfamily of the proposed algorithm fam-
ily has the same numerical properties as its cor-
responding subfamily in the Newmark family of
algorithms for linear elastic systems because they
have the same poles for linear elastic systems.

(3) For the proposed family of algorithms, the period
elongation decreases as λ increases from 0 to infin-
ity for a given �t/Tn. The period error of the sub-
family with λ = 11.5 is approximately the least
for any �t/Tn.

(4) The stability property decreases as λ increases
from 0 to infinity. The subfamilies with λ ≤ 4 are
unconditionally stable for any linear elastic system
or stiffness softening system, whereas the subfam-
ilies with λ ≤ 4ω2

0/ω
2
t are unconditionally stable

even for the stiffness hardening system.
(5) The accuracy and stability of the proposed fam-

ily of algorithms are contradictory properties. To
ensure unconditional stability and relatively high
accuracy, the subfamily with λ = 4 (CR algo-
rithm) is recommended for the linear elastic and
stiffness softening systems, and the subfamily with
λ = 4ω2

0/ω
2
t is recommended for the stiffness

hardening system.
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